

Working Manual: High Performance Computing Facility (Fish@CMFRI)
CMFRI Training Manual Series No.33/2024

Published by:
Dr. A. Gopalakrishnan
Director
ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI)
P.B.NO.1603, Ernakulum North P.O., Kochi- 682018, Kerala, IndiaP.B.NO.1603, Ernakulum North P.O., Kochi- 682018, Kerala, India
www.cmfri.org.in, Email: director.cmfri@icar.gov.in
Tel. No. +91-484-2394867; Fax. No. +91-484-2394909

Compiled & Edited by:
Eldho Varghese, J Jayasankar, Manu V K, Grinson George and Thejus T V

Cover Design: Abhilash P R

Publication, Production & Co-ordination:
Arun Surendran, Library & Documentation Centre, CMFRIArun Surendran, Library & Documentation Centre, CMFRI

©2024 ICAR-Central Marine Fisheries Research Institute, Kochi

All rights reserved. Material contained in this publication may not be reproduced in any form without
permission of the publisher.

Suggested Citation: Eldho Varghese, J Jayasankar, Manu V K, Grinson George and Thejus T V (2024)
Working Manual: High Performance Computing Facility (Fish@CMFRI), CMFRI Training Manual
Series No.33/2024, ICAR-Central Marine Fisheries Research Institute, Kochi, 50p.

Working Manual:

High Performance
Computing Facility

ICAR-Central Marine Fisheries Research Institute
(Department of Agricultural Research and Education, Government of India)
P.B. No. 1603, Ernakulam North P.O., Kochi - 682 018, Kerala, India

CMFRI Training Manual Series No.33/2024

Working Manual – FISH@CMFRI Page 4

Preface

The advent of high-performance computing has ushered in a new era of scientific

exploration, enabling researchers to address complex and data-intensive challenges

with remarkable speed, accuracy, and efficiency. This manual is meticulously crafted to

serve as a comprehensive guide for scientists, research scholars, and students who will

harness the cutting-edge capabilities of the High-Performance Computational Facility

(FISH@CMFRI). Strategically installed at the Agricultural Knowledge Management Unit

(AKMU) of ICAR-CMFRI, Kochi, this state-of-the-art facility epitomizes the integration of

advanced computational infrastructure into the scientific research ecosystem.

Developed with partial financial support under the prestigious DST-REVIVAL project

REhabilitation of Vibrio Infested waters of VembanAd Lake: Pollution and Solution, the

FISH@CMFRI facility represents a transformative leap forward in computational power

and versatility. It not only underscores a commitment to addressing pressing

environmental challenges but also exemplifies a broader vision to elevate the

capabilities of the academic and research community, fostering excellence in

computational science and innovation.

This facility is poised to catalyse research endeavours, significantly benefiting the

academic and scientific community. Furthermore, it plays a pivotal role in capacity

building by fostering a workforce skilled in high-performance computing techniques. By

integrating cutting-edge emerging technologies, this facility also promotes innovation in

research and teaching, laying the foundation for transformative scientific

advancements.

We hope this manual serves as a valuable resource for all users, enhancing their

experience with the facility and supporting their pursuit of excellence in research.

Working Manual – FISH@CMFRI Page 5

Table of Contents

Sl. No. Description Page No.

1 Introduction 6

2 Hardware Specification 7

3 FISH@CMFRI 8

4 Basic Linux Commands 10

5 Job Scheduler 11

6 How to Access HPC 12

7 How to Run C Code in HPC 14

8 How to Run R Code in HPC 20

9 Transfer Files between Windows and HPC 27

10 Good Practices for Using HPC 35

11 FISH@CMFRI Power Off Procedure 36

12 FISH@CMFRI Power On Procedure 37

13 Installing Packages in Compute Node Image 39

14 Appendix 40

15 Additional Resources 46

Working Manual – FISH@CMFRI Page 6

Introduction

High-speed computing has been the "go to” option for many institutions doing research

and development in biological science, especially natural resources. With the platform

that usually hosts such research initiatives being multipronged and multi-sourced, data

collation and analysis gets even more computer intensive. In any science-based

initiative, it is next to impossible to have a data template which is homogenous,

equispaced and equidistributed. More so for any other initiative that could be planned in

marine fisheries scenarios. The inputs could be of any kind from organized tabulated

data to sudden pieces of messages leading to actionable information akin to the Internet

of Things and more rigorous systematic input from concerted exercises lie downscaling

from macro-regional models like the ROMs.

