

Bilingual Training Manual on

भिन्न संस्कृतियों भारतीय पॉम्पानो मछली पालन Indian Pompano Farming in Different Culture Systems

విభిన్న సాగు వ్యవస్థలలో చందువ/మూకుడు పార చేపల పెంపకం కోసం శిక్షణ పుస్తకం

Under Scheduled Caste Sub-Plan (SCSP) Component

विशाखपट्टणम क्षेत्रीय केंद्र भा कृ अनु प - केन्द्रीय समुद्री मात्स्यिकी अनुसंधान संस्थान विशाखपट्टणम्, आंध्र प्रदेश, भारत

Visakhapatnam Regional Centre of

ICAR-Central Marine Fisheries Research Institute

Visakhapatnam, Andhra Pradesh, India

ఐసిఏఆర్ - కేంద్ర సముద్ర మత్స్య పరిశోధనా సంస్థ విశాఖపట్నం ప్రాంతీయ కేంద్రం _{విశాఖపట్నం, ఆంధ్ర ప్రదేశ్, భారతదేశం}

प्रशिक्षण / Bilingual Training Manual on

भिन्न संस्कृतियों भारतीय पॉम्पानो मछली पालन Indian Pompano Farming in Different Culture Systems

Under Scheduled Caste Sub-Plan (SCSP) Component

విభిన్న సాగు వ్యవస్థలలో చందువ/మూకుడు పార చేపల పెంపకం కోసం ద్విభాషా శిక్షణ పుస్తకం

షెడ్యూల్డ్ కులాల ఉప ప్రణాళిక (SCSP)లో భాగంగా

Training Coordinator **Sekar Megarajan**

శిక్షణ సమన్వయకర్త **శేకర్ మేగరాజన్**

Training Co-coordinators

Ritesh Ranjan, Biji Xavier, Jayasree Loka & Joe K. Kizhakudan

శిక్షణ సహ–సమన్వయకర్తలు

विशाखपट्टणम क्षेत्रीय केंद्र

भा कृ अनु प - केन्द्रीय समुद्री मात्स्यिकी अनुसंधान संस्थान

विशाखपट्टणम, आंध्र प्रदेश, भारत

VISAKHAPATNAM REGIONAL CENTRE OF ICAR-CENTRAL MARINE FISHERIES RESEARCH INSTITUTE

Visakhapatnam, Andhra Pradesh, India - 530003

ఇసిఏఆర్ - కేంద్ర సముద్ర మత్_న పలితోధనా సంస్థ విశాఖపట్నం ప్రాంతీయ కేంద్రం

విశాఖపట్నం, ఆంధ్ర ప్రదేశ్, భారత దేశం - 530003

i

About the Manual

This training manual on "Advances in Marine Finfish Farming" Practices" is published by the ICAR-Central Marine Fisheries Research Institute, Regional Centre, Visakhapatnam, Andhra Pradesh under the Scheduled Caste Sub-Plan (SCSP) component. This manual is published as reading material for the participants of the training programme and other stakeholders who are linked with marine finfish farming, especially the fish, Indian pompano. The manual is contains several important information on farming practices for the marine finfish in sea cage farming, coastal cage farming, coastal pond farming, and other important farming systems. The information given in the manual are more of practical oriented, and can be replicated in the farmer's field for achieving consistent result. Also, the available information will answer different queries for farmer's and academia's doubts in the commercial farming practices especially Indian pompano. It is assured that the knowledge gained from this training programme will go a long way to boost the experience of different participants, and other stakeholders making them more confident of success in their various mariculture related activities. My sincere gratitude to all my colleagues in the centre who have helped in preparing and printing this manual.

Sekar Megarajan

Senior Scientist & Training Programme Coordinator

Preface

Mariculture is one of the fastest growing sub-sectors of aquaculture in the world. In contrast to the global scenario, Indian mariculture sector is in a developing stage, despite its huge potential to enhance seafood production in the country and thereby the revenue and livelihood. To enhance the marine finfish production, technological developments on seed production of commercially important marine finfish species, and their farming practices were developed and standardised by ICAR CMFRI at its Research Centres and Station Laboratories along the Indian Coast. Recently developed finfish farming practices include: small diameter sea cages, coastal backwater cages, Recirculating Aquaculture System (RAS) for marine finfish broodstock development and nursery rearing, and coastal marine finfish farming methods for marine finfish Indian pompano. All these developed technologies have been tailored to suite with India's prevailing coastal characteristics and climatic conditions. Developed technologies have been demonstrated and disseminated in different maritime states of India by ICAR-Central Marine Fisheries Research Institute, and has been constantly contributing to the promotion of the marine finfish farming in India. Indian pompano, Trachinotus mookalee is the best suitable cultivable marine finfish species in India, with its high nutritional and market value in India. Indian pompano breeding, seed production and culture protocols are standardized at Visakhapatnam Regional Centre of ICAR-CMFRI and demonstrated in ponds and coastal cages of Andhra Pradesh. Industry- Institute partnership with entrepreneurs and farmers and aquaculture and Fishery Science students and researchers is the need of the hour for sustainable high-density production and commercialization of Indian pompano in India. This training manual will serve as a comprehensive hand book for all primary entry farmers and learners to get acquainted on "Indian pompano farming in different culture systems" and focuses on the Indian pompano finfish farming protocols for better culture management practices and propagation of the Technology to a larger area and farming community. The participants would be learning new skills and we encourage all to practice the techniques, and seek clarification whenever needed. I believe that with dedication and the resources provided in this manual, you will be well-prepared to succeed.

Joe K Kizhakudan

Principal Scientist & Head, Visakhapatnam Regional Centre of ICAR -CMFRI

సముద్ర చేపల పెంపకం పద్ధతుల మెరుగుదల పై (అడ్వాన్సెస్ ఇన్ మెరైన్ ఫిన్ ఫిష్ ఫాల్షింగ్ ప్రాక్టీసెస్") పై ఈ శిక్షణా మాన్యువల్ను ఐకర్-సెంట్రల్ మెరైన్ ఫిషరీస్ రీసెర్చ్ ఇన్జ్మిట్యూట్, లీజినల్ సెంటర్, విశాఖపట్నం, ఆంధ్రప్రదేశ్ షెడ్యూల్ కుల ఉప–ప్లాన్ (SCSP) భాగం క్రింద ప్రచులించింది. ఈ మాన్యువల్ (ఇండియన్ పోంపానో పెంపకంవాటి ఉ శిక్షణా కార్యక్రమంలో పాల్గొనేవాలకి ముఖ్యంగా సముద్ర చేపల పెంపకం తో ముడిపడి ఉన్న ఇతర రైతులకు ఉపయోగపడే పఠనా అంశంగా ప్రచులించబడింది. ఈ మాన్యువల్ లో, సముద్రపు మరియు తీర ప్రాంతపు పంజరాలలో, చెరువులలో మరియు ఇతర వ్యవస్థలలో సముద్రపు చేపల పెంపకం పద్దతులకి సంబంభించిన అనేక ముఖ్యమైన సమాచారాలని కలిగి ఉంటుంది. మాన్కువల్లో ఇచ్చిన సమాచారం ఆచరణాత్త్వకంగా ఉండి, మలియు స్థిరమైన ఫలితాన్ని సాధించడానికి రైతు రంగంలో పునఃనిర్హాణం $\frac{\omega}{2}$ = $\frac{\omega$ వాణిజ్య వ్యవసాయ పద్ధతుల్లో ముఖ్యంగా ముక్కుడు పార సంబంధించిన వాటిలో రైతు మరియు విద్య సంస్థల్ యొక్క వివిధ ప్రశ్నలు మరియు సందేహాలకు సమాధానం ఇస్తుంది. ఈ శిక్షణా కార్యక్రమం నుండి పాందిన జ్ఞానం, శిక్షణ పాందే వాలి అనుభవాన్ని పెంచడానికి, మరియు ఇతర స్టేక్ హౌల్డర్స్ వారి వివిధ మారికల్చర్ సంబంధిత కార్యకలాపాలలో కలిగే విజయం గులించి మలింత నమ్మకంగా ఉండటానికి వినియోగ పడుతుంది. ఈ మాన్యువల్ను తాయారు చేయదానికి మలియు ముద్రించడానికి సహాయం చేసిన నా సహారాద్యోగులందలికీ నా హృదయపూర్వక కృతజ్ఞతలు.

