# CMFRI *Winter School on* Impact of Climate Change on Indian Marine Fisheries

Lecture Notes

Part 2

## Compiled and Edited by

### E. Vivekanandan and J. Jayasankar

Central Marine Fisheries Research Institute (CMFRI), (Indian Council of Agricultural Research) P.B. No. 1603, Cochin - 682 018, Kerala

(18.01.2008 - 07.02.2008)



# STATISTICAL PACKAGE FOR SOCIAL SCIENTISTS - A PREPARATORY EXPOSITION

#### J. Jayasankar and Somy Kuriakose

Central Marine Fisheries Research Institute, Kochi 682 018 (jisankar@gmail.com)

#### Introduction

SPSS is a package developed originally for social scientists using large mainframe computers. Since then it has been refined and redeveloped for different types of architecture including Windows. It is an extensive package with facilities for data entry, data manipulation and statistical analysis in a graphical environment. It has modules for survey analysis, graphical display and time series. The package has been considerably improved to include logistic regression and repeated measures analysis and much more which probably can be explored while experiencing the functionalities of the package.

#### **Getting Started**

This exposition is aimed at taking the reader through the preliminaries of the package with an aim to make him/ her feel assured of the preparatory pangs like data import/ transfer and export/ saving. Most of these steps and windows can be accessed/ viewed in earlier versions of SPSS too. The examples and screen shots are select collation from a real session done with the sole purpose of demonstrating the various facets of the package with uniformity and flow.

The package can be accessed from the **Start** menu and selecting **All Programs** and then **SPSS for Windows** and **SPSS14 for Windows**. Ignore, by selecting **OK**, any error messages that may appear on the screen until you see Figure 1. Select the option **Don't show this dialog in the future** and this dialogue-box will not appear again. You can then remove the screen by selecting the **Cancel** button.

| SPSS 14.   | ) for Windows                                                                                                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|
| What wo    | uld you like to do?                                                                                                                   |
| ?          | ◯ Run the tutorial                                                                                                                    |
|            | ◯ Type in data                                                                                                                        |
| 6          | ◯ Run an existing query                                                                                                               |
|            | ◯ Create new query using Database Wizard                                                                                              |
| SPES       | Open an existing data source                                                                                                          |
|            | More Files<br>C:sunspot.bt<br>C:\Documents and Settings\SYSTEM 1\Desktop<br>C:\Documents and Settings\SYSTEM 1\Desktop<br>C:\inis dat |
| SPSS       | Open another type of file More Files C:\DOCUME~1\SYSTEM~1\LOCALS~1\Temp\dat1_                                                         |
| 🗌 Don't sh | Now this dialog in the future                                                                                                         |

Figure - 1

Please wait until Figure 2 then appears on the screen. [For information - to exit SPSS, click on the **File** option on the menu bar and choose **Exit** and confirm your intention]

#### **Default SPSS Windows**

The default image, which should be visible, is shown in Figure 2. The main window, **Untitled1** [DataSet0] - SPSS Data Editor, with the Data View tab highlighted allows numeric data entry direct into the spreadsheet using the default options. If you are not in this view then select the correct Tab at the bottom of the screen before proceeding further. The Variable View tab will be discussed later in the tutorial for inputting of non-numeric data and other uses. Maximize this window image if you prefer.

| 🕮 u      | 🗄 Untitled1 [DataSet0] - SPSS Data Editor |        |       |                   |              |        |           |               |            |     |     |            |           |
|----------|-------------------------------------------|--------|-------|-------------------|--------------|--------|-----------|---------------|------------|-----|-----|------------|-----------|
| File     | Edit                                      | View   | Data  | Transform         | Analyze      | Graphs | Utilities | Window He     | p          |     |     |            |           |
| B        | 8                                         | 9      | ĸ     | E 1               | <b>[?</b> /4 | ⊧¶ ∎   | E 🖽 🗐     | e 🖪 👒         | 0          |     |     |            |           |
| 1:       |                                           |        |       |                   |              |        |           |               |            |     |     | Visible: I | ) of O ∨a |
|          |                                           | va     | r     | var               | Va           | r      | var       | var           | var        | var | var | Var        | va 🔨      |
|          | 1                                         |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 2                                         |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 3                                         |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 4                                         |        |       |                   |              |        |           |               |            |     |     |            |           |
| <u> </u> | 5                                         |        |       |                   |              |        |           |               |            |     |     |            |           |
| <u> </u> | 5                                         |        |       |                   |              |        |           |               |            |     |     |            |           |
| <u> </u> | /                                         |        |       |                   |              |        |           |               |            |     |     |            |           |
| -        | 0                                         |        |       |                   |              |        |           |               |            |     |     |            |           |
| -        | 10                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
| -        | 11                                        |        |       |                   | _            |        |           |               |            |     |     |            |           |
|          | 12                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 13                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 14                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 15                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 16                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 17                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 18                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 19                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 20                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 21                                        |        |       |                   | _            |        |           |               |            |     |     |            |           |
|          | 22                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
| _        | 23                                        |        |       |                   |              |        |           |               |            |     |     |            |           |
|          | 141<br>1 <b>\Dat</b>                      | a Viev | v Á v | l<br>ariable Viev | v Z          |        |           |               |            | <   |     | 1          | >         |
|          | ,                                         |        | -A -  |                   | ,            | _      |           | SPSS Processo | r is ready |     |     |            |           |

Figure - 2

#### Notation

In the sections that follow, the actions you must perform are shown in **bold**, as too are the default values chosen by **SPSS**. *Italic* is used to denote items whose names/values you may choose. It is preferred that variable names start with a letter and are kept as short and simple as possible.

#### For information:

A sequence of actions using the drop-down menus will be denoted by  $\rightarrow$ . For example, **Data** $\rightarrow$ **Insert Variable...** would mean "Click-left on the **Data** option on the drop-down menu and select the option **Insert Variable...** (by clicking-left again)".

#### **Data Entry**

If **SPSS** has been set up correctly the first empty column in the first row will be outlined in the **Untitled1 [DataSet0] - SPSS Data Editor** window. Enter the following three columns of data into the spreadsheet (the data dimensions being 8 columns and 12<sup>o</sup> rows, with the first row being the variable names)

| Year | Month code | month | oilsardine | Mackerel | Kerala total | sst         | Chlorophyll |
|------|------------|-------|------------|----------|--------------|-------------|-------------|
| 1997 | 1          | JAN   | 2164       | 10798    | 48743        | 27.95857143 | 1.1557      |
| 1997 | 2          | FEB   | 16043      | 5738     | 59900        | 28.14       | 1.59508     |
| 1997 | 3          | MAR   | 11981      | 6008     | 58922        | 29.27142857 | 0.815337    |
| 1997 | 4          | APR   | 8968       | 3201     | 49769        | 30.15571429 | 3.47977     |
| 1997 | 5          | MAY   | 8217       | 4160     | 45006        | 30.17857143 | 2.21777     |
| 1997 | 6          | JUN   | 1120       | 2429     | 26136        | 29.52       | 3.33698     |
| 1997 | 7          | JUL   | 5740       | 9049     | 28104        | 28.46714286 | 0.775625    |
| 1997 | 8          | AUG   | 1838       | 7257     | 47069        | 28.02428571 | 1.43846     |
| 1997 | 9          | SEP   | 7328       | 16589    | 57652        | 28.53857143 | 1.06579     |
| 1997 | 10         | OCT   | 21919      | 10387    | 74325        | 29.46714286 | 2.17776     |
| 1997 | 11         | NOV   | 6612       | 4240     | 39380        | 29.54714286 | 1.06579     |
| 1997 | 12         | DEC   | 1706       | 2573     | 39768        | 29.21714286 | 1.48941     |
| 1998 | 1          | JAN   | 1289       | 2093     | 32569        | 28.85       | 1.1557      |
| 1998 | 2          | FEB   | 2296       | 2048     | 27642        | 29.01428571 | 0.712894    |
| 1998 | 3          | MAR   | 4974       | 2919     | 43667        | 29.73571429 | 0.775625    |
| 1998 | 4          | APR   | 2699       | 4287     | 43778        | 30.68       | 0.718546    |
| 1998 | 5          | MAY   | 2203       | 2362     | 36631        | 31.09285714 | 2.21777     |
| 1998 | 6          | JUN   | 8542       | 2319     | 36886        | 29.37       | 16.7595     |
| 1998 | 7          | JUL   | 2637       | 3236     | 35385        | 28.16       | 13.192      |
| 1998 | 8          | AUG   | 7672       | 21580    | 86532        | 27.8        | 3.14315     |
| 1998 | 9          | SEP   | 13712      | 8934     | 52487        | 28.17571429 | 9.40961     |
| 1998 | 10         | OCT   | 6889       | 3845     | 40704        | 28.39428571 | 3.33698     |
| 1998 | 11         | NOV   | 22509      | 5068     | 78819        | 28.62428571 | 3.47977     |
| 1998 | 12         | DEC   | 2373       | 2808     | 27596        | 28.49857143 | 0.815337    |
| 1999 | 1          | JAN   | 9662       | 2347     | 44428        | 28.25571429 | 1.59508     |
| 1999 | 2          | FEB   | 8665       | 1319     | 34286        | 28.41857143 | 1.23454     |
| 1999 | 3          | MAR   | 5791       | 3638     | 42796        | 29.56428571 | 1.43846     |
| 1999 | 4          | APR   | 5325       | 2466     | 34920        | 29.76857143 | 1.1557      |
| 1999 | 5          | MAY   | 263        | 11531    | 36511        | 29.20428571 | 1.84048     |
| 1999 | 6          | JUN   | 9417       | 7943     | 39565        | 28.55428571 | 18.6066     |
| 1999 | 7          | JUL   | 7711       | 8087     | 34158        | 27.75857143 | 11.6915     |
| 1999 | 8          | AUG   | 10654      | 9579     | 76723        | 27.54428571 | 21.4233     |
| 1999 | 9          | SEP   | 30662      | 8629     | 63820        | 28.19714286 | 4.40898     |
| 1999 | 10         | OCT   | 15088      | 10804    | 55748        | 28.12428571 | 1.78038     |
| 1999 | 11         | NOV   | 26622      | 14783    | 74745        | 28.61285714 | 1.09354     |
| 1999 | 12         | DEC   | 13292      | 1343     | 43073        | 28.46714286 | 0.518182    |
| 2000 | 1          | JAN   | 11107      | 5278     | 42002        | 27.97       | 1.08595     |
| 2000 | 2          | FEB   | 15625      | 2165     | 42459        | 28.29285714 | 0.781984    |
| 2000 | 3          | MAR   | 12374      | 3832     | 45642        | 29.09428571 | 0.72823     |
| 2000 | 4          | APR   | 28959      | 1689     | 59597        | 29.76142857 | 0.943045    |
| 2000 | 5          | MAY   | 13122      | 3597     | 45654        | 29.86857143 | 14.925      |
| 2000 | 6          | JUN   | 26938      | 3462     | 46613        | 28.29714286 | 5.03917     |