 All these needs both vertically sequenced and laterally accommodative computational

architecture that could receive, preprocess, and store with equal efficacy. So in such

situations, that are a scale above workstations bordering high-performance computing

clusters would be the single-stop game changer solution. A high-performance

computing facility (FISH@CMFRI) with multi-core computing and expansive scalability of

big data analytics/streaming data processing architecture was developed at the

Agriculture Knowledge Management Unit (AKMU) of ICAR-CMFRI Kochi.

Working Manual – FISH@CMFRI Page 7

Hardware Specification

Computing Capacity 3 TFLOPS

No. of Compute Nodes 4

Total No. of Processors 8

Total No. of Cores 96

Memory per node 64 GB

Total RAM 256 GB

Total Usable Storage Capacity 4 TB

Primary Interconnect 10 Gbps Ethernet

Administration & Management Network 1 Gbps Ethernet

Operating System Rocky Linux 8.8

Working Manual – FISH@CMFRI Page 8

FISH@CMFRI

FISH@CMFRI HPC solution implemented to perform research and development

activities with Rocky Linux 8.8 and OpenHPC stack.

OpenHPC is a collaborative, community effort initiated from a desire to aggregate a

number of common ingredients required to deploy and manage High-Performance

Computing (HPC) Linux clusters including provisioning tools, resource management, I/O

clients, development tools, and a variety of scientific libraries. Packages provided by

OpenHPC have been pre-built with HPC integration in mind with a goal to provide

reusable building blocks for the HPC community. The master host connected to the local

data center network is used to provision and manage the cluster backend. All 4 compute

nodes are connected to the master node with local data center switch and these nodes

are PXE booted with Rocky Linux 8.8 OS from the master node. Also, there is a shared

NFS drive from the master node for running parallel processes across all nodes.

Working Manual – FISH@CMFRI Page 9

Configuration of FISH@CMFRI

1. User Details

User Name: user01

User Name: user02

User Name: user03

User Name: user04

User Name: user05

(Passwords will be provided on demand).

2. Nodes

Management Node 10.1.1.15

Compute-node1 10.1.1.16

Compute-node2 10.1.1.17

Compute-node3 10.1.1.18

Compute-node4 10.1.1.19

3. Compiler Details

Compiler: OpenMPI 4.1.5

Working Manual – FISH@CMFRI Page 10

Basic Linux commands

Command Description

ls The ls command displays list of files in human readable format.

rm The rm command Remove files or directories.

cp
The cp command copies file from source to destination preserving
same mode.

cd
The cd command (change directory) takes us to the destination
directory.

cat
cat command can be used to display the contents of a single or
multiple files

pwd pwd command return the present working directory

mkdir Create a folder or a directory.

rmdir Delete a folder or a directory.

touch
The touch command is used to create a file. It can be anything, from an
Empty txt file to an empty zip file. For example, “touch new.txt”.

cp Use the cp command to copy files through the command line.

mv Use the mv command to move files through the command line.

locate The locate command is used to locate a file in a Linux system.

nano, vi
nano and vi are already installed text editors in the Linux command
line.

sudo

A widely used command in the Linux command line, sudo stands for
"Super User Do". So, if you want any command to be done with
administrative or root privileges, you can use the sudo command.

df
Use the df command to see the available disk space in each of the
partitions in your system.

ping Use ping to check your connection to a server.

Ctrl+c

Ctrl+z
Ctrl+C can be used to stop any command in terminal safely. If it doesn't
stop with that, then Ctrl+Z can be used to force stop it.

clear
You can use the clear command to clear the terminal if it gets filled up
with too many commands.

zip, unzip
Use zip to compress files into a zip archive, and unzip to extract files
from a zip archive.

Working Manual – FISH@CMFRI Page 11

Job Scheduler

The HPC Job Scheduler Service is a software program that runs on the

head/management node of a high-performance computing (HPC) cluster. It manages the

jobs and tasks that are submitted to the cluster, allocating resources to them and

monitoring their progress. You can configure the HPC Job Scheduler Service to control

how resources are allocated and how jobs are handled. The job scheduler used at CMFRI

is PBS pro. PBS stands for Portable Batch System, and it is a software system that is used

to manage jobs on HPC clusters.