శేఖర్ మేఘరాజన్

సీనియర్ శాస్త్రవేత్త శిక్షణా కార్యక్రమం సమన్వయకర్త

ಮುಂದುಮಾಟ

మాలికల్చర్ ప్రపంచంలో వేగంగా అభివృద్ధి చెందుతున్న ఆక్వాకల్చర్ యొక్క ఉపరంగాలలో ఒకటి. దేశంలో సీపుడ్ ఉత్పత్తిని పెంచే అభిక సామర్థ్యం ఉన్నప్పటికీ , మిగతా ప్రపంచం తో ప్రాలెస్తే భారత దేశం లో మాలికల్చర్ రంగం ఇంకా అభావృద్ధి చెందుతున్న దశలో ఉంది. సముద్ర చేపల ఉత్పత్తిని పెంచడానికి, వాణిజ్యపరంగా ముఖ్యమైన సముద్ర చేపల జాతుల విత్తన ఉత్పత్తిపై సాంకేతిక పరిణామాలు, మరియు వాటి వ్యవసాయ పద్ధతులను ICAR CMFRI, పరిశోధనా కేంద్రాల ప్రయోగశాలలలో అఖవృద్ధి చేసి వాటిని ప్రామాణీకలం చింది. తక్కువ వ్యాసం కలిగిన సముద్రపు పంజరాలు, తీరప్రాంత ఉప్పు తెరులలో పంజరాలు, మెరైన్ ఫిన్ ఫిష్ బ్రూడ్స్టాక్ అభివృద్ధి మలియు నర్సలీ పెంపకం కోసం లీసర్కులేటింగ్ ఆక్వాకల్చర్ సిస్టమ్ (RAS) మలియు మైరైన్ ఫిన్ ఫిష్, ముక్కుడు పార్త (ఇండియన్ పోంపానో) కోసం తీరప్రాంత మెరైన్ ఫిన్ ఫిష్ వ్యవసాయ పద్దతులు మొదలైనవి ఇటీవల అభివృద్ధి చేసిన ఫిన్ ఫిష్ వ్యవసాయ పద్ధతులు. ఈ అభివృద్ధి చెందిన సాంకేతిక పరిజ్ఞానాలన్నీ భారతదేశం యొక్క ప్రస్తుత తీర వాతావరణ పరిస్థితులలో చేయడానికి అనుగుణంగా ఉంది. భారతదేశంలో సముద్ర చేపల వ్యవసాయం యొక్క అభివృద్ధికి నిరంతరం దోహదపడుతుంది. ముక్కుడు పార, ట్రాచినోటస్ మూకాలీ అధిక పోషక మలియు మార్కెట్ విలువ కలిగి, భారతదేశంలో ఉత్తమంగా సాగు చేయగల సముద్ర చేపల జాతులలో ఒకటి. ఇండియన్ పాంపాన్లో పెంపకం, బిత్తన్న ఉత్పత్తి మరియు పంపకం యొక్క పద్ధతులు, విశాఖపట్నం ప్రాంతీయ కేంద్రం ప్రమాణీకరణ చేసింది. ఈ ముక్కుడు పార పెంపక్షం, ఆంధ్రప్రదేశ్లోని చెరువులు మరియు తీర ప్రాంతాలలోని పంజరాలలో పెంచడం ఎలా అనేబి చూపించడమైంది. భారతదేశంలో ఇండియన్ పాంపానో యొక్కస్థిరమైన అధిక సాంద్రత కలిగిన ఉత్పత్తి మరియు వాణిజ్యీకరణకు, ఇండస్ట్రీ-ఇన్ట్రిట్యూట్ పార్ట్ నర్జ్ స్వేష్మ్, వ్యవస్థాపకులు, రైతులు, విద్యార్థులు మరియు పరిశోధకులు చేసే పలిశోధనలు అవసరం ఎంతైనా ఉంది. రైతులు మరియు అభ్యాస్త్ కులందలికీ "వివిధ సంస్మృతి వ్యవస్థలలో ముక్కుడు పార వ్యవసాయం" పై అవగాహన పాందడానికి సమగ్ర చేతి పుస్తకంగా ఈ శ్రీక్షణా మాన్యువల్ ఉపయోగపడుతుంది. అదేవిధంగా, మెరుగైన సాగు నిర్వహణ పద్ధతుల కోసం ముక్కుడు పార చేప యొక్క వ్యవసాయ ప్రాటోకాల్లపై ದೃಷ್ಟಿ సాలంచి, సాంకేతిక పలజ్ఞానం పెంపాందించేలా ఈ మాన్యువల్ వ్యవసాయ రంగానికి ఉపయోగపడుతుంది. ఈ శిక్షణలో పాల్గొనేవారు కొత్త నైపుణ్యాలను నేర్చుకుంటారు. అన్ని రకాల శిక్షణ పద్ధతులను అభ్యసించడానికి మేము అందలినీ ప్రాశ్వహిస్తాము. అంకితభావం మరియు ఈ మాన్యువల్లో అంబంచిన పద్దతులతో, మీరు విజయవంతం అవుతారని నేను నమ్ముతున్నాను.

జో కె. కిజకుడన్

ప్రధాన శాస్త్రవేత్త మరియు ప్రాంతీయ కేంద్ర అభిపతి విశాఖపట్నం ప్రాంతీయ కేంద్రం

Details of the Training Programme

Name of the Training Programme Indian Pompano Farming in Different Culture Systems

Date of the Training Programme 17 to 19th March, 2025

Training Programme Coordinator
Dr. Sekar Megarajan

Training Programme Co-coordinators Ritesh Ranjan, Biji Xavier, Jayasree Loka & Joe K. Kizhakudan

Training Manual Editors
Sekar Megarajan, Ritesh Ranjan,
Biji Xavier, Jayasree Loka &
Joe K. Kizhakudan

Training Manual Translation in Telugu Ravi K. Avadhanula, Dr. Jayasree Loka & Dr. S.S. Raju

Training Programme Organized by Visakhapatnam Regional Centre, ICAR-Central Marine Fisheries Research Institute,

Visakhapatnam - 530 003, Andhra Pradesh, India

Research Project & Financial Assistance: Scheduled Castes Sub-Plan (SCSP) Component of ICAR-CMFRI

Published By

Director ICAR-Central Marine Fisheries Research Institute,

P.B. 1603, Ernakulam North P.O. Kochi- 682 018, Kerala, India www.cmfri.org.in

E-mail: director@cmfri.org.in, director.cmfri@icar.gov.in Telephone: +91 484 2394867 Fax: +91 484 2394909

Designed by

Tri60degree, Visakhapatnam

Printing

Publication Production & Co-ordination Library and Documentation Centre ICAR-CMFRI, Kochi.

Citation

Sekar Megarajan., Ritesh Ranjan., Biji Xavier., Jayasree Loka., Joe K Kizhakudan (2025). Bilingual Manual on Indian pompano farming in different culture systems. CMFRI Training Manual Series No. 55/2025 Page No: 100

Year of Publication March 2025

Material contained in this publication may not be reproduced in any form without the permission of the publisher.

Visakhapatnam Regional Centre

ICAR-Central Marine Fisheries Research Institute, Visakhapatnam - 530 003 Andhra Pradesh, India

Contents

S.No.	Chapters	Page No.
1	Seed production of Indian pompano	01-07
	Ritesh Ranjan, Biji Xavier, Chinnibabu Bathina, Ravi K. Avadhanula and	
	Damodararao Padumu	
2	Nursery Rearing of Indian pompano -	
	Different Culture System Approach	08-18
	Sekar Megarajan, Biji Xavier, Damodararao Padumu, Chinnibabu Bathina	a
	and Dimmiti Murali Kiran	
3	Sea Cage Farming of Marine Finfishes:	
	Special Emphasis on Indian Pompano	19-27
	Sekar Megarajan, Joe K Kizhakudan, Relangi Durga Suresh,	
	Relangi Prasanna Venkatesh and Dimmiti Murali Kiran	
4	Coastal Cage Farming of Marine Finfish,	
	Indian pompano	28-36
	Sekar Megarajan, Jayasree Loka, Balla Vamsi, and Padmaja Rani	
5	Coastal Pond Farming Technology:	
	Indian pompano Culture in Earthen Pond	37-44
	Sekar Megarajan, Ritesh Ranjan, Narasimhulu Sadhu and Balla Vamsi	
	Application of Probiotics in Mariculture	45-50
	Jayasree Loka, Sekar Megarajan, Narasimhulu Sadhu and	
	Relangi Durga Suresh	
	Economic Analysis of Indian Pompano	
	-A case study of cage culture in back waters	51-57
	S. S. Raju, Sekar Megarajan and Ravi K. Avadhanula	

බష්య సూచిక

క్రమ సంఖ్య	<u> ಅಂ</u> ಸಾಲು	పేజీ నెం.
1	చందువ/మూకుడు పార చేపల యొక్క విత్తనోత్పత్తి	58-62
	లితేష్ రంజన్, జజి జేవియర్, చిన్నిబాబు బత్తిన, రవి కుమార్ అవధానుల	
	మరియు దామోదరరావు పదుము 	
2	ඞ ආත _ය බං රා ක් දුක්තූ වෙම සට සාක්/ කාංජා සා	
	పార చేప పిల్లల నర్నలి పెంపకం	63-73
	శేకర్ మేగరాజన్, జజి జేబియర్, దామోదరరావు పదుము, చిన్నిబాబు బత్తిన	
	మలియు బిమ్మిటి మురళీ కిరణ్ 	
3	సముద్రపు పంజరాలలో చేపల పెంపకం :	
	చందువ /మూకుడు పార చేపలపై ప్రత్యేక అధ్యయునం	74-78
	శేకర్ మేగరాజన్, జో కె. కిజకుడన్, రేలంగి దుర్గా సురేష్,	
	రేలంగి ప్రసన్న వెంకటేష్ మరియు బిమ్మిటి మురళీ కిరణ్	
4		
	สีจัย จิงจัรง	79-84
	శేకర్ మేగరాజన్, జయశ్రీ లోకా, బళ్ల వంశీ మరియు పద్మజా రాణి	
5		
	చేపల సాగు	85-89
	శేకర్ మేగరాజన్, లితేష్ రంజన్, నరసింహులు సాధు మలియు బళ్ల వంశీ	
6		
	ට ්ඨාජ _ී මතාක්රුත්ර	90-94
	జయశ్రీ లోకా, శేకర్ మేగరాజన్, నరసింహులు సాధు మలియు రేలంగి దుర్గా సురేష్	
7	చందువ/మూకుడు పార చేపల యొక్క ఆర్ధిక విశ్లేషణ -	
	బ్యాక్ వాటర్ కేజ్ కల్చర్ పద్ధతిపై ప్రత్యేక అధ్యయసం	95-100
	ఎస్. ఎస్. రాజు, శేకర్ మేగరాజన్, మలియు రవి కుమార్ అవధానుల	

CHAPTER - 01

Seed production of Indian pompano

Ritesh Ranjan, Biji Xavier, Chinnibabu Bathina, Ravi K. Avadhanula and Damodararao Padumu

ICAR-CMFRI, Visakhapatnam Regional Centre, Pandurangapuram, Andhra University Post, Visakhapatnam - 530003

Introduction

In India, the resources available for mariculture/coastal aquaculture is vast and it includes 8129 km of coastline, 2.2 million km² of Exclusive Economic Zone (EEZ) with 0.5 million km² of continental self, 1.2 million ha of coastal salt affected land and 3.9 million ha of estuarine area. In spite of having huge mariculture resources, India is still at the initial stage in mariculture. The coastal aquaculture scenario continues to be dominated by shrimp farming with single species. Presently, shrimp culture in India is in doldrums, due to the frequent failures of the crop. Adopting crop rotation or diversification using finfishes, to some extent would solve the issue of diseases in shrimp industry. One of the vital prerequisites for crop rotation or diversification is the availability of seed production technology for selected high value finfish. Indian pompano is a suitable species for crop rotation, since the shrimp pond could be used as such for the culture of the species without further modifications.