| Year | Month code | month | oilsardine | Mackerel | Kerala total | sst         | Chlorophyll |
|------|------------|-------|------------|----------|--------------|-------------|-------------|
| 2000 | 7          | JUL   | 49414      | 2252     | 58843        | 27.65571429 | 4.23542     |
| 2000 | 8          | AUG   | 11428      | 3176     | 74315        | 27.41714286 | 7.89502     |
| 2000 | 9          | SEP   | 20633      | 3362     | 55702        | 27.94       | 10.8457     |
| 2000 | 10         | OCT   | 17641      | 1919     | 49515        | 28.72857143 | 4.90867     |
| 2000 | 11         | NOV   | 25573      | 745      | 47473        | 28.97428571 | 1.16986     |
| 2000 | 12         | DEC   | 8597       | 2377     | 36298        | 28.34285714 | 0.918132    |
| 2001 | 1          | JAN   | 6537       | 2402     | 32947        | 28.04142857 | 1.33493     |
| 2001 | 2          | FEB   | 7347       | 1129     | 26572        | 28.31142857 | 1.37667     |
| 2001 | 3          | MAR   | 7081       | 2166     | 33019        | 29.19285714 | 0.972663    |
| 2001 | 4          | APR   | 14283      | 1520     | 35765        | 30.03428571 | 0.722598    |
| 2001 | 5          | MAY   | 15894      | 790      | 40985        | 30.20142857 | 9.70774     |
| 2001 | 6          | JUN   | 11867      | 1146     | 28226        | 28.65857143 | 2.90212     |
| 2001 | 7          | JUL   | 17590      | 2633     | 40412        | 27.80428571 | 4.11085     |
| 2001 | 8          | AUG   | 15177      | 3704     | 70109        | 26.98714286 | 5.74943     |
| 2001 | 9          | SEP   | 15368      | 1210     | 64822        | 27.72       | 0.918132    |
| 2001 | 10         | OCT   | 20001      | 1789     | 52771        | 28.35714286 | 10.1286     |
| 2001 | 11         | NOV   | 14365      | 935      | 50376        | 28.86285714 | 3.47744     |
| 2001 | 12         | DEC   | 11827      | 1374     | 38135        | 28.62285714 | 0.956651    |
| 2002 | 1          | JAN   | 10551      | 1110     | 52092        | 28.31285714 | 0.920593    |
| 2002 | 2          | FEB   | 4123       | 3693     | 32460        | 28.41428571 | 1.72478     |
| 2002 | 3          | MAR   | 5800       | 1423     | 32501        | 29.34142857 | 0.936253    |
| 2002 | 4          | APR   | 16579      | 1284     | 42278        | 30.26142857 | 0.695176    |
| 2002 | 5          | MAY   | 9049       | 1680     | 33068        | 30.04       | 3.13685     |
| 2002 | 6          | JUN   | 9951       | 536      | 24413        | 28.89714286 | 2.94478     |
| 2002 | 7          | JUL   | 17219      | 2710     | 40210        | 28.17       | 19.46       |
| 2002 | 8          | AUG   | 14880      | 1191     | 59169        | 27.48857143 | 5.74943     |
| 2002 | 9          | SEP   | 37251      | 4161     | 85064        | 28.32714286 | 7.04024     |
| 2002 | 10         | OCT   | 29594      | 1304     | 65127        | 28.92571429 | 1.68665     |
| 2002 | 11         | NOV   | 49121      | 2760     | 79725        | 29.09285714 | 0.861453    |
| 2002 | 12         | DEC   | 15350      | 1556     | 43412        | 28.84714286 | 1.06736     |
| 2003 | 1          | JAN   | 17065      | 1358     | 45217        | 28.25285714 | 0.861914    |
| 2003 | 2          | FEB   | 16852      | 1201     | 49516        | 28.52857143 | 1.19247     |
| 2003 | 3          | MAR   | 31683      | 1652     | 55889        | 29.74428571 | 0.985244    |
| 2003 | 4          | APR   | 14096      | 2964     | 36449        | 30.41428571 | 0.663178    |
| 2003 | 5          | MAY   | 11187      | 1845     | 45030        | 30.42714286 | 9.70774     |
| 2003 | 6          | JUN   | 22772      | 2015     | 54273        | 29.42714286 | 4.37136     |
| 2003 | 7          | JUL   | 13146      | 2683     | 25629        | 28.23       | 13.9812     |
| 2003 | 8          | AUG   | 14189      | 3835     | 51982        | 28.07714286 | 3.2039      |
| 2003 | 9          | SEP   | 23153      | 5098     | 52253        | 28.31571429 | 17.1568     |
| 2003 | 10         | OCT   | 51363      | 6041     | 94733        | 28.64       | 5.32919     |
| 2003 | 11         | NOV   | 36644      | 3644     | 74517        | 28.82285714 | 1.08247     |
| 2003 | 12         | DEC   | 12222      | 2690     | 37805        | 28.37428571 | 0.588376    |