To run a parallel job using PBS script, you first need to create a PBS script. A PBS script is

a text file that contains instructions for the PBS job scheduler. The PBS script will specify

the following:

• The name of the job

• The number of nodes that the job needs

• The number of processors per node

• The amount of memory that the job needs

• The command that the job should run

Once you have created the PBS script, you can submit it to the PBS job scheduler using

the qsub command. The qsub command will queue the job and the PBS job scheduler

will start running it as soon as a set of nodes with the required resources becomes

available.

The PBS job scheduler will monitor the progress of the job and will send you email

notifications if the job fails or if it exceeds its allotted resources. When the job is finished,

the PBS job scheduler will send you a notification that the job has completed.

Working Manual – FISH@CMFRI Page 12

How to Access HPC

To Access or login to the HPC can be done using SSH (Secure Shell). You can use

software like Putty or directly access SSH from Terminal / command prompt.

1. Connecting from Terminal/ Command line

Open Command Prompt, type

ssh username@10.1.1.15

When prompted enter your password and press Enter again. If the connection is

successful, you will see a window like this.

 * Here test is the username, you must enter your username.

2. Connect using Putty

* If you already have access via Command Prompt, you can skip this step.

Putty software is available in Microsoft store; the link for the software is given below.

https://apps.microsoft.com/detail/xpfnzksklbp7rj?hl=en-US&gl=IN

After Installation open the App and type the host name as 10.1.1.15 and click open

https://apps.microsoft.com/detail/xpfnzksklbp7rj?hl=en-US&gl=IN

Working Manual – FISH@CMFRI Page 13

If any security alert comes you can either choose to Accept or Connect once. After that

enter your username and password.

Working Manual – FISH@CMFRI Page 14

 How to Run C Code in HPC

Creating a C program file

C program files can be created using editors such as vi or nano. Before creating a file

first create a folder using the command.

 mkdir foldername

To enter the folder type

 cd foldername

To create a c program file type

nano matrix_multiplication.c

A text editor will open like this, here you can either type your code or copy code from

somewhere else. Just press right click to paste your code.

Working Manual – FISH@CMFRI Page 15

To save the code press Ctrl+S and to Exit the editor press Ctrl+X.

Full code available in the appendix section.

Working Manual – FISH@CMFRI Page 16

A C program must be compiled before running. To compile the code, type

mpicc -o matrix_multiplication matrix_multiplication.c

mpicc - This is the MPI compiler wrapper for C programs. It ensures that your program is

compiled with the appropriate MPI libraries and headers.

-o matrix_multiplication - The -o flag specifies the output filename for the compiled

program. In this case, the compiled binary will be named matrix_multiplication

matrix_multiplication.c: This is the input source file, i.e., the C code you wrote that

contains the MPI program.

While it is possible to submit programs directly to HPC it is generally preferable

to create a job script (PBS script). The job script is just like any other code that contains

commands that the user would like to run. You can create a PBS script just like how we

created c program file, please ensure that the script file has a “.pbs” extension.

Creating a PBS script file

nano matrix_multiplication.pbs

Sample PBS script is given below.

 #!/bin/bash

 #PBS -N matrix_mult

 #PBS -l nodes=4:ppn=4

 #PBS -l walltime=00:05:00

 #PBS -j oe

 #PBS -o matrix_mult_output.txt

 cd $PBS_O_WORKDIR

 mpirun -np 16 ./matrix_multiplication

Working Manual – FISH@CMFRI Page 17

#PBS -N matrix_mult - This sets the job name to matrix_mult. This name will appear in

the job's output files and can be used to identify the job.

#PBS -l nodes=4:ppn=4 - This request 4 nodes, with 4 processors per node. This means

the job will run on 4 compute nodes, each utilizing 4 CPU cores.

#PBS -l walltime=00:05:00 - This sets a maximum wall time of 5 minutes for the job. If

the job exceeds this time, it will be terminated.

#PBS -j oe - This directs the standard output and error to the same file, meaning both

stdout and stderr will be combined into the same file.

#PBS -o matrix_mult_output.txt - This specifies the output file name where the job’s

combined output (from stdout and stderr) will be stored, which in this case is

matrix_mult_output.txt.

cd $PBS_O_WORKDIR - This changes the working directory to the directory from which

the job was submitted. $PBS_O_WORKDIR is an environment variable that stores the

path of the directory the script was run from.

mpirun -np 16 ./matrix_multiplication - This command runs the MPI program

mpi_matrix_mult using 16 processes in total.