Therefore, it was felt a necessity to develop seed production technology of high value marine finfishes and accordingly breeding and seed production technology of Indian pompano, *Trachinotus mookal*ee was initiated and perfected at Visakhapatnam Regional Centre of ICAR-Central Marine Fisheries Research Institute, Visakhapatnam, Andhra Pradesh.

Indian pompano is distributed in western Indian Ocean from the Gulf of Oman eastward to Sri Lanka. Its range also extends to Singapore, Gulf of Thailand and Hong Kong. In India it has been reported both from the east and west coasts. It is considered as one of the potential candidate species for aquaculture because of its several culture characters like fast and uniform growth rate, their attractive appearance, hardy in nature with tolerance to wide range of water salinities (5-35 g/

l), acceptability to formulated feed, firm white as well as tasty meat and high market demand. It can be cultured in both ponds and cages.

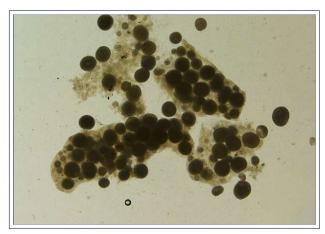
Broodstock development and spawning

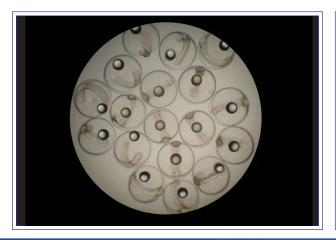
Broodstock development, breeding and larval rearing of Indian pompano were first time successfully achieved at Visakhapatnam R. C. of ICAR-CMFRI, Andhra Pradesh, India.

Adult fishes (>2kg) collected from commercial catches were stocked @ 1kg/m³ in a circular tank of 125 m³ capacity fitted with a Re-circulating Aquaculture system (RAS). The tank was connected with different components of RAS such as rapid sand filter to remove suspended solids, protein skimmer to eliminate dissolved solids and biological filter to reduce biochemical waste. The whole tank water was getting re-circulated 300% per day, and the water was added at the rate 3% to top up the loss happening due to protein skimmer and backwashes of rapid sand filter.

Broodstock RAS at Visakhapatnam

They were fed on fresh squid and clam meat fortified with squid oil, vitamin – mineral pre-mix in a day till satiation. They were cannulated and sexed. Passive integrated transponder (PIT) tagging was used for identification of individual brooder. The brooders were matured within 4 months with ova size of $450 - 550 \,\mu\text{m}$.




Spawning was obtained either naturally or by inducing with hormone. Once the intraovarion ova reaches a size of $500\,\mu\text{m}$ diameter, the male and female were induced with hCG at a dose of $350\,\text{IU/kg}$ body weight. The spawning occurred within 36-38hours after injection. The number of eggs spawned by Indian pompano ranged from 0.6 to 1.5 lakhs.

The spawned eggs from broodstock tank were collected by passing the surface water through an egg-collecting chamber fitted with a hapa of $500~\mu m$. Collected eggs were treated with 20 ppm iodine solution for 10 minutes with strong aeration. Treated eggs were stocked in 100~L aquarium tank @ 200~nos per liter. Bottom settled eggs were removed after 2~hrs of stocking. The eggs hatched out 20~n

22 h after fertilization at 28-30 °C, 30-32 ppt salinity and mild aeration. Newly hatched out larvae were free floating on the water surface.

The overall fertilization and hatching rate was found to be 69 ± 1.55 % and 87.67 ± 0.81 %, respectively. Subsequent spawning of Indian pompano were achieved at an interval of 35-40 days in RAS.

Larviculture

The newly hatched larvae measured 2.1-2.2 mm in total length. The mouth opening was formed after 42-46 h post hatch. The newly hatched larvae were collected from the water surface of hatching tank and stocked in larval rearing tank @ 10 nos./L. Water depth of the larval rearing tank was maintained at a minimum of 80 cm. Green water was used for larval rearing.

Rotifers and copepod nauplii were added from 2nd dph onwards @ 10-20 nos./ml. Artemia nauplii were used in larval rearing tank from 9th dph. Weaning of larvae with inert diet was started from 15th day. Metamorphosis of the larvae started from 17th day and was completed by 22nd day.

The size of the metamorphosed fry ranged from 16 to 17 mm. Juveniles of Indian pompano were harvested after 25-30 days of larval rearing and were shifted for nursery rearing. The average survival during the larval rearing was around 21 %. Longer duration of light (1000 lux) was provided for two to eight

days of larval rearing, afterwards natural light period was followed. Feeding and water management during larval rearing is depicted below.

Days after hatching	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Feed management	
Microalgae (10 ⁵ /ml)	
Copepod Nauplii (2 nos/ml)	
Rotifers (<100 µm) (10-15 nos/ml)	
Rotifers (15-25 nos./ml)	
Artemia (1-2 nos./ml)	
Artificial diet	
Water management	
Siphoning	
Water exchange	
~ 10 %/day	
~ 20 %/day	
~ 50 %/ day	
~ 100 %/day	

Nursery rearing

The nursery rearing of Indian pompano was standardized with different feed and culture conditions. Pellet feed with 45 % protein and 10 % lipid was ideal during the nursery rearing. Feed are fed @ 10 % of the biomass for 3-4 times in a day. Nursery rearing was carried out in different systems such as RAS, hapa fixed in pond, hapa fixed in sea cages and cement tank. The stocking density was maintained 300-1000 nos per m³ depending upon the culture system. Indian pompano grew to a size of 20-25 g in 2 months culture period, after which it was stocked in pond or cage for grow out culture.

Grow out culture

Advanced Indian pompano (15-20 g) produced were stocked in cage and fed with floating pellet having 40-45 % protein content. Initial culture showed good growth performance from 15-20 to 120-130 g (126 \pm 3.17g) after three months in FRP tank and after 10 months of rearing, fish attained an average size of 969.9 \pm 67.5 g.

Nursery Rearing of Indian pompano - Different Culture System Approach

Sekar Megarajan, Biji Xavier, Damodararao Padumu, Chinnibabu Bathina and Dimmidi Murali Kiran

ICAR-CMFRI, Visakhapatnam Regional Centre, Pandurangapuram, Andhra University Post, Visakhapatnam - 530003

Introduction

Cocastal marine aquaculture is one of the emerging areas for marine food fish production and is mainly performed in the seaand in coastal ponds. Mariculture and coastal aquaculture collectively produced 30.8 million tonnes (USD 106.5 billion) of aquatic animals in 2018, and they are mainly from marine cages, coastal cages and coastal earthen ponds. Increasing marine food fish production through innovative and intensive culture methods has increased demand for marine finfish seeds either from wild collection or hatchery based production. In this context, nursery raring plays an important role in supplying sufficient numbers of fingerlings at ready-tostockable size in grow-outculture for better survival and faster growth. Larval rearing ends after the larvae achieve the full metamorphosis, and the metamorphosed early fry harvested from larval tanks is often not strong enough for direct stocking in growout farms. Thus, nursery rearing of fish larvaeis important for the production of the grow-out culture of stockable-size fish. It is evidenced that healthy seeds are key for a healthy grow-out culture with better economic returns. Thus, maintaining healthy and disease-free stock is of prime importance for achieving better production in the growout system. So, the nursery-rearing concept gives a better opportunity to maintain large numbers of fish fingerlings in small areas, which facilitates for effective management. Nursery rearing practices are majorly classified into two major categories; indoor and outdoor systems; where indoor-based culture is performed either by flow-through or recirculation based concept in FRP (Fibre Reinforced Plastic) /concrete/collapsible tanks. Outdoor-based system is performed either running or moving waters in hapa erected or installed in earthen ponds, coastal cages and marine cages. All these culture systems have their own merits and demerits concerning

management and advocating these systems are based on the size of stocking and method of grow-out systems will be implemented for the species.

Nursery rearing of Indian pompano

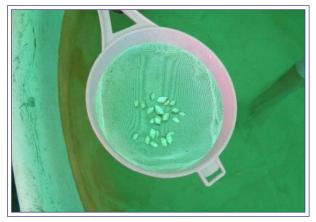
The culture technology for the species has been standardised, disseminated and presently being practised in different coastal states inmarine cages, coastal cages, and coastal ponds. In order to perform for grow-out culture in these systems, the fry produced in hatchery should be nursery-reared till attaining the size at which the larvae tolerate different environmental conditions in the grow-out environments. Depending on the culture systems and locations, the nursery rearing is performed in different culture conditions with different suitable management practices. In general, 25-30 g size fingerlings are considered as an optimum size for stocking in grow-out culture systems, but stocking of bigger size fingerlings will help in reducing the growout culture period, and will enhance the culture performance of the stocked Indian pompano seeds. The nursery reared fingerlingsare to be transported to the culture site, and thus the size of the fingerlings depends on the distance between the nursery and grow-out site, and mode of transportation. This fish is sensible to transportation stress, and thus the establishment of nursery facilities in proximities of grow-out culture environment is highly recommended. Common nursery rearing systems recommended and adopted for the species includes indoor-based flow-through systems (FRP and concrete cement tanks), recirculating based indoor system (RAS); hapa in the coastal pond, coastal cage and marine cage based outdoor systems. More importantly, the growth rate for Indian pompano is <0.1 to 1.0g/day during early growth phase till attaining 100 g and then the growth rate increases up to 7.0 g /day in the later growth period. Therefore, maintaining nursery in small confined area for long time is recommended to save time, energy and expenditure in the grow-out culture operations.