| Year | Month code | month | oilsardine | Mackerel | Kerala total | sst         | Chlorophyll |
|------|------------|-------|------------|----------|--------------|-------------|-------------|
| 2004 | 1          | JAN   | 17924      | 738      | 44881        | 28.32714286 | 0.987224    |
| 2004 | 2          | FEB   | 11406      | 1119     | 41604        | 29.48428571 | 1.42619     |
| 2004 | 3          | MAR   | 15478      | 2979     | 62697        | 30.34571429 | 1.33172     |
| 2004 | 4          | APR   | 8667       | 1384     | 46880        | 29.63857143 | 0.940146    |
| 2004 | 5          | MAY   | 11046      | 1837     | 44196        | 28.54857143 | 2.15283     |
| 2004 | 6          | JUN   | 5754       | 269      | 27372        | 27.92714286 | 1.84319     |
| 2004 | 7          | JUL   | 26737      | 4512     | 46501        | 27.57571429 | 4.73062     |
| 2004 | 8          | AUG   | 10825      | 4167     | 59778        | 28.00285714 | 2.82243     |
| 2004 | 9          | SEP   | 24449      | 15048    | 73691        | 28.67428571 | 5.53495     |
| 2004 | 10         | OCT   | 31339      | 14809    | 71802        | 28.96285714 | 4.20154     |
| 2004 | 11         | NOV   | 29653      | 1410     | 48536        | 28.34428571 | 1.3531      |
| 2004 | 12         | DEC   | 31428      | 5739     | 48901        | 28.04142857 | 1.38722     |
| 2005 | 1          | JAN   | 10124      | 1804     | 21423        | 28.42857143 | 0.835333    |
| 2005 | 2          | FEB   | 12266      | 1056     | 33224        | 29.02142857 | 1.21194     |
| 2005 | 3          | MAR   | 31748      | 1008     | 46888        | 30.17857143 | 0.951414    |
| 2005 | 4          | APR   | 8667       | 1384     | 46880        | 28.17571429 | 1.42963     |
| 2005 | 5          | MAY   | 11046      | 1837     | 44196        | 28.62428571 | 1.71465     |
| 2005 | 6          | JUN   | 8819       | 6407     | 32292        | 28.41857143 | 9.70774     |
| 2005 | 7          | JUL   | 11808      | 3381     | 26487        | 29.20428571 | 9.86626     |
| 2005 | 8          | AUG   | 12302      | 4442     | 52508        | 27.75857143 | 30.2002     |
| 2005 | 9          | SEP   | 30619      | 12669    | 68050        | 28.19714286 | 6.41821     |
| 2005 | 10         | OCT   | 11048      | 3208     | 40531        | 28.12428571 | 6.38736     |
| 2005 | 11         | NOV   | 26757      | 5407     | 54622        | 28.46714286 | 4.35151     |
| 2005 | 12         | DEC   | 43592      | 7895     | 69114        | 29.19285714 | 1.36511     |
| 2006 | 1          | JAN   | 21759      | 5771     | 46744        | 28.65857143 | 1.36292     |
| 2006 | 2          | FEB   | 20246      | 2248     | 37993        | 26.98714286 | 1.27417     |
| 2006 | 3          | MAR   | 12072      | 1360     | 42533        | 28.35714286 | 0.834216    |
| 2006 | 4          | APR   | 9943       | 2329     | 41333        | 28.86285714 | 2.4887      |
| 2006 | 5          | MAY   | 17729      | 1638     | 49849        | 28.62285714 | 2.18389     |
| 2006 | 6          | JUN   | 15206      | 5169     | 38998        | 28.41428571 | 14.929      |
| 2006 | 7          | JUL   | 19889      | 1266     | 33541        | 29.34142857 | 9.86626     |
| 2006 | 8          | AUG   | 11036      | 4977     | 58870        | 30.26142857 | 4.82528     |
| 2006 | 9          | SEP   | 18393      | 4549     | 58230        | 28.64       | 3.32627     |
| 2006 | 10         | OCT   | 33047      | 9625     | 79580        | 27.57571429 | 4.17407     |
| 2006 | 11         | NOV   | 31031      | 1387     | 56594        | 28.67428571 | 2.22998     |
| 2006 | 12         | DEC   | 15917      | 4784     | 47637        | 28.04142857 | 1.37097     |

By default the names given to these three columns are var00001, var00002 and var00003.

Each row of this data represents the year and month with corresponding month code along with the oil sardine landing estimates (tons) and Indian mackerel landings (tons) and Sea Surface Temperature (SST) in degrees Celsius and lastly the Chlorophyll content in mg/m<sup>3</sup> off Kerala coast. The variables given in the first row of the data can very well be used to name the variables in lieu of their default names.

Move to the **Variable View** window (click-left on the tab at the bottom of the window) to see Figure 3 and replace the default names by those suggested above in the **Name** column. Move back to the **Data View** window to see Figure 4. Do not worry about the contents of the other columns, shown in **Variable View**, they will be discussed as the need arises.

| ١ | 🖬 *tsplo  | t.sav [Datas        | Set1] - SPSS Da | ta Editor |                  |              |        |         |         |       | ×   |
|---|-----------|---------------------|-----------------|-----------|------------------|--------------|--------|---------|---------|-------|-----|
| 1 | File Edit | View Data           | Transform Anal  | yze Graph | is Utilities Ado | l-ons Window | Help   |         |         |       |     |
| i | 6- 🔒      | ᄚᇛᅀᆸᇛゃ҂ᅚᇛᇡᆙᆥᆥ᠊▦ᇓᄐᅑᄵ |                 |           |                  |              |        |         |         |       |     |
|   |           | Name                | Туре            | Width     | Decimals         | Label        | Values | Missing | Columns | Align | i 📤 |
| I | 1         | Year                | Numeric         | 11        | 0                |              | None   | None    | 8       | Right |     |
| I | 2         | month_cod           | Numeric         | 11        | 0                |              | None   | None    | 8       | Right |     |
| I | 3         | month               | String          | 3         | 0                |              | None   | None    | 3       | Left  |     |
| I | 4         | oilsardine          | Numeric         | 11        | 0                |              | None   | None    | 8       | Right |     |
| I | 5         | Mackerel            | Numeric         | 11        | 0                |              | None   | None    | 8       | Right |     |
| I | 6         | Keralatotal         | Numeric         | 11        | 0                | Kerala total | None   | None    | 8       | Right |     |
| I | 7         | sst                 | Numeric         | 13        | 12               |              | None   | None    | 8       | Right | 1   |
| I | 8         | Chlorophyll         | Numeric         | 11        | 4                |              | None   | None    | 8       | Right | ~   |
|   | < ) \ D   | ata View λ Va       | ariable View /  |           |                  | <            |        | 1111    |         | >     |     |
| I |           |                     |                 | S         | PSS Processor is | ready        |        |         |         |       |     |

| Figure | - | 4 |
|--------|---|---|
|--------|---|---|

|    | ÷    | 0 L [     | b #   | 偏産         | 周金馬      | 80          |          |             |     |     |     |     |     |   |
|----|------|-----------|-------|------------|----------|-------------|----------|-------------|-----|-----|-----|-----|-----|---|
|    |      |           |       |            |          |             |          |             |     |     |     |     |     |   |
|    | Year | month_cod | nth   | oilsardine | Mackerel | Keralatotal | sst      | Chlorophyll | var | var | var | var | var | V |
| 1  | 1997 | 1         | JAN   | 2164       | 10798    | 48743       | 27.95857 | 1.1557      |     | 1   |     |     |     |   |
| 2  | 1997 | 2         | FE    | 16043      | 5738     | 59900       | 28.14000 | 1.5951      |     |     |     |     |     |   |
| 3  | 1997 | 3         | MA    | 11981      | 6008     | 58922       | 29.27143 | .8153       |     |     |     |     |     |   |
| 4  | 1997 | 4         | AP    | 8968       | 3201     | 49769       | 30.15571 | 3.4798      |     |     |     |     |     |   |
| 5  | 1997 | 5         | MA    | 8217       | 4160     | 45006       | 30.17857 | 2.2178      |     |     |     |     |     |   |
| 6  | 1997 | 6         | 5 JUN | 1120       | 2429     | 26136       | 29.52000 | 3.3370      |     |     |     |     |     |   |
| 7  | 1997 | 7         | JUL   | 5740       | 9049     | 28104       | 28.46714 | .7756       |     |     |     |     |     |   |
| 8  | 1997 | 8         | AU    | 1838       | 7257     | 47069       | 28.02429 | 1.4385      |     |     |     |     |     |   |
| 9  | 1997 | 9         | 9 SE  | 7328       | 16589    | 57652       | 28.53857 | 1.0658      |     |     |     |     |     |   |
| 10 | 1997 | 10        | 00    | 21919      | 10387    | 74325       | 29.46714 | 2.1778      |     |     |     |     |     |   |
| 11 | 1997 | 11        | NO    | 6612       | 4240     | 39380       | 29.54714 | 1.0658      |     |     |     |     |     |   |
| 12 | 1997 | 12        | DE    | 1706       | 2573     | 39768       | 29.21714 | 1.4894      |     |     |     |     |     |   |
| 13 | 1998 | 1         | JAN   | 1289       | 2093     | 32569       | 28.85000 | 1.1557      |     |     |     |     |     |   |
| 14 | 1998 | 2         | FE    | 2296       | 2048     | 27642       | 29.01429 | .7129       |     |     |     |     |     |   |
| 15 | 1998 | 3         | MA    | 4974       | 2919     | 43667       | 29.73571 | .7756       |     |     |     |     |     |   |
| 16 | 1998 | 4         | AP    | 2699       | 4287     | 43778       | 30.68000 | .7185       |     |     |     |     |     |   |
| 17 | 1998 | 5         | MA    | 2203       | 2362     | 36631       | 31.09286 | 2.2178      |     |     |     |     |     |   |
| 18 | 1998 | 6         | i JUN | 8542       | 2319     | 36886       | 29.37000 | 16.7595     |     |     |     |     |     |   |
| 19 | 1998 | 7         | JUL   | 2637       | 3236     | 35385       | 28.16000 | 13.1920     |     |     |     |     |     |   |
| 20 | 1998 | 8         | 8 AU  | 7672       | 21580    | 86532       | 27.80000 | 3.1432      |     |     |     |     |     |   |
| 21 | 1998 | 9         | SE    | 13712      | 8934     | 52487       | 28.17571 | 9.4096      |     |     |     |     |     |   |
| 22 | 1998 | 10        | 00    | 6889       | 3845     | 40704       | 28.39429 | 3.3370      |     |     |     |     |     | 1 |
| 23 | 1998 | 11        | NO    | 22509      | 5068     | 78819       | 28.62429 | 3.4798      |     |     |     |     |     |   |
| 24 | 1998 | 12        | DE    | 2373       | 2808     | 27596       | 28.49857 | .8153       |     |     |     |     |     | - |
| 25 | 1999 | 1         | JAN   | 9662       | 2347     | 44428       | 28.25571 | 1.5951      |     |     |     |     |     |   |
| 26 | 1999 | 2         | FE    | 8665       | 1319     | 34286       | 28.41857 | 1.2345      |     |     |     |     |     | - |
| 27 | 1999 | 3         | MA    | 5791       | 3638     | 42796       | 29.56429 | 1.4385      |     |     |     |     |     |   |
| 28 | 1999 | 4         | AP    | 5325       | 2466     | 34920       | 29.76857 | 1.1557      |     |     |     |     |     | - |
| 29 | 1999 | 5         | MA    | 263        | 11531    | 36511       | 29.20429 | 1.8405      |     |     |     |     |     |   |
| 20 | 1999 | 6         | JUN   | 9417       | 7943     | 39565       | 28.55429 | 18.6066     |     |     |     |     |     | - |