• mpirun: This is the command used to launch MPI jobs.

• -np 16: This option specifies the number of processes to run, in this case, 16

processes (4 node * 4 processors per node), if we use only 2 nodes and 5

processors per node then it will be 10.

• ./matrix_multiplication: This is likely an executable that performs matrix

multiplication using MPI for parallelization.

Working Manual – FISH@CMFRI Page 18

Users can submit their jobs by using qsub command followed by pbs script name.

qsub matrix_mult.pbs

User can also check the status of the submitted job using qstat command,

 qstat <Job_id> or qstat -an

-an : Where a refers to status of all jobs in the pbs queue and n refers to which nodes

the jobs are running

*2024 is the Job id PBS assigned to the above job as you can see in the picture.

After the job completes, users can refer to the output files for result details or error

diagnostics. For that type

cat matrix_mult_output.txt

Working Manual – FISH@CMFRI Page 19

*Time Taken: 0.012920 seconds

*Please note that execution time may vary depending on system load, network conditions,

and available resources.

The result above corresponds to a 16 x 16 matrix multiplication. Using the same setup,

we achieved a time of 180.214546 seconds for a 10000 x 10000 matrix multiplication. The

code used for this calculation is provided in the appendix section, where you can adjust

the matrix size (N) up to 10000 to observe the results.

To cancel a Job

qdel <Job_id>

Working Manual – FISH@CMFRI Page 20

How to Run R Code in HPC

After successfully logging in, you can create an R script just like how we created a C

program file. Ensure the script file has an “.R” extension. Unlike a C program, R code

does not require compilation. Simply create the R script and a PBS script to run the R

code on the HPC.

sample.pbs script is given below.

 #!/bin/bash

 #PBS -N R_MPI_parallel_test

 #PBS -l nodes=4:ppn=24,mem=64gb

 #PBS -l walltime=02:00:00

 #PBS -j oe

 #PBS -o output.log

 module load R

 module load gnu12/12.3.0

 module load openmpi4/4.1.6

 export R_LIBS="/home/test/R/x86_64-redhat-linux-gnu-library/4.4:$R_LIBS"

 cd $PBS_O_WORKDIR

 mpirun --map-by node -np 96 Rscript sample.R

*sample.R script is provided in the appendix section.

module load <module-name> - This command loads the necessary module into your

environment on the HPC. For parallel execution in R above three modules are required.

It loads R environment, GNU Compiler Collection, which might be required for

dependencies, OpenMPI for parallel execution.

Working Manual – FISH@CMFRI Page 21

export R_LIBS="/home/test/R/x86_64-redhat-linux-gnu-library/4.4:$R_LIBS" - Adds

a user-specific R package directory to the R library search path.

mpirun --map-by node -np 96 Rscript sample.R - Runs the R script named sample.R, “-

-map-by node” command will force MPI to distribute ranks evenly across nodes.

Users can submit their jobs by using qsub command followed by pbs script name.

qsub sample.pbs

To check the status of the specific job in details type,

qstat –H <Job_id>

The 'S' column represents the status code of the job, with 'R' indicating that the job is

Running. A complete list of status codes can be found in the appendix. After the job

finishes, multiple files will be generated based on your code, which can be viewed using

the ls command. To open a specific file, you can use the cat command.

cat output.log

Working Manual – FISH@CMFRI Page 22

*Time Taken: 11.0130951841672

Above R code performs intensive matrix operations and statistical analysis that go

beyond the capabilities of a standard computer. If you check the code which is in

appendix section, the computed results are saved as an RDS file (matrix_results.rds) for

further analysis, which will be discussed in later sections.

In R Parallel Packages like doParallel, parallel, pbdMPI, doMPI and doFuture uses a

common set of instructions to use parallel capabilities as follows:

 library("package-name")

 cl <- makeCluster(NumberofCores)

 register_cluster(cl)

 ... #code to be run in parallel mode

 stopCluster(cl)

Working Manual – FISH@CMFRI Page 23

To verify whether the code is running across all four nodes, the htop command can be

used. It’s a popular interactive process monitoring tool in Linux. It provides a real-time

overview of system resource usage, including CPU, memory, and running tasks, The

below screenshot shows our four compute nodes.