Indoor based nursery rearing systems

Flow-through based nursery system

Flow-through-based nursery rearing is the low density based extensive rearing method, performed in FRP or concrete cement tanks. In this system water is filled once in the rearing tank and then same water is discharged along with faecal matter and unused feed after particular time period without treating. This system is suitable for the early fry stage, immediately after larval rearing. This system is mainly practiced in circular

or square-shaped tanks of 1-10 tonnes capacity with 1.0 meter water depth and central drainage system. Tank colour plays an important role in the smooth functioning of daily activities, where light blue colour is the preferred for clear visibility of the fish fingerlings and other faecal matters. The concrete tank should be coated with nontoxic epoxy paint for smooth tank surface. Indian pompano larvae attain an early fry (1.5-2.5 cm; \sim 0.2 g in size) stage after 35-45 days and at this stage, it can be shifted to indoor-based flow through nursery facilities. Fry of this size preferably should be stocked in indoor based flow through facilities for better survival. The early fry stocked in this facility reaches 2.5 to 3.5 g in size approximately after a month, then it can be shifted to outdoor nursery systems. While shifting, the early fry can be shifted to nursery facilities by small containers (plastic buckets) with or without oxygen if the nursery facilities are available within the proximities of hatchery complex. However, shifting with help of oxygen will help to keep the fry in better conditions without stress. The transported fry is directly released to nursery rearing tank at 1500-2000 nos/m³ and maximum carrying capacity should be of less than 5.0 kg/m³. After transfer, the stocked fry is fed with feed of 500μ in size and 100% water exchange is recommended. While in daily operation, the central drain in the tank is covered with PVC pipes of small slits or drain covers. These pipes and drain covers should be wrapped with small mesh size nets according to size of stocked fry, which will avoid the escape of fry while in water exchange. Recommended feeding for the stocked fry is 4-6times per day at 5-6% of body weight or till satiation. As feeding frequencies is more at initial stage, thus it is recommended for 100% water exchange in two different spells in the morning and evening at 50% in each time. As water is exchanged every day, the dissolved oxygen is consider as critical point than any other water quality parameters and ideal salinity is 10-35 ppt. Concentration of oxygen should be maintained always above 4.0 ppm and 1.5 ppm is considered as critical oxygen limit. While rearing, one feet gap between water surface and rim of the tank is necessary as the Indian pompano respond to the light variation, thus the stocked fry jumps out of water if disturbed either by light variation or sound. Thus, enough gap is required to avoid the larvae jump out of water or the tank surface should be covered with small sized mesh. The advanced fry takes nearly one months to reach an average of 3.0 g and survival varies between 75-95%, depending on nursery management practices.



Feeding in FRP tanks

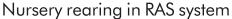
Feeding in concrete tanks

Fingerlings sampling

Fingerlings sampling

Fig.1: Nursery rearing of Indian pompano in indoor culture systems

RAS-based nursery rearing


The major limitations in nursery rearing and other aquaculture operations are land and water availability, gradual deterioration of aquatic ecosystems, frequent disease outbreaks and difficulties with sediment and wastewater treatment. Therefore, it is very important to develop new culture methods to decrease the ecological impact in terms of waste production and water use. One important and effective method to solve these problems is the rearing of fish in re-circulating aquaculture systems (RAS). RAS is indoor tank-based water recirculation systems in which fish are grown at high density under controlled environmental conditions to maximize fish fingerlings growth year-round. The system has the flexibility to locate the production facilities near growout culture site, complete and convenient harvesting and quick and effective disease control. These systems can be used to maximize production where suitable land or

water is limited, or where environmental conditions are not ideal for the particular species to be cultured. It is a land-based aquatic system where the water is mostly re-used after mechanical and biological treatment processes to reduce the consumption of water and energy. The system offers advantages where temperature and other water quality parameters can be controlled and provide conducive environment in order to maximise the growth and maintain fish health. Most of the modern RAS systems are generally consisting of the components like solids collecting systems (drum filter/sand filter), foam fractionation unit (protein skimmer), bio-filter, carbon dioxide degasser, nitrate filter, sterilization point (usually UV sterilizer), temperature control, oxygen injection system and pH control and alkalinity dosing system. All these components together help to maintain good water quality parameters and create conducive environment for the stocked fingerlings to grow. Recommended seed stocking size is 1.0 to 3.0 g and stocking density can be increased up to the total biomass of ~ 15 to 20 kg/m³, increasing and decreasing in stocking number is depending on the size of stocking. Since, the system is stocked with high stocking density and water is continuously recirculated and thus, maintaining proper water quality with saturated level of dissolved oxygen is highly essential to maintain high survival in the culture system. Feeding in the system in similar to tank based flow through system and survival varies between 80-95% depending on stocking size and management practices. The preferred tank size is 5.0 to 10.0 tonnes capacity with 1.5 m water depth.

Feeding in RAS system

Fig.2: Nursery rearing of Indian pompano in indoor RAS based culture systems

Outdoor culture system

Indian pompano grow-out culture is practised in coastal ponds, coastal cages and marine cages in the specified locations, and these locations are generally away from hatchery facilities. Thus, nursery reared fingerlings are to be shifted to the respective culture system by different mode of transportations. In this circumstances, outdoor based nursery rearing in the respective grow-out culture system is recommended to reduce transportation related stress and expenditure. Also, performing nursery rearing in the respective grow-out culture facility helps to grow the fingerlings to required bigger size to reduce length of the grow-out period.

Nursery rearing in hapa based coastal pond

Coastal based pond farming is one of the important culture systems for Indian pompano culture. The optimum stocking size for the species in grow out coastal pond culture is 25 to 30 g, and if the available size is small (~ 1 inch), then nursing of the fry should be done before stocking in the grow-out pond. Pond based nursery culture in hapa is recommended to perform in the same grow-out pond or in separate nursery culture ponds. In general, less than 10% of the total grow-out culture area is recommended for nursery rearing in pond based culture. Rectangular hapas are installed in the pond and are supported with bamboo or casuarina poles. Customised hapa sizes are used, and the recommended sizes can vary from 2 x 2 x 1.5 m to 4 x 4 x 1.5 m with mesh sizes of 0.5 mm. However, the size can be still bigger, but requires more manpower to manage while net exchange and other management practices. The suitable seed size in this system is 1.0 to 2.0 g in size and immediately stocking in the hapa, the newly stocked fry fed with floating pellet feed after acclimatisation. The mesh size of the hapa can be increased at time interval depending on the growth of stocked fry/fingerlings. The installed hapa should be stitched with mosquito mesh of one feet height at water interface for avoiding feed wastage through hapa mesh. Nylon net is preferred material for hapa in nursery rearing since it is softer than HDPE net. The ideal stocking density varies from 250 to 450 nos/m³ for the fingerlings of 3.0 to 20.0 g in size and grading of stocked fry based on size should be followed on a fortnight basis, to achieve uniform growth. Hapa change during nursery period is recommended preferably once in a month based on the waste/algae accumulations. If not exchanged at particular interval, it may affect water flow and dissolve oxygen deficiency for the stocked fingerlings. The fish accepts artificial feeds,

Seed stocking in hapa in pond

Feeding in hapa

Sampling of Indian pompano

KMno4 treatment for disease

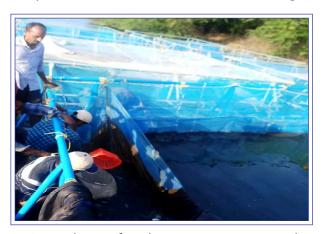
Fig.2: Nursery rearing of Indian pompano in hapa in coastal pond

and the diet with high nutrient content (Crude Protein 45% and Crude Fat 10%) is suggested for the nursery rearing. Feeding frequency of 4-6 times/day at 5-8% of body weight is recommended during the initial phase. The commonly available supplier for nursery feeds are Skretting (Norway), Lucky star (Singapore), Uni-President Enterprises Corporation (Taiwan), Growel Feeds Pvt Ltd (India). The fry stocked at 2.0 to 3.0 g in size should be culture for 60 to 75 days till it reaches 30-40 g, which is an ideal size for stocking in grow-out pond. The expected survival for the fish during hapa based nursery rearing is around 80-95%, and depends on efficient management. Maintaining good water quality is paramount in nursery rearing and thus, adequate aeration should be provided in the nursery pond as the fish fry are stocked at high densities in the hapa. Maintaining dissolved oxygen level of 4 to 6.0 ppm is recommended through use of paddle wheel aerators in the pond. The recommended salinity for good growth is 15-35 ppt. Water pH can vary from 7.5 to 8.5, but high

fluctuations in daily pH due to algae in the pond increases the toxicity of ammonia, ultimately impacting the stocked fry, and therefore, has to be avoided. After attaining the stockable size, the nursery reared fingerlings are directly release into the grow-out systems.

Hapa based nursery rearing in coastal cages

In India, huge estuarine resources are available bordering the coasts and this potentially available under-utilized high saline water bodies, could be efficiently utilized by culturing the different species of finfishes in cages installed thereof. Optimum size of initial stocking for the fish in coastal cage is 20 to 25g. The fish stocked at the optimum size takes nearly 10 months to attain the market size of 750 g. However, the culture duration could be further reduced if the fish stocked are of bigger sizes. Thus, nursery culture of Indian pompano is considered an important aspect in cage culture for reducing the culture duration in cage culture operation of the fish. If ambient culture conditions existing in backwater culture farm facilities, nursery rearing can be performed in a few cages itself by use of hapas. Hapa based backwater nursery is performed, especially where the distance between land-based culture and backwater cage is far away. Keeping the culture situation in consideration, backwater cage based nursery rearing is recommended for reducing seed transportation related issues and to stock bigger size fingerlings for initial stocking. Unlike, indoor tank based nursery facilities, the initial stocking size should be 3.0-5.0 g in size due to rough climatic conditions. In general 5x5x3m GI cages are used for grow-out culture, and therefore, a hapa of either 2x2x2.5 or 3x3x2.5 size are recommended for nursery in cages. The mesh size of the hapa should be 5 mm in size, and should be stitched with feed mesh of 1.0 feet height at water and air interface to avoid feed wastage through hapa mesh. Optimum stocking density is 350-500 nos/m³ and this stocking density can be maintained till 25.0g in size. Immediately after stocking, the fingerlings can be fed with floating pelleted feed of 0.8 to 1.0 mm in size, at 5-6% of body weight. Feeding frequency should be 4-6 times and minimum of 4 times /day is highly recommended at initial stage. As, backwater is prone for bacterial load due to domestic waste accumulation, the nursery reared fingerlings should be continuously monitored and necessary medications with feeding should incorporated based on requirements. The estimated survival in this system is varied from 75-80% and more mortality is encountered during initial stage of nursery rearing, and especially more at the time of net exchange.