#### Saving Your Work

Although entering the data in Section 5 did not take too long it is always wise to save any work you have done. Saving your work should be a frequent operation whenever you use a PC.

#### Exercise 1

Several types of files, subsets of variables, or commands can be saved. Here you will be creating a **SPSS Save** file (*.sav*) which will create a file in compressed form containing the complete set of data, names and formats.

Choose File  $\rightarrow$  Save As... from the main drop-down menu. The :Save Data As dialogue box appears (as shown in Figure 5). If necessary, choose the correct folder (My Documents\....), then type a relevant filename e.g. *tsplot* in the File name box. [Note that the default file extension is given as *.sav*] Click on Save and the data will be saved.

The dialogue box will close automatically after the file has been saved.

| Save Data As                | _                                                                                                                                                            | _                                                                                                                                            | ? 🗙                                                                                                   |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Save in:                    | 🚱 Desktop                                                                                                                                                    | ×                                                                                                                                            | G 🕸 📂 🛄-                                                                                              |
| My Recent<br>Documents      | My Documents<br>My Computer<br>My Network Plac<br>Analysis<br>aquaq<br>asp                                                                                   | Jpeg Compressor     Mahesh es     manuscriptpdf     mefisto     mini     manuscriptpdf                                                       | Unused Desktop Shortcu  winterschool  wismanuscripts  wisMSpart2 Google Talk Received File tsplot.sav |
| Desktop                     | asp and vb.net                                                                                                                                               | Size: 10.8 MB<br>Files: 00000000.BI_, ANIBT                                                                                                  | N16.OC_, AQUAQ.BMP, AQUAQ.FDB,                                                                        |
| My Documents<br>My Computer | <ul> <li>bioinformatics</li> <li>dimatechange</li> <li>enrichment</li> <li>FRAD_PHOTOS</li> <li>growth rate</li> <li>Images</li> <li>jj</li> <li></li> </ul> | PrimerWrk  Project SAM SCZ SRC07 SRC07 sundry tseries                                                                                        |                                                                                                       |
|                             |                                                                                                                                                              | Keeping 8 of 8 variables.                                                                                                                    | Variables                                                                                             |
| My Network                  | File name:                                                                                                                                                   | tsplot.sav                                                                                                                                   | ✓ Open                                                                                                |
|                             | Save as type:                                                                                                                                                | SPSS (*.sav)                                                                                                                                 | Paste                                                                                                 |
|                             |                                                                                                                                                              | <ul> <li>Write variable names to spreadshi</li> <li>Save value labels where defined i</li> <li>Save value labels into a .sas file</li> </ul> | eet Cancel                                                                                            |

#### Figure - 5

#### Reading in a SAVED data set

While we deal with data sets it is a good time to learn how to read in a previously saved SPSS data set. Follow Exercise 2 and exit from SPSS, check that the file exists and then restart the program and retrieve the saved file you have just created.

If you have **SPSS** installed on your personal PC you would be able to open the file **My Documents**\...\*tsplot.sav* from within the file manager.

- ♦ Choose File→Exit from the main menu. Using any method you know (ie look at the contents of the folder My Documents) on the desktop) check the file *tsplot.sav* exists.
- Invoke the package again and wait for the software to be reloaded. (described in Section 2)
- Select File→Open→Data... from the main menu bar. This will show the Open File dialogue box similar to Figure 6. Check you are looking at the correct folder and filename My Documents\...\tsplot.sav and select Open
- Check that the *tsplot.sav* SPSS Data Viewer is as shown in Figure 4.

| Open File                   |                                                                    |            |                                                      | -                                    | _                   | -                   | ? ×           |
|-----------------------------|--------------------------------------------------------------------|------------|------------------------------------------------------|--------------------------------------|---------------------|---------------------|---------------|
| Look in:                    | 🞯 Desktop                                                          |            |                                                      | ~                                    | G 🕸                 | P .                 |               |
| My Recent<br>Documents      | My Documents<br>My Computer<br>My Network Pla<br>Analysis<br>aquaq | ces        | mini<br>nas<br>Nj_Discrimir<br>polycom<br>PrimerWrk  | nant F A                             |                     |                     |               |
| Desktop                     | asp and vb.net<br>bayesian<br>bioinformatics<br>climatechange      |            | SAM<br>SCZ<br>SRC07<br>sundry                        |                                      |                     |                     |               |
| My Documents<br>My Computer | FRAD_PHOTOS Growth rate Images jj Jpeg Compress                    | or         | Unused Des<br>winterschoo<br>wsmanuscri<br>wsMSpart2 | sktop Sho<br>ol<br>ipts<br>: Receive | ortcuts<br>ed Files |                     |               |
| My Network<br>Places        | Mahesh<br>manuscriptpdf                                            |            | ∰ tsplot.sav                                         |                                      |                     |                     |               |
|                             | File name:<br>Files of type:                                       | SPSS (*.sa | 3V)                                                  |                                      |                     | <ul><li>✓</li></ul> | Open<br>Paste |
|                             |                                                                    |            | ,                                                    |                                      |                     |                     | Cancel        |

#### Figure - 6

#### Listing the Data

One of the first things that you should always do with the values you have input is confirm that the program will be working on the data values exactly as you intended. You can easily make a mistake by typing **100** in place of **1.00** and this would make your results very strange. As your data is in a spreadsheet you can do this by checking the values straight from the screen. However, you may wish to create a paper listing and take it away with you to check. Follow through the next exercise in order to list and check your data.

From the main menu bar choose Analyze  $\rightarrow$  Reports  $\rightarrow$  Case Summaries to produce the dialoguebox shown in Figure 7. Highlight the word oilsardine from the selection on the left-hand side and then click on the

button to select the variable as required to be listed. Repeat for mackerel etc..

Click on the **OK** button. The maximised **Output1 - SPSS Viewer** window will become visible. Scroll up and down through it to check that it looks like Figure 8. Note that the data is listed in the order in which you selected the variables e.g. alphabetic. This window could then be printed.

Correct any mistakes if necessary, and re-save the data file using  $File \rightarrow Save$ . This will automatically overwrite the file My Documents\...\*tsplot.sav*.

| Summarize Cases                                                                                                                      |                       | X                                        |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------|
| <ul> <li></li></ul>                                                                                                                  | Variables:            | OK I<br>Paste<br>Reset<br>Cancel<br>Help |
|                                                                                                                                      | Grouping Variable(s): |                                          |
| <ul> <li>✓ Display cases</li> <li>✓ Limit cases to first 10</li> <li>✓ Show only valid cases</li> <li>✓ Show case numbers</li> </ul> | 0Statistics           |                                          |