Working Manual – FISH@CMFRI Page 24

* Logging in to each node is required to view resource usage using the htop command

Explanation of the key elements in the image

CPU Usage: The numbers 0-23 indicate the logical CPU cores (24 cores total). Each bar

represents the usage of an individual core, with 100.0% indicating full utilization.

Memory Usage: The Mem bar shows the amount of system memory used. The numbers

24.0G/62.3G indicate that 24 GB out of 62.3 GB total memory is currently in use.

Swap Usage: The Swp section indicates swap memory usage.0K/0K suggests that no

swap space is allocated or in use.

Task Information: Tasks: 50 indicates there are 50 total processes running.612 thr

refers to the total number of threads across all processes.24 running means 24

processes are actively using the CPU.

Load Average: The values 175.82 263.15 180.74 represent system load averages over

the past 1, 5, and 15 minutes, respectively. These values are significantly high,

indicating the system is under heavy CPU load.

System Uptime: Uptime: 21 days, 00:34:46 shows that the system has been running

continuously for 21 days and 34 minutes.

Working Manual – FISH@CMFRI Page 25

Running R Code in Parallel on a Single Node

In R, packages like parallel and doParallel provide efficient parallel computing

capabilities, but they are limited to a single node. These packages utilize multi-core

processing by dividing tasks across the available cores of a single machine, enabling

significant performance improvements for data-intensive computations. However, they

do not support distributed computing across multiple nodes in an HPC cluster.

For workloads that require multi-node parallelism, R users need to leverage specialized

frameworks such as MPI (Message Passing Interface) through packages like pbdMPI

and Rmpi like we used before. R program that uses only single node is given below.

Working Manual – FISH@CMFRI Page 26

Pbs script to use for the above code is

 #!/bin/bash

 #PBS -N matrix_mult

 #PBS -l nodes=1:ppn=20

 #PBS -l walltime=00:05:00

 #PBS -o matrix_mult_output.txt

 Module load R

 cd $PBS_O_WORKDIR

 R CMD BATCH sample.R

Running the code and other processes are same, the output of the program is shown

below.

Working Manual – FISH@CMFRI Page 27

Transfer Files between Windows and HPC

You can transfer files from your HPC to your Windows machine by using the PuTTY's built-

in SCP command (PSCP).

If PuTTY is installed, you can typically find pscp.exe in the same directory as PuTTY, such

as C:\Program Files\PuTTY or C:\Program Files(x86)\PuTTY

Open command prompt and use the following command.

"C:\path\to\pscp.exe" username@hpc_address:/path/to/your/file.txt

C:\destination\path

Replace:

• "C:\path\to\pscp.exe" with the full path to pscp.exe on your system.

• Username with your HPC username.

• hpc_address with the server address (e.g. 10.1.1.15).

• /path/to/your/file.txt with the location of the file on the HPC.

• C:\destination\path with the folder path on your Windows machine.

Example

"C:\Program Files\PuTTY\pscp.exe" test@10.1.1.15:sample/output.log

D:\Documents

After executing the command, it will be prompted to enter your password for

authentication. Once authenticated, the file will be downloaded to the specified

directory. Ensure the file name is correctly typed, including capitalization (Linux paths

are case-sensitive).

Working Manual – FISH@CMFRI Page 28

*Wait for the file to download 100% before opening in your system.

After downloading, you can see the files in your destination folder.

If you're not comfortable using the command line interface, you can use GUI-based

software to transfer files between the two systems. Below are the instructions for using

those tools.

Working Manual – FISH@CMFRI Page 29

Various tools such as WinSCP and FileZilla, are available for transferring files between

HPC and Windows systems. Below are some screenshots of the WinSCP software.

*Software download link is given in the Additional Resources section.

Working Manual – FISH@CMFRI Page 30

The left panel displays your Windows system files, while the right panel shows the HPC

files. You can drag files between the panels or double-click to view or edit them.

Working Manual – FISH@CMFRI Page 31

Open R environment inside HPC

There is an alternate way to access R environment inside the HPC system. After

successfully logging in:

Start the R session by typing the following commands:

 module load R

The first command loads the R module.

 R

The second command starts the interactive R session. It will display the R version and

related information shown in the picture below.

To install a package

Before installing a package, you must set path to the shared storage, so that the package

can be used by all the nodes in the hpc. To set path use this command.