Coastal backwater cages

Hapa installed in coastal backwater cages

Seed stocking in coastal backwater cages

Sampling of Indian pompano seed

Fig.3: Nursery rearing of Indian pompano in hapa in coastal cages

Hapa based nursery rearing in marine cages

Cage farming technology is widely recognized as one of the most important culture technology in mariculture for increasing fish production. Different species of marine finfishes are cultured in marine cages and Indian pompano is considered as a suitable potential candidate species for marine cage culture system. Cage culture is operated in isolated locations at 1-5 km distance from the coast. Thus, seldom transportation of the bigger seed is problematic to transfer for long distance, and in this situation performing nursery rearing in marine cageitself using small hapa is preferred if conducive environmental conditions are existed in cage farm site. Similar to coastal cages, hapa of 2x2x2.5 or 3x3x2.5 or other optimum size is preferred for nursery rearing and hapa should be prepared by HDPE materials to withstand in rough weather in sea. Recommended initial seed stocking size should bigger (~ 5.0 g), as

wave action and water current are high in sea cage site. The recommended stocking density is less than 10 kg/m³ (400-500 nos/m³ till 20.0 g) and then slowly the stocking density is reduced as fingerling grow. Stocked fingerlings fed at 5-6% of body weight with minimum of 4 times/day, and floating feed is recommended. Feed mesh by mosquito mesh should be attached at water and air interface to avoid wastage of floating feed due to wave actions. While in culture, hapa should be exchanged once in a month in order to avoid blockage of water movement due to fouling in the net. Hapa installed in cage is prone for folding due to high wave action and thus use of ballast pipe in happa is preferred, which will avoid net folding due to wave action. The survival of nursery reared fingerling in this system is ranged between 70-80%.

Seed transport – Via polythene bag

Seed stocking in hapa in cage

Fig.4: Nursery rearing of Indian pompano in hapa in marine cages

Impact of different nursery rearing environments on growth

Growth performance is one of the important traits which determine long-time existence of a species in commercial culture operations. Fish growth is a complex process in which the ingested energy is converted to biomass and is regulated by genetic growth potential of the fish and several other abiotic factors provided by culture systems. Indian pompano is nursery reared in different culture systems and growth in all these systems is influenced by the different environmental factors brought by the respective culture systems. In comparison with indoor culture environments, outdoor culture system exhibit better growth due to availability of natural feed in addition to merely pelleted feed. The natural water movement also found to enhance the growth. However, outdoor systems are more prone for bacterial and other kind of infections,

which seldom reduce survival. Growth rate and feeding details in nursery rearing of Indian pompano in different culture system is given below.

Table. 1: Growth performance of Indian pompano in different nursery systems

Days	Pond	Cage	Tank	RAS	Feed Size	Frequency	Feed Weight
(DOC) Weight (g)			(mm)	(Time/day)	% of BW		
0	3.5	3.5	3.5	3.5	0.8 to 1.2	4-6	5-6
30	19.35	27.7	10.55	18.8	1.2 – 1.8	4-5	4-5
60	48.05	48.4	21.35	35.55	1.8 to 2.0	4	4
90	73.3	90.5	39.8	73.6	2.0 to 3.00	4	4
Survival (%)	80-90	70-80	85-95	80-95			

Seed transportation

It is preferred to establish the nursery raring unit near to grow-out culture site for ease of transportation. Advanced fingerlings to nursery rearing or nursery to grow-out culture system is transferred via polythene bags filled with oxygen or sintex / FRP tanks supported with oxygen. When fingerlings are to be shifted at more than 5.0g in size, preferably they should be transported via a container supported with pure oxygen for achieving maximum survival and smaller sized advanced fry of less than 1.0 gin size can be transported via polythene bags. Fingerlings transported in stressed condition (overcrowding and less dissolved oxygen) are more susceptible to bacterial infection after stocking. Thus, adequate care should be given to keep the animals under stress-free conditions. Based on the observations; the optimum fish size, stocking density and mode of transportation is given in the Table below.

Table.2: Indian pompano seed transportation – Mode of transportation in different stages

Fish Size (g)	Duration (hr)	Stocking (nos/lit)	Mode of transportation
> 0.25	24-36	50-60	Polythene bag filled with oxygen
1.0 to 2.0	15-30	20-25	Polythene bag filled with oxygen
2.0 to 5.0	12-24	10-15	Sintex tank supported with oxygen
5.0 to 15.0	12-20	5-6	Sintex tank supported with oxygen
25.0 to 30.0	12-20	2-2.5	Sintex tank supported with oxygen

Points to be considered of nursery rearing of Indian pompano

- Rearing fish larvae through the early life stages is performed in nursery, and this is the phase between hatchery and grow-out. Thus, before stocking for grow-out, cultures pecies needs to be nursed for attaining optimum stocking size.
- Nursery rearing of Indian pompano is essential in cage culture for reducing the culture duration during grow-out. Two major types of nursery systems are preferably used: Indoor and outdoor-based systems and the use of these systems depends on the nature of the grow-out culture.
- Feed used in nursery should have a high nutrient profile; 45% crude protein and 10% crude fat. Feeding frequency of 4-6 time/day at 5-8% body weight is recommended. The feeding rate varies with size of the fingerlings reared.
- Indian pompano, being a fast-moving pelagic fish, dissolved oxygen requirement is very high; therefore, during nursery, the dissolved oxygen concentration should always be above 4.5 ppm.
- With proper feeding and water quality management, expected survival in indoor tank-based cultures is 80-95%, whereas in hapa-based outdoor culture systems it is 70-85% and survival is mainly depending on the management practices.
- Fishes are very active during nursery rearing; therefore, they tend to jump to atleast 15.0 cm above the water level. Thus, water level should be at least 30.0 cm below the tank surface for avoiding fish fingerlings falling out of water. It is suggested to cover the tank surface with fish net to avoid fish jumping out of the tank.
- Vibriosis is the most common bacterial infection occurring during nursery, because of stress. Minimising stress in nursery will help to keep the fishes free from bacterial infection. Possible stressorsare: overcrowding, more waste accumulation in tank bottom, rough handling, higher water temperature and lower dissolved oxygen.

Suggested readings

Ranjan, R., Megarajan, S., Xavier, B., Chinnibabu, B., Ghosh, S., Gopalakrishnan, A. 2022. Practical manual on seed production of orange spotted grouper and Indian pompano; CMFRI, special publication number. 144, pages 72

Megarajan, S., Ranjan, R., Xavier, B., Dash, B., Ghosh, S., Gopalakrishnan, A. 2022. Good Aquaculture Practices (GAP) in sea cage farming of Indian pompano and orange spotted grouper; CMFRI, special publication number. 143, pages 71

Sea Cage Farming of Marine Finfishes: Special Emphasis on Indian Pompano

Sekar Megarajan, Joe K Kizhakudan, Relangi Durga Suresh, Relangi Prasanna Venkatesh and Dimmiti Murali Kiran

ICAR-CMFRI, Visakhapatnam Regional Centre, Pandurangapuram, Andhra University Post, Visakhapatnam - 530003

Introduction

Sea cage culture involves growing marine fishes in sea and it is one of the intensive culture methods available for fish production, which is also considered as boon for landless farmers. This technology helps to reduce mounting pressure on land for producing fish. Globally, the cage aquaculture sector has grown very rapidly during the past 20 years and is presently undergoing rapid changes in response to pressures from globalization and growing demand for aquatic products in both developing and developed countries. In India, sea cage farming was initiated as a research and demonstration activity in 2005 by Central Marine Fisheries Research Institute, Indian Council of Agriculture Research. The cage culture technology thereafter underwent several modifications, in-terms of establishment, stability under different climatic conditions and standardisation with different culture methods. Presently, sea cages manufactured using High Density Poly Ethylene (HDPE) is considered the best suited for cage frame, to withstand the diverse climatic condition across the Indian coast. In India, marine cage farming is practiced in selected locations by individual fishermen, fisheries co-operatives, and non-governmental organisations through support of state and central governments. The major fish species used for culture are Asian seabass, cobia, silver pompano, Indian pompano, orange spotted grouper and mangrove red snapper. In this chapter, sea cage-based farming technology developed for Indian pompano and Orange spotted grouper at Visakhapatnam Regional centre is detailed.

Cage site selection

Indian pompano and orange spotted grouper being a tropical species, the selected site should meet the following criteria: Water temperature: 26-30°C, water depth 6-10 m, continuous water movement for sufficient dissolved oxygen, away from polluted waters and industry run offs and finally easy accessibility with jetty facilities.

Cage structure

With an objective to have better stability against adverse climatic conditions in different sea, especially in north east coast and also to provide congenial environment for the cultured fish, the following cage specifications are recommended. Circular shaped HDPE cages of 6.0 meter dia inner collar and 8 meter dia outer collar pipes are supported by 8.0 numbers of base pipe, vertical and diagonal supports each. HDPE braided nets are suitable with following specification: Outer nets of 7.0 m dia and 4.0 m depth, 40 mm mesh of 3.0 mm twine thickness; Inner nets of 6.0 m dia and 4.5 m depth with 25.0 mm mesh. Bird net of 80 mm nylon mesh is preferred. The cage structure is stabilized in the sea with the help of mooring systems supported by 2-3 tonnes capacity cement blocks/gabion boxes/anchor systems with the help of mooring chain (long link alloy steel chain of 14 mm dia with 22 tonnes shearing strength), D-shackles and swivel. Ballast pipes help to maintain the cage structure intact in proper shape against the water movement. In order to provide sufficient space for fish movement, the inner net has to be tied with two ballast pipes at bottom and middle and outer net with single ballast pipe at the bottom.