Figure - 7

Figure - 8

| N         Percent         N         Percent         N         Percent           offsurrine         100         100 (%)         0         6%         100         100 (%)           attained         100         100 (%)         0         9%         100         100 (%)           attained         100         100 (%)         0         9%         100         100 (%)           attained         100         100 (%)         0         9%         100         100 (%)           attained         100         100 (%)         0         9%         100         100 (%)           attained         100         100 (%)         0         9%         100         100 (%)           attained         100         100 (%)         0         9%         100         100 (%)           attained         100         100 (%)         100         100 (%)         100         100 (%)           attained         100         200 (%)         100         100 (%)         100 (%)           attained         100 (%)         200 (%)         100 (%)         100 (%)         100 (%)           attained         100 (%)         200 (%)         200 (%)         100 (%)         <                                                                                                                              |             | includ           | ed        | Exclude      |        | To       | tal     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-----------|--------------|--------|----------|---------|--|
| Constraint         100         100/05%         0         6%         100         100/05%           Maximut         100         100/05%         0         6%         100         100/05%           Chourphal         100         100/05%         0         6%         100         100/05%           a.combal         100         100/05%         0         6%         100         100/05%           a.combal         100         100/05%         0         6%         100         100/05%           a.combal         5/01         0         0         0%         100         100/05%           a.combal         5/01         0         2/01         15/01         110/05%           2         106/04         5/73         211.40000000         1.95/1         115/2           2         106/04         5/73         211.40000000         1.95/1         115/2           3         118/2         2/02.11         2.217/1         2.217/8         2.217/8         1.95/1           6         112/0         2/02.19/2         2.92/17/8/2         2.178/8         1.95/2         1.95/2           112         12/02         2/02.19/2         2.92/17/8/2         1.95/2                                                                                                                                    |             | N                | Percent   | N P          | ercent | N        | Percent |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | olisardine  | 100              | 100.0%    | 0            | .0%    | 100      | 100.0%  |  |
| 100         100         100         0         0%         100         100 %           a Lended to Firt1 DO 2 Adet         0         0%         100         100 0%         100 0%           a Lended to Firt1 DO 2 Adet         0         0%         100         100 0%         100 0%           a Lended to Firt1 DO 2 Adet         0         0%         100         100 0%         0         0%         100         100 0%           2         100 0% first         0         0%         0         0%         100         100 0%           100         100 0%         0         0%         0         0%         100         100 0%           2         100 0%         0         0%         100         100 0%         0         0%           2         100 0%         0         20% di 000000         1.5501         1551         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561         1561 <td>Mackarel</td> <td>100</td> <td>100.0%</td> <td>0</td> <td>.0%</td> <td>100</td> <td>100.0%</td> <td></td> | Mackarel    | 100              | 100.0%    | 0            | .0%    | 100      | 100.0%  |  |
| Chocogenet         100         100 02%         0         0%         100         100 0%           A Lended to fort 100 cases           Concernent         100         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100 0%         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100 0%         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100 0%         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100 0%         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100 0%         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100 0%         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100 0%         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100 0%         100 0%         100 0%         100 0%           A Lended to fort 100 cases         100 0%                                      | set         | 100              | 100.0%    | 0            | .0%    | 100      | 100.0%  |  |
| * Lembed to frat 100 cases           Cases Samualiss*           <th colspan="2</td> <td>Chlorophyll</td> <td>100</td> <td>100.0%</td> <td>0</td> <td>.0%</td> <td>100</td> <td>100.0%</td> <td></td>                                                                                                                                                                                                                                                                                    | Chlorophyll | 100              | 100.0%    | 0            | .0%    | 100      | 100.0%  |  |
| Cares Generative*           Officient         Miscisse         St         Choogent           1         25164         1070         2736957142         15587           2         10644         5778         2140400000         15981           3         10644         5778         2140400000         15981           4         6         9217         4140         21397           5         9217         4169         21397         2149           6         9217         4169         21397         2149         2378           6         9217         2149         2147         14398         2377           7         5740         9149         24744297         2378           6         1212         2223         235000000         2337           7         5740         9149         24474297         14098           101         1279         2237         22371         14591           112         12791         1590         24474297         14591           113         1794         2327         223714357         14591           114         2209         2304         20145571         1595                                                                                                                                                                                          | a Limited I | o first 100 cars | es.       |              |        |          |         |  |
| Officenter         Barksent         Bit         Changephil           1         2464         1570         27.8697423         15857           3         11981         6000         2.9374293         18537           4         991         2.9374293         18537           5         991         2.9374293         2.9374           6         991         2.9374293         2.9374           6         992         2.9374293         2.9374           7         5740         84.000000         2.3370           8         1920         2.9272         2.9242847           9         1220         2.9272         2.9242847         1.6495           9         7.297         1.9589         2.935974.421         1.0495           10         2.9271         2.924744257         2.1798           11         8614         2.94744257         2.1698           13         199         2.924744257         1.0584           13         199         2.924744257         1.0584           14         2.949         2.949         2.9497         1.9584           15         4.472         2.93730000000         1.5457                                                                                                                                                                                        |             |                  | ase Summa | ies*         |        |          |         |  |
| 1         2164         10789         27.38577429         11987           2         10842         57.2         28.400000         1.9851           3         1188         600         29.2742971         81.53           4         986         20.31597142971         81.53           5         91.91         4000         29.2742971         81.53           6         91.91         42.39         29.5500000         20.3159           7         54.46         90.69         29.45744297         77.58           8         19.99         72.97         19.02045974.         1.048           9         72.08         126.69         29.56744297         1.059           10         21.91         10.197         29.4474287         1.059           13         1.99         29.23744297         1.059           14         2.09         28.474287         1.759           15         1.99         28.6744297         1.959           14         2.09         28.6744297         1.959           15         2.09         28.6744297         1.959           16         4.679         2.09.27144297         1.959           17                                                                                                                                                                             |             | oilsardine       | Mackarel  | stt          | Chi    | orophyli |         |  |
| 2         1664         677         234         44000000         1.951           4         897         244         200         2237         234           4         897         240         20178         3         3           6         1120         2402         23474         3         2178           6         1120         2402         23474         3         2178           7         5740         8464         23474         2179           8         1230         2237         20226574         1.4365           9         7231         15859         23357429         1.069           10         2149         12047         23474427         1.069           11         616         2349         23474427         1.069           13         1198         203         234574427         1.069           14         2090         2046         20146574         7.756           15         4474         2317         2357         1.058           16         2049         204145574         7.756         7.756           16         2049         2041455747         7.756           16                                                                                                                                                                                                      |             | 2164             | 10798     | 27.9585714   | 19     | 1.1557   |         |  |
| 3         1181         600         29.2142671         865           4         868         200         35.511426         3.478           5         817         446         20.31551142         2.178           6         1142         3.223         2.444         2.178           6         1142         3.223         2.444         2.178           6         1142         3.223         2.444         3.179           7         1448         2.278         2.0424514         4.465           8         12.237         2.0424514         4.465         10.656           9         7.238         1466         2.93474267         10.656           10         2.619         10.017         2.0474267         10.656           11         2.619         10.017         2.0474267         10.656           12         17.05         2.57         2.23744267         10.656           13         1.99         2.02.391426         7.756         7.756           14         2.206         2.02.391426         7.756         7.756           17         2.02         2.02.391426         7.756         7.756           18         2                                                                                                                                                                           | 1           | 16043            | 5738      | 28.1400000   | 10     | 1.5951   |         |  |
| 4         066         220         33571420         3478           5         027         440         3479         2173           6         1927         440         3479         2173           7         1940         244714297         776           8         7223         11659         2153571420         1059           9         7220         10569         2153571420         1059           10         2173         10569         2153571420         1059           11         6112         4242         2244714297         1068           11         6112         4242         2244714297         1068           13         1019         2237         23171420         1698           14         2094         2204         200142014         1759           15         4474         2319         231570         1488           14         2094         2319         231570         1488           17         119         2164         2175         7156           17         2003         201420744         7159         1159           18         242         2119         215714208         469                                                                                                                                                                                             | 3           | 11991            | 6008      | 29.2714285   | 1      | 8153     |         |  |
| 5         427         4160         20.1997.429         21.19           6         1120         22.22         23.500.000         3.3370           7         57.50         964         21.441.1395         7.764           8         7.201         1569         23.5871.200         1.066           10         21.994         10.997         23.9871.201         1.066           10         21.994         10.907         23.9871.201         1.066           11         6612         24.971.201         1.064         1.067           12         1706         25.571.212.717.106         1.957         1.484           13         1299         20.00         23.9857.000         1.1557           14         2260         24.04         24.1597.412.97         1.494           15         2474         23.257.423.97         1.494         7.16           16         249.02         24.1597.420.07         1.157         1.46           17         257.223         23.1574.230         7.16         7.16           18         267.02         23.97         1.37.1000000         1.157.05           19         267.222.92         23.1597.420.91         3.10000000                                                                                                                                       | 4           | 8968             | 3201      | 30.1557142   | 96     | 3.4798   |         |  |
| 6         11.20         24.20         29.20000000         3.3010           7         54.60         10.42         3.4471420         7756           8         7.20         15690         23.5571429         1.0659           10         21691         15090         23.6571429         1.0659           11         6612         24.42         25.4774297         1.0659           12         1766         22.5771429         1.0569           13         1799         22.00         23.6000000         1.9571           14         61.29         29.01         24.6000000         1.9571           15         44.74         23.771429         7.756         7.756           16         24.69         23.717420         7.756         7.756           17         24.67         23.7174200         23.171420         2.2178           18         44.42         21.170000000         1.5150         1.5169           17         2000         23.75714280         3.1696         1.5156           18         44.42         23.170000000         1.5156         1.5156           19         44.42         23.170000000         1.51506         1.5166                                                                                                                                                         | 5           | 8217             | 4160      | 30.1705714   | 19     | 2.2178   |         |  |