 .libPaths("/home/test/R/x86_64-redhat-linux-gnu-library/4.4")

Working Manual – FISH@CMFRI Page 32

After that you can install any package using the below command.

 install.packages(“package_name”)

During the installation process, R will prompt you to select a CRAN mirror for

downloading packages. You can choose either "42: India (Bengaluru)" or "43: India

(Bhubaneswar)". To proceed, simply type 42 and press Enter.

You can view the results saved from the sample.R script by loading the .rds file using R,

follow these steps to see the results.

 results <- readRDS("matrix_results.rds")

 # View the first few rows of results

 head(results)

 # Summary statistics

 summary(results)

Working Manual – FISH@CMFRI Page 33

You can visualize the computed values using plots

 # Histogram of column V1

hist(results[, 1], main="Distribution of V1", xlab="Value", col="blue")

 # Boxplot of standard deviation

boxplot(results[, 2], main="Standard Deviation of V2")

 # Plot quantiles (columns 3 to 13)

matplot(t(results[, 3:13]), type="l", lty=1, main="Quantiles of V3 to V13",

xlab="Quantiles", ylab="Values")

After executing these commands, the console will not produce any output. Once you exit

the R environment, a new file called Rplots.pdf will be generated in the current directory.

Working Manual – FISH@CMFRI Page 34

You can download the file to your windows system using any method and check the

result.

Exiting the R Environment

To exit the R session when finished, simply type

 q()

Working Manual – FISH@CMFRI Page 35

Good Practices for Using HPC

Request Resources Wisely: Only request the CPU, memory, and wall time your job

needs to ensure efficient use of the system.

Avoid Login Node Overload: Do not run resource-intensive tasks on login nodes; always

submit jobs through the scheduler.

Clean Up Regularly: Remove unused files and manage your storage to stay within quota

limits.

Optimize Code Performance: Profile and optimize your code to improve efficiency,

minimize bottlenecks, and reduce runtime.

Monitor Jobs: Check your job logs and resource usage to optimize performance and

identify issues.

Test Small, Scale Gradually: Run small test jobs before submitting large-scale jobs to

estimate resource needs and debug issues.

Use Parallelization Effectively: Utilize parallel programming techniques (e.g., MPI,

OpenMP, multi-threading) to make the best use of available cores and nodes.

Report Issues Promptly: Notify the HPC team if you encounter persistent issues,

unexpected failures, or performance bottlenecks.

Follow Fair Use Policies: Use resources responsibly and share the HPC system fairly

with other users.

Working Manual – FISH@CMFRI Page 36

FISH@CMFRI Power-Off Procedure

Stop PBS Jobs Gracefully

Log in to the head node and prevent new jobs from starting. You can do this by

setting the nodes to an offline state.

 qmgr –c “set server scheduling = false”

Check for running jobs and wait for them to finish, or you can choose to cancel the jobs.

After that set all nodes offline.

 qmgr –c “set node compute-node[1-4] state=offline”

Shutdown Compute Nodes

Once jobs have stopped and nodes are offline, initiate the shutdown of compute nodes.

 pdsh –w compute-node[1-4] “sudo shutdown now”

For all compute nodes, use

 pdsh –a “sudo shutdown now”

Stop PBS Services

Stop the PBS server on the head node.

 sudo systemctl stop pbs

Shutdown Head Node

After all services are stopped, shut down the head node.

 sudo shutdown now

Working Manual – FISH@CMFRI Page 37

FISH@CMFRI Power-On Procedure

Power On Networking and Storage

Start by powering on the networking equipment (switches, routers), followed by storage

systems like NAS or other shared storage devices.

Power On Head Node

Power on the head node and wait for it to boot fully.

Start PBS Services

Once the head node is online, start the PBS services.

 sudo systemctl start pbs.service

Power On Compute Nodes

Power on the compute nodes using IPMI, a remote management tool, or manually.

Mount Shared File systems

On the Head node, ensure the shared file systems are mounted.

 sudo mount -a

Bring Compute Nodes Online In PBS

Set the compute nodes back to an online state in PBS.

 qmgr –c “set node compute-node[1-4] state=free”

Enable Job Scheduling

Re-enable job scheduling once everything is operational.

 qmgc –c “set server scheduling = true”

Working Manual – FISH@CMFRI Page 38

Verify Cluster Health

Verify that the PBS services are running properly and all nodes are online.

 pbsnodes -a

Check if any nodes are in an offline state or have errors and correct them.