Part -1: Cage Culture of Indian pompano (Trachinotus mookalee)

Indian pompano belonging to the family Carangidae, is a potential candidate finfish species for marine cage aquaculture. This species is mostly available in the Indian sub-continent. The fish possesses potential culture characters: quick adaptability to different culture conditions, tolerant to wide range of salinities, fast growth rate, quick acceptance to artificial feed, pleasant appearance, good meat quality and high consumer preference. Most importantly, the species readily accepts artificial pelleted feed and completes the culture cycle with artificial pelleted feed alone. Hatchery seed production technology for the species was developed in 2016 by Visakhapatnam Regional Centre of ICAR-CMFRI, and the culture technology was subsequently standardised, and demonstrated, mostly along the east coast of India. Additionally, domestic preference for the species is moderately high in different states of India. Marine cage farming for the species includes several important management aspects, and all management measures are to be meticulously performed for achieving maximum production from a unit area. The important management measures are given below.

Nursery rearing of Indian pompano

Optimum size of the fish for stocking in cage is 20 to 25g. The fish stocked at the optimum size takes nearly 10 months to attain the market size of 750-850 g. However, the culture duration could be further reduced if the bigger size (up to 100g) fish is stocked. Thus, nursery culture of Indian pompano is considered as an important aspect in cage culture for reducing the culture duration. The nursery reared fish seeds are transported to cages either in oxygen filled polythene bags or in containers supported with oxygen. The suitable transportation strategy is depending on the distance and size of the fish. The fish size above 10.0 g is recommended to shift via containers supported with pure oxygen (~10 ppm) for better survival after stocking.

Fig.1: Nursery rearing of Indian pompano in indoor tank facility

Grow-out culture of Indian pompano

After reaching the cage site, the transported juveniles should be slowly released for acclimatizing. The optimum stocking density suggested is 25 nos/m³, and thus, 6 meter cage with 4 meter net depth will have to be stocked with 2500 -2750 numbers of fish seed. Artificial floating pelleted feed with high nutrient (40% Crude Protein & 10% Crude Fat) is recommended in grow out systems. To avoid feed wastage while feeding via meshes of inner cage net, feed mesh (small mesh (1.0 mm) net) of 1.0 meter depth should be attached in the inner cage net at water and air interface. For better feed digestion and assimilation, a minimum time gap of 3.0 to 4.0 hrs, should

be given between two feeding schedules, thus the feeding frequency should be decided accordingly. In grow out culture, fish growth should be monitored fortnightly and feeding rate to be adjusted based on the weight gain after every sampling. Based on several demonstrations, if the fish fingerlings of 20 to 25g are stocked at 25 nos/m³, then it takes nearly 10 months to reach the size of 750-850g, whereas if it is stocked at 100g size, it takes 5 to 6 months to reach the same size. The fish growth and optimum feeding rate is given in the Table.1.

Table.1: Fish growth and feeding at different growth stages in grow-out

DOC	Fish Size (g)	Feed Size (mm)	Feeding Rate	Frequency (times/day)
0-30	25 -50	1.2 to 1.8	8-7%	4-5
30-120	50-100	1.8 to 3.0	6-5%	4
120-180	100-300	3.0 to 4.0	5-4%	4
180-210	300-500	4.0 to 6.0	4-3%	3
210-300	500-750	6.0 to 7.0	2.5%	3
300-360	750-1100	7.0 to 10.0	2%	2

Fig. 2: Indian pompano grow-out culture in floating marine HDPE cages

Cage management

Cage culture of Indian pompano requires culture duration of a minimum of 10 months, thus the cage structure should be managed well with net exchange, cage frame cleaning and mooring checking. The cage net is prone to barnacles, algal and silt accumulation and the rate of accumulation is depending on the season and the location. However, the net should be exchanged at least once in two months to avoid net damage. The cage frame is another structure and is prone to barnacle's accumulation. Thus, this structure requires monthly cleaning. Cage mooring helps to keep the entire cage structure in position, thus the mooring chain requires continuous monitoring, at least once in a month. The mooring system specified for the cages will remain without much of a problem for a minimum of two years, and then slowly the chain starts eroding and then, based on the conditions, the chain needs to be changed.

Fig.3: Cage management: Cleaning of cage frames

Cage-farmed fish management

The cage-cultured fish should be periodically checked for its feeding and health status by fortnight sampling. Apart from critical monitoring, daily observation while feeding is essential for understanding their feeding behaviour, which is a good indicator for the health status of the fish. The major diseases associated with marine cage farming of the fish are vibriosis by selected species of Vibrio bacteria and parasitic infestations by ectoparasites. Fish affected by vibriosis, exhibits the symptoms of moving on the water surface and eyes, fins become reddish in colour. Whereas in

parasitic infestation, a visible ulceration appears on the external surface and also parasitic attachment can be noticed on the body surface, which ultimately kills the fish. Vibriosis in fish could be controlled by the use of probiotics and medicated feeds. The parasitic infestation can be controlled by freshwater dip treatment or using medicated feed with Praziguantel.

Fig.4: cage farmed Indian pompano with parasite infestation

Fish harvest and marketing

Cage cultured fish remains in a small confined environment, so harvesting is easier than any other culture methods. While harvesting, the fishes are removed with the help of a hand scoop net. Immediately after harvest, washing in clean water and chill killing is suggested to maintain the freshness and quality of the harvested fish. Harvested fishes are packed in plastic trays or thermocole boxes by adding layers of ice at the bottom and top of the fish. The cultured fish can be harvested based on the demand, and most preferably during the lean fishing or the trawl-ban season. The most potential states for marketing the fish are Kerala, West Bengal, and selected pockets in Andhra Pradesh, Tamil Nadu, Karnataka, Maharashtra and Goa. Some of the selected buyers are Maxwell exporters, Kochin, Kerala; MATSYAFED, Kerala; West Bengal Fisheries Development Corporation, Kolkata.

Fig.5: Harvest of Indian pompano

Fig.6: Harvested Indian pompano for transportation

Economics

The total operational expenditure and profit for culture of the fish in a battery of 10 cages is given in the Table.2. Culturing the fish for 10 months at the stocking of 25/m³ will support the farmer with net profit of approximately Rs 16.9 lakhs with an average minimum price realization of Rs 325/kg at farm gate. The farm gate price varied with market demand and maximum of Rs 380/kg was realized for domestic marketing.

SI. No	Head of expenses	Cost (lakh)
1	Depreciation value on cage and accessories with an average life of 10 years for cage frame, five years for cage mooring and nets (Cost of cage and accessories including installation: INR. 300,000/unit) and depreciation is INR 43,000/unit/year	4.3
2	Cost of 32,500 numbers of pompano seeds @ INR 20/seed (including nursery rearing expenses)	6.5
3	Cost of 35.7 t of extruded pelleted feed (Survival 85%; Average Body Weight 750 g at harvest) @ FCR 1:1.70 @ INR 100/kg	35.70
4	Labour charges @ INR 30,000/ month for 10 months	3.00
5	Boat hiring and fuel charges @ INR 6000/month for 10 months	0.60
6	Charges for net exchange @ 500/person for 3 persons, five times in the production cycle for each cage	0.75
7	Miscellaneous expenditure feed medicines and probiotics	0.5
8	Expenditure: (SI no: 1-7)	51.35
9	Total income: Production of 21 tonnes @ 85% survival with harvest size of 750g at selling price of INR 325/kg	68.25
10	Net profit: (9-8)	16.90

Best Management Practices (BMP) for cage culture of Indian pompano

The following important BMP must be implemented while practicing grow-out culture in floating marine cages for better production with high economic returns.

- 1. A cage should be installed where the water movement is adequate for getting optimum concentration of dissolved oxygen and for washing away the accumulated waste generated from cultured fish
- 2. Fish fingerlings of > 30g should be stocked to obtain maximum survival

- 3. Feed mesh of 1 mm mesh size should be attached with inner cage net for avoiding feed wastage
- 4. Inner cage net should be additionally supported with a middle ballast pipe for maintaining the round shape and for avoiding net folding.
- 5. Feed should be broadcasted slowly in cages to ensure that all the fishes get the required feed and for avoiding feed wastage.
- 6. Periodical monitoring of fish, cage net and other cage system is essential.
- 7. Continuous observation for vibriosis and parasitic infestation to ensure the fishes are free from the disease, and immediate treatment of infected fishes.
- 8. Demand based fish harvest is recommended for better profit.

Suggested readings

Megarajan, S., Ranjan, R., Xavier, B., Ghosh, S., Shiva, P., Sadhu, N., Venkatesh, R.P., Joseph, I. 2021. Coastal pond farming of Indian pompano. CMFRI-100/2021

Ranjan, R., Megarajan, S., Xavier, B., Chinnibabu, B., Ghosh, S., Gopalakrishnan, A. 2022. Practical manual on seed production of orange spotted grouper and Indian pompano; CMFRI, special publication number. 144, pages 72

Megarajan, S., Ranjan, R., Xavier, B., Dash, B., Ghosh, S., Gopalakrishnan, A. 2022. Good Aquaculture Practices (GAP) in sea cage farming of Indian pompano and orange spotted grouper; CMFRI, special publication number. 143, pages 71

Coastal Cage Farming of Marine Finfish, Indian pompano

Sekar Megarajan, Jayasree Loka, Balla Vamsi, and Padmaja Rani

ICAR-CMFRI, Visakhapatnam Regional Centre, Pandurangapuram, Andhra University Post, Visakhapatnam - 530003

Introduction

Cage farming technology is widely recognized as one of the most important culture technologies in mariculture for increasing fish production. High saline estuaries are one of the unified ecosystems, considered for improving the livelihood of selected rural population. In India, huge estuarine resources are available bordering the coasts and these potentially available under-utilized high saline waters bodies, could be efficiently utilized by culturing different species of finfishes in cages installed thereof. Different species of marine finfishes can be cultured in high saline estuarine cages and Indian pompano (Trichinous mookalee), is one such suitable potential candidate species. Pompano is a preferred species for cage culture with the following characteristics; quick adaptability to different culture conditions, ease of accepting artificial pellet feed, tolerant to wide range of salinity, fast growth rate and high consumer preference. Understanding the culture characteristics of the fish, coastal cage culture technology for the species was developed and demonstrated under blue revolution scheme by Government of Indiaby ICAR-Central Marine Fisheries Research Institute. Various steps involved in cage culture of the species are explained below.