| 7         57-60         0048         214.471.0157         .7766           6         1508         225.070.2410574         1.6165           6         7528         1053.012574.327         1.6365           7         1651.2         4.205.25471.328         1.6365           11         661.2         4.205.25471.2387         1.6565           12         1706         0.816.000.000         1.1567           13         1208         20.014.32574         3.729           15         4.417         210.814.0574.48         1.569           16         2.206         2.014.32574.48         1.569           15         4.207         2.017.124.057         1.488           16         2.064         2.014.32574.48         1.759           16         2.069         2.042         2.014.32574.48         1.759           16         2.059         2.01         2.015.00000         7.165           17         2.027         2.01000000         7.165         1.3150           18         2.023         2.010000000         3.1402         1.3142           20         7.627         2.014.025774.426         8.496         1.402           21         1.                                                                                                                                               |             | 1120             | 2429      | 29.5200000   | 10     | 2.3370   |         |  |
| 0         1600         7257         210.3249714         1.0496           10         21938         163.9587142         1.0496           10         21938         10307         224.471.0127         2.1776           11         21618         20307         224.471.0127         2.1776           12         1792         2030         22.371.0127         1.0686           13         1792         2030         20.271.0127         1.0686           14         2019         2017.48574         1.7756           15         4474         2019         2017.48574         1.7756           16         2049         4207         2.0174.8574         1.7756           17         2000         2000         7.165         7.166         7.166           17         2000         2000         7.16         7.166         7.166           19         2647         20.1760000000         7.16         7.167         7.176           19         2647         2.01760000000         3.1432         7.167         7.167           20         17672         2.0140000000         3.1432         7.167         7.176           21         1.9772         2.014000                                                                                                                                                 | 17          | 5740             | 9049      | 28.4671429   | 17     | 7758     |         |  |
| 0         7238         16669         26.35374.62         1.058           10         21912         10039         23.4371.232         23.1738           11         170         4705         26.371         23.4741.232         23.1738           13         1706         26.372         23.2174.2357         1.4844         1.1537           14         1208         20.02         28.600.00000         1.1557           14         2208         20.424.3457.14         177.95           16         2669         42.02         23.2574.2357         71.65           17         22.03         20.2374.2357         71.65         71.65           18         26.49         20.444.857.44         71.99         71.65           18         26.49         20.444.857.44         71.99         71.65           19         8.69         23.237.243.207         71.91         71.65           18         8.697         23.237.243.207         1.159         71.65           19         8.697         2.236.200.000         1.1597         71.65           19         8.697         2.236.200         21.997.200         3.1452           20         169.27         23.3424.257.74                                                                                                                               |             | 1828             | 7267      | 28.0242857   | 4      | 1.4385   |         |  |
| 10         21919         10307         22447142057         21.778           11         6812         4420         2545742057         10588           12         1706         2202         22.97142057         10588           13         1206         2202         22.97142057         14344           13         1206         2202         22.97142057         14344           15         2464         2019         23.57142067         7166           16         2569         2437         26.0000000         7165           17         2020         2202         21.0000000         15.936           18         246.7         2202         21.10000000         15.936           19         246.7         2202         21.10000000         13.1920           20         1722         21.0000000         13.1920         21.4920           21         13712         6334         21.5714318         9.4966           22         6889         23.84205714         2.3710         24.945           22         2689         23.84205714         2.3710         24.945           23         2206         9666         26.4245714         2.3710                                                                                                                                                            | 1           | 7328             | 16589     | 28.5385714   | 19     | 1.0858   |         |  |
| 11         66.2         42.40         23.471.42627         1.068           13         1702         22.271.201.426         1.468           14         22.9         22.371.201.426         1.468           15         22.9         22.371.201.426         1.468           16         22.90         20.414.917.44         7.759           15         484.4         24.757.426         7.766           16         26.90         42.97         26.600.0000         7.955           17         22.03         21.097.426         7.956         1.656           18         86.2         21.997.426         9.656         2.159.426           28         19.72         21.000.0000         1.653         2.1594           29         16.000.000         31.642         2.1794         2.1794           20         16.000.000         31.642         2.1794         2.1794           21         19.712         61.03         2.17974.430         8.466           22         266.99         50.68         2.163.42574         3.2790           24         7.079         19.4464.479.476         3.4791         4.791                                                                                                                                                                                              | 10          | 21919            | 10387     | 29.4671428   | 57     | 2.1778   |         |  |
| 12         170         257         2321742457         1494           13         1794         200         24600000         1.557           14         2204         2461020         1.557           15         4461         20151742457         1.794           16         2205         246100000         1.557           16         4464         20151742457         1.794           17         200         2015         7156           19         2402         2247         2205         216000000           19         2427         2226         216000000         11.1926           20         71472         21571         20.40600         1.1926           21         2170         2014         21.000000         1.1926           22         2266         21.6000000         1.1926         2.194           23         2200         5064         21.39571.426         4.066           22         226         281.6000000         1.1929         2.2174           22         2084         21.89425714         3.2379         2.2174           22         2200         5064         21.492425714         3.4794                                                                                                                                                                                     | 1111        | 6612             | 4240      | 29:5471428   | 17     | 1.0658   |         |  |
| 13         1299         2092         28 40000000         11:557           14         2296         2044         2044         31:557           15         4417         2019         28:3574         27:56           16         2694         42:10         30:4000000         7:165           17         2000         2000         7:167         22:176           189         8:42         22:14         33:3000000         13:193           20         7:127         22:16         7:16000000         13:193           20         7:127         12:160         7:4000000         31:193           21         13:171         13:34         31:1714:206         34:405           22         6:894         31:34:0514         3:279         31:40:00000         31:192           221         13:171         13:34         31:1714:206         3:40:164         3:270         31:40:21           22         6:894         3:34:34:0514         3:279         3:270         3:270         3:270           23         22:09         5:006         3:24:30:47:454         3:279         3:471         3:270           24         20:171         14:30:43:4554         3:44:30:47                                                                                                                                | 12          | 1706             | 2573      | 29.2171428   | 57     | 1.4994   |         |  |
| 14         209         204         204485714         7759           15         4474         2012571426         7758           16         2012         201257142         7759           17         2012         201257142         7758           17         2014         2012         7751           19         2012         2012         20149           19         2012         2012         20149           20         7472         2216         201000000         1199           21         13712         8934         20157714208         4069           22         2089         5086         2014245714         3.079           23         2209         5086         2014245714         3.479           24         7711<7700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12          | 1209             | 2093      | 28.8500000   | 20     | 1.1557   |         |  |
| 15         4874         2919         287.2574.236         7756           16         2069         4247         206.600.000         7165           17         2020         2762         270.000.071.05         2.379           16         8154         22.379         23.300.000.000         16.396           16         3657         22.324         24.100.0000         13.1920           20         71672         21.640         24.066         24.452           21         13.2772         69.84         28.13274.4200         8.4066           22         6889         28.424.25744         2.3748         8.4066           23         22005         5660         28.624.26174         2.4788           24         7177         10.011         14.464.749.3         14.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14          | 2296             | 2048      | 29.0142857   | 4      | 7129     |         |  |
| 16         2499         4407         28.6000000         7165           16         2203         2204         700000000         7165           16         6.27         201000000         13.190           20         1762         21600         13.190           21         1772         21600         13.190           21         1772         21600         13.192           21         1717         218425714         8.496           22         6898         281.5714240         8.496           23         22509         5688         216.2457144         3.479           24         3731         300.44587144         3.479         8.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15          | 4574             | 2919      | 29.7357142   | 16     | 7756     |         |  |
| 17 2200 2782 11200714.01 22176<br>18 2642 2217 218 23 70000000 113190<br>19 2657 2228 28 16000000 13190<br>20 7872 21460 27 800000 13190<br>21 103712 8134 2817574.286 8406<br>22 26898 3184.243674 3 32776<br>23 2205 566 318.4243674 3 3270<br>24 27 101 110 114 2647474 3 3270<br>25 20 7015 1000 114 2647474 3 3270<br>26 20 1000 114 2647474 3 3270<br>27 20 1000 114 2647474 3 3270<br>28 1000 114 2647474 3 3270<br>28 1000 114 2647474 3 3174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110         | 2699             | 4287      | 30.6600000   | 10     | 7185     |         |  |
| 19         194         211         213 (2000000)         16 (2016)           20         7072         215 (2017)         210 (200000)         1.462           21         7172         213 (2017)         1.466           22         649         21.3692         1.469           22         649         21.3425         1.3426           23         2209         506         21.4225         1.479           24         7375         1.011         1.4245         1.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1112        | 2203             | 2362      | 31.0928571   |        | 2,2170   |         |  |
| 19         2037         3226         2110000000         131900           20         71872         21600         2100000000         31492           21         13712         1604         24105744266         9.4066           22         64889         38425744266         9.4066           23         2200         6688         28.4245714         3.070           24         7107         1016         14.42457474         3.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10          | 0542             | 2319      | 29.3700000   | 20     | 10.7595  |         |  |
| 40         1672         2136         274 0000000         21403           21         1712         0.032         28.15714.08         8.406           22         668         3445         28.15714.08         3.207           23         2206         508         36426514         3.207           24         3127         3000         39.48671478         3.479           6         344         3737         3000         94.48671478         8.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119         | 2637             | 3236      | 20.1600000   | 0      | 13.1920  |         |  |
| 1         1.571.2         199.4         35.15714.309         1.4056           1         2.2         2.2009         508.4         2.3325714         3.3070           2.3         2.2009         508.2         2.632435714         3.4764           2.4         1.0161.1         1.406191420         0.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20          | 7672             | 21580     | 27.0000000   | 10     | 3.1432   |         |  |
| 742         6888         2345         28.344/25714         3.3370           123         225090         5068         2624/25714         3.4798           34         3'137         3008         34.864774378         8143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1         | 13712            | 8934      | 28.1757142   | 10     | 9.4095   |         |  |
| 423         22509         5008         28.924285114         3.4798           10         34         3131         38.06.138.488471439         8143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122         | 6889             | 3845      | 28.3942957   | 4      | 3.3370   |         |  |
| 5 C 3171 7 2010 1 20 400 4714 20 1 21 1 21 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23          | 22509            | 5068      | 28.6242957   | 4      | 2.4798   |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6           | 1 7071           | 1 7868    | 1.70.8994718 | PQ.1   | 8163.11  |         |  |