Verify Compute Node NFS

Verify that all NFS shares are mounted properly before executing jobs,

pdsh –w compute-node[1-4] df -h

If all three NFS shares are mounted proceed to run jobs, else mount those shares with

below command,

pdsh –w compute-node[1-4] mount -a

Working Manual – FISH@CMFRI Page 39

Installing Packages in Compute Node Image

Step 1: Export the image path as shown below

#export CHROOT=/opt/ohpc/admin/images/rocky8.8

Step 2: Install the required package in master node and install the same in image using

below command.

#dny –y --installroot $CHROOT install <package-name>

Step 3: Run the warewulf virtual node file system command

 #wwvnfs --chroot $CHROOT

Step 4: Reboot the compute nodes to start using the installed package.

#pdsh –w compute-node[1-4] reboot

Working Manual – FISH@CMFRI Page 40

Appendix

C code used for matrix multiplication

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

#define N 16 // Matrix size (N x N)

// Function to initialize a matrix with random values

void initialize_matrix(double matrix[N][N]) {

 for (int i = 0; i < N; i++) {

 for (int j = 0; j < N; j++) {

 matrix[i][j] = rand() % 10; // Random values between 0 and 9

 }

 }

}

// Function to print a matrix

void print_matrix(double matrix[N][N]) {

 for (int i = 0; i < N; i++) {

 for (int j = 0; j < N; j++) {

 printf("%.2f ", matrix[i][j]);

 }

 printf("\n");

 }

}

int main(int argc, char *argv[]) {

 int rank, size;

 double A[N][N], B[N][N], C[N][N]; // Matrices A, B, and C

 double local_A[N][N], local_C[N][N]; // Local parts of A and C

 // Initialize MPI

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

Working Manual – FISH@CMFRI Page 41

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 if (N % size != 0) {

 if (rank == 0) {

 fprintf(stderr, "Matrix size N must be divisible by number of processes.\n");

 }

 MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);

 }

 int rows_per_process = N / size; // Number of rows per process

 // Initialize matrices on rank 0

 if (rank == 0) {

 initialize_matrix(A);

 initialize_matrix(B);

 printf("Matrix A:\n");

 print_matrix(A);

 printf("\nMatrix B:\n");

 print_matrix(B);

 }

 // Broadcast matrix B to all processes

 MPI_Bcast(B, N * N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 // Scatter rows of matrix A to all processes

 MPI_Scatter(A, rows_per_process * N, MPI_DOUBLE, local_A, rows_per_process *

N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 // Start timing the computation

 double start_time = MPI_Wtime();

 // Compute the local part of the result matrix C

 for (int i = 0; i < rows_per_process; i++) {

 for (int j = 0; j < N; j++) {

 local_C[i][j] = 0.0;

 for (int k = 0; k < N; k++) {

 local_C[i][j] += local_A[i][k] * B[k][j];

 }

 }

Working Manual – FISH@CMFRI Page 42

 }

// Gather the local results into the result matrix C

 MPI_Gather(local_C, rows_per_process * N, MPI_DOUBLE, C, rows_per_process * N,

MPI_DOUBLE, 0, MPI_COMM_WORLD);

 // End timing the computation

 double end_time = MPI_Wtime();

 // Print the result matrix on rank 0

 if (rank == 0) {

 printf("\nResult Matrix C:\n");

 print_matrix(C);

 // Print the time taken for the computation

 printf("\nTime taken: %.6f seconds\n", end_time - start_time);

 }

 MPI_Finalize();

 return EXIT_SUCCESS;

}

R code used for parallel matrix operations

library(pbdMPI)

Initialize MPI

init()

Get rank and size

rank <- comm.rank()

size <- comm.size()

n <- 5000 # Matrix size

total_chunks <- 96

chunks_per_rank <- ceiling(total_chunks / size)