Cage site selection

Site selection is one of the most important factors for cage culture of the Indian pompano. The selected site should be free from pollutants, away from human inhabitants, with optimum water flow, and should be at least 5 km away from sea mouth. Water temperature: $26 - 30^{\circ}$, water depth: 4-10 m, continuous water movement for better dissolved oxygen content. The selected place should have easy accessibility for reaching the cage site. Optimum speed of water current during high

and the low tides is essential. If the current speed is more, then continuous force will be applied on cage mooring and net structure, and may lead to frequent shifting of cage positions. Pressure due to water current will affect the net structure, which will impact fish movement and cause stress to the fish.

Fig.1: Suitable cage site for the coastal cage based farming

Cage structure

Square shaped cages made of Galvanized Iron (GI) pipes (B-class) of 1.5-inch diameter with inner dimensions of 5.0 m long x 5.0 m wide is preferred. In cage design, the base pipes and hand rails are important, the handrail is placed at a distance of 0.8 m above the base pipes for ease of operation. Two base pipes are placed in parallel at a distance of 1.0 feet apart and working space is created with the help of wooden planks or steel plates for use during feeding and sampling. Air-filled barrels (200 lit) are attached to the cage frame for floatation, and a total of 8 such barrels are used, two each at the four sides of the cage. HDPE braided nets are suitable with outer net of 63 ply, 40 mm mesh (6 x 6 m size and 4 m depth) and 3 mm twine thickness; inner net of 63 ply, 25 mm mesh (5 x 5 m size and 4 m depth) and 3 mm twine thickness; bird's net of 80 mm nylon mesh are preferred for fish culture. The cage structure is stabilized in the water with the help of iron anchors (4 numbers; each 50 to 75.0 kg in weight). The anchors are connected to the cage with the help of 24.0 mm diameter poly propylene ropes or steel chains. As bottom in estuaries is predominantly clayey soil, use of toothed anchor is recommended to have good

firm grip on the bottom. Shape and volume of the net is maintained in the flowing water with the help of ballast pipes made of 0.5-inch diameter perforated GI pipes. Corners of the ballast pipes are blunted and wrapped with tubes for avoiding tearing off the nets due to friction associated with water movements. Ballast pipes should be directly hanged from the base pipe for ease of operation.

Fig.2: Structure of coastal cage and toothed anchors

Nursery rearing and cage stocking

Optimum size of the fish for stocking for the coastal cage based system is 20 to 25g. The fish stocked at the optimum size takes nearly 10.0 months to attain a market size of more than 750 g. However, the culture duration could be further reduced if the fish stocked are of bigger sizes. Thus, nursery culture of Indian pompano is considered as an important aspect in cage culture for reducing the culture duration. Three types of nursery systems are suitable for Indian pompano concerning cage culture: Flow-through based FRP or concrete tank culture, Recirculating Aquaculture System (RAS) based nursery systems& earthen pond-based nursery systems. These nursery facilities should be established near cage site for ease of fish transfer.

Grow-out culture

After reaching the cage site, the transported juveniles are slowly released for acclimatization. The optimum stocking density suggested is 15 nos/m³, and thus, the

cage can be stocked with 1500 numbers of fish seed. An artificial floating pelleted feed with high protein is recommended for the fish in grow-out systems. While feeding, feed should be broadcasted in the middle of the cage to avoid feed wastage due to drifting through net mesh along with wind action. Thus, to avoid feed wastage, feed mesh of 1 meter depth should be attached in the inner cage net. For better feed digestion and assimilation, a minimum time gap of 3 hrs should be given between two feeding schedules, thus the feeding frequency should be decided accordingly. Feeding frequency of four times daily is found to be good for growth of the stocked fishes and since the estuarine cages are easily accessible, at least four times daily feeding is recommended. In grow out culture, fish growth should be monitored fortnightly and feeding rate to be adjusted based on the weight. Based on several demonstrations, if the fish fingerlings of 20 to 25g are stocked at 15 nos/m³, then it takes nearly 10 months for it to reach the size of 800-850g, whereas if it is stocked at 100g size, it takes 5 months to reach the same size. Most of the estuaries are abundant in small fishes and other small marine organisms; therefore, probability of feeding on these small animals by the cultured fish is more, and resulting in better growth. The fish growth and optimum feeding rate is given in the Table. 1. Most of the estuaries are prone to floods during monsoon, thus the fish culture is possible for a maximum of 8-10 months, and hence, grow-out culture should be planned accordingly by efficient management of nursery system to achieve the complete cycle.

Table 1: Growth and feeding of Indian pompano in coastal cages

DOC	Fish Size (g)	Feed Size (mm)	Feeding Rate (%)	Feeding Frequency (time/day)
0-30	25 -50	1.2-1.8	8-6	5
30-120	50 -200	1.8-3.0	6-5	4
120-180	200-400	3.0-4.0	5-4	4
180-210	400-650	4.0-6.0	4-2.5	4
210-300	650-900	6.0-10	2.5-1.5	3

Cage structure management

Cage culture of Indian pompano requires culture duration for 10 months, thus the cage structure should be managed well and it includes net exchange, cage frame cleaning and mooring checking. The cage net is the structure which holds the fish,

Fig 3: Grow-out farming of Indian pompano in coastal cages

and is prone to barnacles, mussel seed attachment and silt accumulation. Thus the net needs to be exchanged periodically depending on the accumulation. This attachment and accumulation depends on the season and the location. Based on the experience in backwaters of Andhra Pradesh, silt accumulation is the major problem. On the other hand, in small creeks, cage nets are mostly infested and attached with green mussel seeds. Periodical cage net exchange is required in places where mussel attachment is more, whereas, in places with mostly silt accumulation,

Fig.4: Cage maintenance of coastal cages

washing of cage nets by water spray using jet pipes is sufficient and net exchange is not required. Cage mooring helps to keep the entire cage structure in position, thus the mooring chain requires continuous monitoring, at least once in a month.

Indian pompano – management in coastal cage culture system

The cage cultured fish should be periodically checked for its feeding and health status, and thus sampled fortnightly. Apart from critical monitoring, daily observation while feeding is essential for understanding their feeding behavior, which is a good indicator for the health status of the fish. The major possible health issues in estuarine cages are bacterial infections and gill choking. Bacterial infection is mostly by Vibrio species and occasionally by other bacteria, occurs during peak summer season. Hence, stocking of fish during summer should be avoided and the net depth should be maintained at least 3 to 4 m in water to avoid heat transmission to the stocked fishes. Bacterial infection in fish could be controlled by the use of medicated feeds and probiotics. Fish mortality due to gill choking by silt accumulation is another major problem and can be avoided by frequent cleaning of the cage net.

Fish harvest and marketing

Cage cultured fish remains in a small confined environment, so harvesting the fish is easier than any other culture methods. The fishes in the inner net are harvested with the help of a hand scoop net, after lifting inner net from four corners. Immediately after harvest, washing in clean water and chill killing is suggested to maintain the freshness and quality of the harvested fish. Harvested fishes are packed in plastic trays or thermocole boxes by adding layers of ice in equal quantities at the bottom and top of the fish. Apart from bulk harvest, the estuarine cages are also suitable for batch harvest, based on local market demand. Hence, required amount can be harvested daily based on demand.

The most potential states for marketing the fish are Kerala, West Bengal, and selected pockets in Andhra Pradesh, Tamil Nadu, Karnataka and Maharashtra. Some of the selected buyers are Maxwell exporters, Kochin, Kerala; MATSYAFED, Kerala; West Bengal Fisheries Development Corporation, Kolkata.

Fig.5: Fish harvest from coastal cages

Fig.6: Harvested Indian pompano from coastal cage for packing

Economics

The total operational expenditure and profit for culture of the fish in a battery of 10 cages is given in Table. 2. Culturing the fish at the stocking density of 15/m³ will support the farmer with net profit of approximately Rs 8.0 lakhs and price realization of Rs 325/kg.

SI. No.	Particulars	Cost in (INR) (lakhs)
1	Depreciation value on cage and accessories with an average life of 5 years (Cost of cage and accessories: 1,36,400/unit) and depreciation is 23,700/unit/year	2.73
2	Seed cost - 15750 nos @ Rs 15/seed (Including transportation): 1500 nos/cage and additional 5% to compensate mortalities till nursery rearing	2.36
3	Nursery rearing in hapa	0.5
4	Feed @ FCR 1:1.60; Total of 17.30 tons of feed (based on FCR and production from column 8) @ Rs 110/kg	19.03
5	Labor cost @ Rs 12,000/labor/month (12 months) (Including watch and ward)	1.44
6	Miscellaneous expenditure including electricity and feed medicines and probiotics	1.0
7	Expenditure (Sl no: 1-6)	27.06
8	Production: 10.80 tones @ 85% survival with harvest size of 850 g at selling price @ Rs 325/kg	35.1
9	Net profit: (8-9)	8.04

Best Management Practices (BMP) for backwater cage culture of Indian Pompano

The following best BMP are recommended for sustainable culture with better economic return

- Cage should be installed at a location with optimum current speed and the location should be at least 5 km away from sea.
- Fish fingerlings of > 20g should be stocked to obtain maximum survival.

- Feed mesh of 1 mm mesh size should be attached with inner cage net for avoiding feed wastage.
- Feed should be broadcasted slowly in cages to ensure its accessibility to all fishes and avoiding feed wastage.
- Periodical monitoring of fish, cage net and other cage system is essential.
- Continuous observation for vibriosis and gill chocking to ensure that the fishes are free from the disease, and immediate treatment of the infected fishes.