#### **Exploring the Data**

There are several techniques for helping you to summarise your data. Checking data means or plotting appropriate pairs of variables quickly give you an image of the spread of the data. Both of these checks can be made by following Exercises 4 & 5.

#### **Exercise 4**

#### 1. Data Means:

Choose the Analyze  $\rightarrow$  Descriptive Statistics  $\rightarrow$  Descriptives menu to get a dialogue-box as shown in to Figure 9 below. Select the variables *oilsardine* and *Mackerel* in the same way as you did in the previous exercise and then click on OK. Check the contents of the Output1 - SPSS Viewer window against Figure 10. The summary statistics produced are the default actions of the command but as you will see from the syntax (command language) printed in Figure 33 the underlying command is getting quite complex.







#### 2. Scatterplots:

From the main menu select **Graphs**  $\rightarrow$  **Scatter/Dot** ... This will produce a further dialogue-box as shown in Figure 11. Select the **Simple Scatter** plot and click on the **Define** button to produce Figure 12. Select *oilsardine* as the **Y-axis** and *Mackerel* as the **X-axis** using the method in Exercise 3 and then click on **OK**. The **Output1 - SPSS Viewer** window now contains this simple scatterplot (as shown in Figure 13).







CMFRI - Winter School on Impact on Climate Change of Indian Marine Fisheries

#### Saving Results

It is possible to print the contents of the **Output1 - SPSS Viewer** window directly and the output can be saved for convenient printing post analysis too. Try the following exercise to save the contents of the **Output1 - SPSS Viewer** window so that you can print it out in your own machine after this session. [Another method of saving results would be to **Cut** and **Paste** the relevant sections into a Word document – you may find this easier when doing your own analysis]

#### **Exercise 6**

If necessary, move into the **Output1 - SPSS Viewer** window and click in it. Select **File** $\rightarrow$ **Save As** which will give the dialogue-box similar to that shown in Figure 14. Confirm that your folder **My Documents**\... is selected and then supply a suitable **File name** such as *tsplot*. [Note that the default file extension is given as *.spo*] Click on **Save** and the complete contents of the output window will be saved and the default window name changed to **My Documents**\...\*tsplot.spo*. It is possible to save the graphs separately in a special format that can be imported into a Word Processor, such as Word 2000, however, for most reports this quality is sufficient.

Exit from SPSS [File  $\rightarrow$  Exit] but you do not need to save the contents of any other window.



To print the output file My Documents\... \*tsplot.spo*, once saved, you can read it back into SPSS from the File  $\rightarrow$  Open  $\rightarrow$  Output... menu and choose the correct file as shown in Figure 15. Try it now before going on to the next set of data.

Exit from SPSS [File $\rightarrow$ Exit] so that you have a clean session for the start of the next exercise.

#### **Reading Data From A Separate File**

A data set that you wish to analyse may have been entered using a text editor, a database or into another spreadsheet facility. This example assumes that the data, with which you have been supplied, in **My Documents**...*toil\_mackerel.txt* is in an ASCII (plain text) file created using an editor such as **Notepad.** There are many methods to read (or input) data into **SPSS** but for the purposes of this session, it is assumed that data values are separated by one or more spaces but that character values have no spaces between them. This is called **Freefield or free form** data.

Other forms of data entry are also possible though not considered for extensive use in this study. For example, **Excel** spreadsheets can be opened directly into **SPSS** and you may prefer to explore this facility in your own time.

#### **Transformations and Calculations on Data**

Transforming data with special limitations like unstable variance or not amenable to assumptions originally made for the analysis has been much in practice. The following exercise demonstrates the manipulation of data values. Many other calculations and transformations are possible but can be explored in your own time.

#### **Exercise 8**

Select **Transform** $\rightarrow$ **Compute variable** from the main menu to get the dialogue box shown in Figure 16. Complete the dialogue-box in the following way:

- Enter the name of the new variable *log\_os* in the Target Variable box
- > Type in the expression *log(oilsardine)* in the Numeric Expression box.
- Click on OK and return to the Untitled SPSS Data Editor window and check that one or two observations, of the new variable *log\_os*, have been calculated correctly.

Calculate the number of "incorrect" (or not "yes") answers to show you understand how to use this facility.



Figure - 16

CMFRI - Winter School on Impact on Climate Change of Indian Marine Fisheries

#### **Creating Subgroups of Data**

If you want to repeat an analysis for each subset of observations, it is possible to **split** the file into the groups required and then do the analysis automatically on each group.

To demonstrate this facility try the following exercise to consider the mean of the percentage data for all schools together and then for each school individually.

#### **Exercise 9**

Calculate the overall means of the variables *oilsardine, Mackerel* and *sst*. Then split the file into the four different schools as follows:

- From the main menu select **Data** $\rightarrow$ **Split File** to get Figure 17.
- Select the option **Organise output by groups**.
- Select the variable *year* and move it into the Groups Based on: box. Your screen should now look like Figure 17.
- Click on OK as usual. Notice that the data in the Untitled SPSS Data Editor window has been sorted by *year* and that it lists the *1997* school first.
- Repeat the calculations with the same variables and see that ten separate mean values (one for each *year*) have been calculated for each variable.





#### Exercise 10

Be aware that the data file is considered to be split into the groups for any following analysis so complete the next exercise to show how to remove the grouping indicator. Very simply, follow the previous exercise but this time select the option

#### Analyze all cases, do not create groups.

Notice that the box entitled **Groups Based on:** has become dimmed. Click on **OK**. You need to be aware of the **status** of the data set that you are analysing so that you always work with the data intended.

Exit from SPSS [File  $\rightarrow$  Exit] but again you do not need to save the contents of any window.

#### **Data Summary**

If survey data are being analysed, almost the first thing that is required is to display the data in tabular form. This has the added bonus of being a way of checking categorical data. The following exercises demonstrate methods of tabulating data.

#### **Exercise 11**

This exercise demonstrates simple one-way frequency tables. Select Analyze  $\rightarrow$  Descriptive Statistics  $\rightarrow$  Frequencies.... Select variable *year* to demonstrate Figure 18 then click on OK. Examine the output. Repeat with other variables as you wish, removing the previous selection by highlighting

the variable name in the **Variable**(s): box and click on the **b**ut

button. If you have more time select

the Statistics and Charts buttons and try the options for more descriptive statistics and bar charts.