Determine local chunk range

Working Manual – FISH@CMFRI Page 43

local_chunks_start <- rank * chunks_per_rank + 1

local_chunks_end <- min((rank + 1) * chunks_per_rank, total_chunks)

local_chunks <- local_chunks_start:local_chunks_end

Computation function

process_chunks <- function(chunks) {

 results <- matrix(0, nrow=length(chunks), ncol=13)

 for(i in seq_along(chunks)) {

 matrix1 <- matrix(rnorm(n*n), nrow=n)

 matrix2 <- matrix(rnorm(n*n), nrow=n)

 mult_result <- matrix1 %*% t(matrix2)

 rm(matrix1, matrix2)

 gc()

 result_eigen <- eigen(mult_result)$values

 rm(mult_result)

 gc()

 results[i,] <- c(

 mean(abs(result_eigen)),

 sd(abs(result_eigen)),

 quantile(abs(result_eigen), probs=seq(0,1,0.1))

)

 }

 return(results)

}

Start timer

if(rank == 0) start_time <- Sys.time()

Compute local results

Working Manual – FISH@CMFRI Page 44

local_results <- process_chunks(local_chunks)

Gather results from all ranks

all_results <- gather(local_results)

Have rank 0 combine and save results

if(rank == 0) {

 final_results <- do.call(rbind, all_results)

 end_time <- Sys.time()

 print(paste("Time taken:", end_time - start_time))

 saveRDS(final_results, "matrix_results.rds")

}

Finalize MPI

finalize()

R code used for parallel matrix multiplication on single node

library(parallel)

library(doParallel)

size <- 16

cores <- 20

Setup local cluster

cl <- makeCluster(cores)

registerDoParallel(cl)

Create matrices

A <- matrix(runif(size^2), size)

B <- matrix(runif(size^2), size)

start <- Sys.time()

chunks <- ceiling(size/cores)

Working Manual – FISH@CMFRI Page 45

result <- foreach(i = seq(1, size, by=chunks), .combine='rbind') %dopar% {

 end_idx <- min(i + chunks - 1, size)

 A[i:end_idx, , drop=FALSE] %*% B

}

end <- Sys.time()

Write results to file

sink("results.txt")

cat(sprintf("Cores: %d\nTime: %.2f seconds\nMatrix size: %d x %d\n\n",

 cores, as.numeric(end-start), size, size))

cat("=== Matrix A ===\n")

print(A)

cat("\n=== Matrix B ===\n")

print(B)

cat("\n=== Result Matrix (A %*% B) ===\n")

print(result)

sink()

stopCluster(cl)

Job Status Codes and Their Descriptions

Status
Letter Meaning Description

Q Queued The job is waiting in the queue to be scheduled for
execution.

R Running The job is currently running on the assigned resources.

E Exiting The job has finished running and is performing clean-up
tasks.

C Completed The job has finished execution successfully or has been
terminated.

H Held The job is held and will not be scheduled for execution
until it is released.

W Waiting The job is waiting for a specific condition to be met (e.g., a
start time).

T Transit The job is being moved to another server or is in the
process of being staged.

F Finished The job has completed its lifecycle (may have finished
successfully or failed).

Working Manual – FISH@CMFRI Page 46

Additional Resources

HPC – High Performance Computing

https://cloud.google.com/discover/what-is-high-performance-computing?hl=en

https://www.ibm.com/think/topics/hpc

PBS Professional User's Guide

https://help.altair.com/2024.1.0/PBS Professional/PBSUserGuide2024.1.pdf

PBS Professional Administrator's Guide

https://help.altair.com/2024.1.0/PBS Professional/PBSAdminGuide2024.1.pdf

Linux Tutorial

https://www.tutorialspoint.com/unix/index.htm

R Tutorial

https://www.w3schools.com/r

C Tutorial

https://www.w3schools.com/c

Introduction to parallel computing with R

https://rawgit.com/PPgp/useR2017public/master/tutorial.html

A Quick Guide for the pbdMPI Package

https://cran.r-project.org/web/packages/pbdMPI/vignettes/pbdMPI-guide.pdf

WinSCP Software

https://winscp.net/eng/download.php

https://cloud.google.com/discover/what-is-high-performance-computing?hl=en
https://www.ibm.com/think/topics/hpc
https://help.altair.com/2024.1.0/PBS%20Professional/PBSUserGuide2024.1.pdf
https://help.altair.com/2024.1.0/PBS%20Professional/PBSAdminGuide2024.1.pdf
https://www.tutorialspoint.com/unix/index.htm
https://www.w3schools.com/r
https://www.w3schools.com/c
https://rawgit.com/PPgp/useR2017public/master/tutorial.html
https://cran.r-project.org/web/packages/pbdMPI/vignettes/pbdMPI-guide.pdf
https://winscp.net/eng/download.php