#### Exercise 12

Crosstabulations can be produced using a different menu selection. This time choose Analyze  $\rightarrow$  Descriptive Statistics  $\rightarrow$  Crosstabs... to produce Figure 19. Select a variable to appear in the row dimension and another to appear in the column dimension e.g. *year* and *month*. Click on OK and examine the output again. Can you interpret the results OK? Try adding the Expected values and the Row percentages to the Cells and calculate the Chi-square (look at Statistics).

| Frequencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image: month_code       Variable(s):       OK         Image: month       Image: month       Image: month       Paste         Image: month       Image: month       Image: month       Image: month       Paste         Image: month       Image: month       Image: month       Image: month       Image: month       Paste         Image: month       Image: month       Image: month       Image: month       Image: month       Paste         Image: month         Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       Image: month       I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ✓ Display frequency tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Statistics Charts Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Crosstabs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image: month_code       Row(s):       OK         Image: month_code       Image: month_code       Paste         Image: month_code       Image: month_code       Reset         Image: month_code       Image: month_code       Image: month_code         Image: month_code       Image: month_code |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Suppress tables     Exact     Statistics     Cells     Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### **Statistical Analysis - Regression**

**SPSS** contains many facilities to perform statistical analyses. All should be used initially under the guidance of a statistician as there are many ways of producing the wrong analysis.

The following exercise uses LINEAR REGRESSION to perform simple regressions.

#### Exercise 13

The **SPSS** file **My Documents**\*tsplot.sav* has as well an opportunity to try out simple linear regression between two variables viz. *oilsardine* and *sst* 

Using the plotting command investigate the relationship between the dependent variable, *Oilsardine*, and one of the independent variables, *sst*. (To see how the oilsardine landings varies with time).

Can you suggest a relationship between *oilsardine* and *sst*? From the main drop-down menu select **Analyze**  $\rightarrow$  **Regression**  $\rightarrow$  **Linear** and choose *oilsardine* as the dependent and *sst* as the independent variables (see Figure 20). Click on **OK**.

Look at the output but do not worry if you are unable to interpret this or any other statistical output. This tutorial is showing you the methods that can be used in SPSS when necessary and does not attempt to teach you statistical techniques.

| Linear Regression                                                                                            |                                                    | ×                                      |      |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|------|
| Year     month_code     Month_code     Mackerel     Kerala total [Keralatota     st     & St     Chlorophyll | Dependent:                                         | OK<br>Paste<br>Reset<br>Cancel<br>Help | - 20 |
|                                                                                                              | Selection Variable:<br>Case Labels:<br>WLS Weight: |                                        |      |
|                                                                                                              | Statistics Plots Save Option                       | s                                      |      |

The following exercise uses **CURVE ESTIMATION** to perform more complex regressions.

#### Exercise 14

Repeat the plot between another pair of variables *oilsardine* and *sst*. By eye, it does not look as if a linear regression would be the best fit between these variables *oilsardine* and *sst* but you can try it anyway. This time you will use a different method.

Select **Analyze**  $\rightarrow$  **Regression**  $\rightarrow$  **Curve Estimation...** and choose *oilsardine* and *sst* as appropriate (see Figure 21). Using all the default selections, fit the curve.Notice that a plot is automatically prepared with both the observed data and the fitted linear regression being plotted together. It does not appear to be a good fit, so repeat this part of the exercise selecting the **Quadratic** and then finally the **Cubic** options in the the **Models** selection box. This is also known as "polynomial regression".

| Curve Estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | X                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------|
| <ul> <li>Image: Year</li> <li>Image: month_code</li> <li>Image: month</li> <li>Image: month</li> <li>Image: Markerel</li> <li>Imarerel</li> <li>Image: Markerel<!--</td--><td>Dependent(s):</td><td>Compound Growth S Exponential Logistic Upper bound:</td></li></ul> | Dependent(s):       | Compound Growth S Exponential Logistic Upper bound: |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Display ANOVA table | Save                                                |

Figure - 21

When regression analysis has been performed it is usual to want to save the predicted (or fitted) values and residuals and plot them against each other to check that they are randomly scattered about zero. **SPSS** allows you to both save and plot at the same time.

Select Analyze  $\rightarrow$  Regression  $\rightarrow$  Linear... and choose the simple regression of *oilsardine* on *sst*. This time, however, click on the Save button and select Standardised Predicted Values and Standardised Residuals.

Click on Continue to return to the previous screen and then click on Plots.

Choose **\****ZPRED* as the X-variable and **\****ZRESID* as the Y-variable. Click on **Continue** and then **OK.** Look at the **Output1 - SPSS Viewer** 







#### Analysis of Variance

SPSS also has many commands to perform analysis of variance dependent on your data collection. This exercise demonstrates a simple analysis of variance of a balanced designed experiment.

#### Exercise 18

Let us use the same file that has been created called **My Documents**\*tsplot.sav*. Open this into the **SPSS Data Editor** window (saving the previous results if required) and look at the data. The file contains information on the *landings of oilsardine* for a period of ten years. Analyse the data in the following way assuming that *monthly* estimates are randomized. (these are no true situations, for practice only)

Select Analyze  $\rightarrow$  General Linear Model  $\rightarrow$  Univariate and in the resulting window select *oilsardine* as the dependent variable and then *year* as the fixed factor to be defined. This time, rather than run the commands automatically (using OK), Paste the commands into the Syntax1 - SPSS Syntax Editor window, as shown in Figure 22, where you can see the default Design sub-command as follows:

#### DESIGN year.

Now run the commands shown in this window by clicking on  $Run \rightarrow Current$  [or use Ctrl-R] and look at the results in the Output1 – SPSS Viewer window.

In order to display the means for *year*, return to the Univariate dialogue-box (via Analyze →General

Linear Model $\rightarrow$ Univariate menu), select the **Options** button and choose the factors required, and continue as before defining the appropriate (second) design. This time, highlight and run just this **Selection** of the **Syntax1 – SPSS Syntax editor** window.

| 📾 Syntax1 - SPSS Syntax Editor                                                                                              |                            |             |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|
| File Edit View Data Transform Analyze Gra                                                                                   | aphs Utilities Run Add-ons | Window Help |
|                                                                                                                             | 0 24 1                     |             |
| UNIANOVA<br>oilsardine BY Year<br>/METHOD = SSTYPE(3)<br>/INTERCEPT = INCLUDE<br>/CRITERIA = ALPHA(.05)<br>/DESIGN = Year . |                            |             |
|                                                                                                                             | 📍 SPSS Processor is ready  | 11.         |

Figure - 22

#### Saving Command Syntax

A copy of all of the syntax (**SPSS** command language) used to produce the analysis required is automatically saved in a file called **SPSS.JNL**. However, this file is usually overwritten every time **SPSS** is invoked.

It is also possible to direct certain parts of the syntax to a separate file for future reference, for example, you may want to repeat the exact analysis on a new set of data containing the same variables etc. As shown in the previous exercise there is a **Paste** button available. Having run a particular dialogue-box (e.g. **Descriptive Statistics**) and decided that this would be needed for a subsequent data set you can return to this box and select **Paste**. A new icon will appear on the taskbar which if you open it should contain similar information to that shown in Figure 23.

| Figure | - 2 | 23 |
|--------|-----|----|
|--------|-----|----|

| File Edit View Data Transform Analyze Graphs Utilities Run Add-ons Window Help         Image: Image | 📾 Sy             | ntax               | :2 - S                | PSS S               | yntax Edit | or          |        |               |        |          |        |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|-----------------------|---------------------|------------|-------------|--------|---------------|--------|----------|--------|------|
| FREQUENCIES<br>VARIABLES=Year<br>/ORDER= ANALYSIS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | File E           | Edit               | View                  | Data                | Transform  | Analyze     | Graphs | Utilities     | Run    | Add-ons  | Window | Help |
| FREQUENCIES<br>VARIABLES=Year<br>/ORDER= ANALYSIS .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | œ́ [             |                    | 3 B                   | ų 🗠                 |            | [? <b>#</b> |        | ) <u>F</u> el | 1      |          |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FRE<br>VA<br>/OF | QUE<br>RIAI<br>RDE | ENCIE<br>BLES<br>R= A | ES<br>=Year<br>NALY | SIS .      |             |        |               |        |          |        |      |
| SPSS Processor is ready                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                    |                       |                     |            |             | 9      | SPSS Proc     | ressor | is ready |        |      |

It is possible to save the contents of the **Syntax - SPSS Syntax Editor** window for use at a future date. If you want to save any of the command syntax that you have pasted into the window before exiting then move into the **Syntax - SPSS Syntax Editor** window and click on **File** $\rightarrow$ **Save As...** Give a suitable name to the file which is given the default extension of *.sps*. This can be reused in a later session opening the file straight into the **Syntax1 - SPSS Syntax Editor** window and using **Run** $\rightarrow$ **Current** [or use **Ctrl-R**].

#### Using the HELP menu

All statistical analysis packages include an extensive **Help** system. If you have time, make use of the drop-down menu and look at the **Statistics Coach** facility that is loaded in this PC lab. It may not be available in the public PC labs but is a simple introduction to basic analysis.

When finished use **File** $\rightarrow$ **Exit** saving any files you might like to refer to at a later date.