Suggested reading

Megarajan, S., Ranjan, R., Xavier, B., Dash, B., Ghosh, S., Gopalakrishnan, A. 2022. Good Aquaculture Practices (GAP) in sea cage farming of Indian pompano and orange-spotted grouper; CMFRI, special publication number. 143, pages 71.

Sekar, M., Ranjan, R., Xavier, B., Ghosh, S., Viji, P., Ignatius, B., Joseph, I., Gopalakrishna A. 2021. Species validation, growth, reproduction and nutritional perspective of Indian pompano, *Trachinotus mookalee*– A candidate species for diversification in coastal mariculture. Aquaculture, 545, 737212.

Coastal Pond Farming Technology: Indian pompano Culture in Earthen Pond

Sekar Megarajan, Ritesh Ranjan, Narasimhulu Sadhu and Balla Vamsi

ICAR-CMFRI, Visakhapatnam Regional Centre, Pandurangapuram, Andhra University Post, Visakhapatnam - 530003

Introduction

Indian pompano (*Trachinotus mookalee*) is a marine fish, considered to be one of the good candidate species for coastal aquaculture and suitable for species diversification. The fish found to be suitable for farming in coastal pond at variable densities. Among, different farming systems, the coastal pond farming practicecan utilize, wet and saline soils and degraded and unutilized lands. Also, the unusedcoastal ponds (shrimp) can be reused for new culture operation or in crop rotation with shrimp. Understanding the culture potential of the species, the pond culture technology was developed under the All India Network Project on Mariculture (AINP- Mariculture). The standardized package of practices for the coastal pond farming method for Indian pompano is given below. Various steps involved in the culture method are pond preparation, water treatment, nursery rearing, grow-out culture and harvesting.

Pond preparation

New pond or existing pond can be used for the farming of the species. Pond should be prepared with an average water depth of 1.5 m in the entire pond area with sufficient free board space and strong bund walls. The soils with increased seepage can use plastic linings on side bunds. When old pond is used, then the top layer of the soil containing accumulated waste has to be removed and ploughing has to be done. The preferred pHof water should be in the range of 7.5-8.5. The level of lime application during pond preparation depends on the pH of the soil. Hence, the dosage has to be calculated accordingly.

Water treatment

Water filling from direct canal or reservoir can be followed. While filling water, filter bags with less than 100 μm mesh should be used to filter the water in order to avoid the entry of weed fishes into the pond. All animalcules in the pond should be killed

by chlorination of the pond at 10 ppm. Pond fertilization can be done with either organic or inorganic fertilizers to stimulate the plankton bloom. The plankton bloom in the pond is used for conditioning and maintaining the water quality. After four days, the chlorinated water can be applied with urea (2.5 ppm) and TSP (3 ppm) to condition the pond water quality. The optimal salinity range for the better growth performance of Indian Pompano is found to be 15-35 ppt, while the fishes do tolerate a wide range of salinity from 5 to 40 ppt.

Nursery rearing

After receipt of the transported fish fry or fingerlings they are acclimatized in hapas or nursery facilities within the rearing earthern ponds or adjacent ponds without delay. It is suggested to maintain the separate nursery rearing unit for better management. Nursery rearing prior to grow-out culture is highly recommended for, better survival of stocked fry/fingerlings, proper health and feed management, better growth and to reduce cost of production of the fish in grow-out culture. If the grow-out farming operations are in larger scale/area, then separate nursery pond is recommended, whereas for small scale operation, hapa based nursery culture is ideal. The ideal hapa size for stocking of the advanced fry is $2 \times 2 \times 1.5$ to $4 \times 4 \times 1.5$ m with 0.5 to 1.0 cm mesh size, and the mesh size depends on the stocked individuals. As the fingerlings grow the hapas with bigger mesh sizes are exchanged. The installed hapa net should be attached with zero mesh size net or mosquito mesh of one feet height at water

Fig1: Nursery rearing of Indian pompano in pond based hapa system

interface for avoiding feed wastage through hapa mesh, due to wind action. Nylon net is preferred material for hapa in nursery rearing since it is softer than HDPE net, which prevent skin damage to the growing fish. The ideal stocking density of the fry in the hapa is 200 to 250 nos/m³. The fish at the nursery rearing stage accepts formulated feeds, and the feed with high nutrient content (Crude Protein 45% and Crude Fat 10%) is suggested. Feeding frequency of 4-5 times/day at 8-10% of body weight is recommended during the initial phase. The expected survival for the fish during hapa based nursery rearing is around 90-95%.

Grow-out culture of Indian pompano in coastal ponds

After reaching an optimum size of 25 to 35 g, the nursery reared fingerlings should be released to the open pond. The optimum stocking density recommended for open pond is 1 to 1.25 numbers/m², i.e., average of maximum 5000 nos/acre can be stocked for better management and optimum growth. The fish is more sensitive for dissolved oxygen, thus aerators should be installed in the four sides of open pond. The water quality in grow out culture should be maintained well by applying fertilizer periodically. Formulated pellet feed with high protein is recommended for the fish in grow out systems and thus feed with 40% crude protein and 10 % crude fat is recommended for grow-out farming. While applying feed, broadcasting feed in the feeding zone is suggested to avoid feed wastage by drifting due to wind action. Feeding zone can be created by fencing the particular area in the pond with the help

Fig. 2: -Sampling of Indian pompano in grow-out ponds

of PVC pipes or small mesh. For better feed digestion and assimilation, a minimum time gap of 3 hrs should be given between two feed intervals, thus the feeding frequency should be decided accordingly. In grow out culture, fish growth should be monitored fortnightly and feeding rate is adjusted based on the weight gain after every sampling. Based on several demonstrations, the fish fingerlings of 20 to 30 g stocked at 1 to 1.25 nos/m³, takes nearly 11-12 months to reach the size of 1000 g, and if stocked at 100g size, it takes 6 to 7 months to reach the same size.

Fig3: Feeding for Indian pompano in grow-out pond

Table. 1: Days of culture, growth and feeding in grow-out culture of Indian pompano

DOC	Size (g)	Feed Size (mm)	Feeding Rate (%)	Feeding Frequency (times/day)
0	10	1.2 & 1.8	8	4-5
30-120	50-100	1.8 & 3.0	6-5	4-5
120-180	100-300	3.0 & 4.0	5-4	4
180-210	300-500	4.0 & 6.0	4-3	4
210-300	500-750	6.0 & 7.0	3-2.5	4-3
300-360	750-1100	7.0 & 10.0	2	3

Water quality management in grow-out farming

Unlike shrimp culture, fish culture is a long duration crop and thus periodic monitoring of water quality is foremost important. One of the important critical parameters in grow-out farming of the fish is the dissolved oxygen content, and that all the time the oxygen concentration should be >4.0 ppm, and critical limit is 1.5 ppm. The range of other water quality parameters includes; Salinity: 15-35 ppt; water pH: 7.5 to 8.5; Total ammonia: <1.0 ppm, hydrogen sulphide (H_2S): <5 μ g/lit. Since, the duration of culture is longer and if the culture period exceed more than a year for any reason, the slurry from pond bottom should be periodically removed to avoid impact of hydrogen sulphidegas to the fish due to pond bottom deterioration. The fish is carnivorous, thus adequate zooplankton content, reduces the intake of formulated feed, and feeding of zooplankton and small crustacean enhances fish body colour, which eventually attract better price for the fish. The optimum zooplankton content should be 5-10 individuals/ml of water.

Fish Health

Following proper husbandry management including optimum stocking density, feeding and water management maintain the fish in good health condition. However, in the coastal pond culture system the fish are prone for bacterial infections due to different stress factors and increasing water temperature during summer month. Vibriosis is the common bacterial disease noticed in nursery phase and initial growout phase due to handling stress. This can be controlled by application of probiotics and medicated feed with approved antibiotics; Oxy tetracyclinof 2.5 to 3.0 g/kg of feed for the continuously three days is suggested when symptoms are visible.

Fish harvest and marketing

Indian pompano is a pelagic fish, and thus the harvesting could be easily performed by using drag net. Immediately after harvest, washing in clean water and chill killing is suggested to maintain the freshness and quality of harvested fish. Harvested fishes can be packed in plastic trays or thermocole boxes by adding layers of ice in equal quantities at the bottom and top of the fish. It is suggested to harvest the fish in the morning to maintain the freshness. The cultured fish can be harvested based on the market demand, and most preferably during the lean fishing periods. The most potential states for marketing the fish are Kerala, West Bengal, Goa, and selected

pockets in Andhra Pradesh, Tamil Nadu, Karnataka and Maharastra. Some of the selected buyers are Maxwell exporters, Kochi, Kerala; MATSYAFED, Kerala; West Bengal Fisheries Development Corporation, Kolkata.

Fig.4: Harvesting of Indian pompano from coastal pond

Fig. 5: Marketing of coastal pond cultured Indian pompano

Economics

The total operational expenditure and profit for culture of the fish in 1 acre water spread area is given in the table. Coastal pond farming of Indian pompano with the stocking of 5000 nos/acre for one year period will support the farmer with net profit of approximately Rs 2.25 lakhs with price realization of Rs 325/kg fish.

Table. 3: Economic analysis of Indian pompano in coastal pond

SI. No.	Particulars	Cost in (INR) (Rs.)
1	Pond preparation (Existing pond)& water treatment	40,000.00
2	Seed cost - 5000 nos @ Rs 10/seed	50,000.00
3	Seed transportation @ Rs 4/seed	20,000.00
4	Nursery rearing (Hapa& accessories)	25,000.00
5	Feed @ FCR 1:1.75, with survival 90% (Approx. 8 tonnes of feed @ Rs 110/kg)	880,000.00
6	Labour cost @ Rs 12,000/labour/month	1,20,000.00
7	Electricity	50,000.00
8	Miscellaneous expenditure	50,000.00
9	Expenditure (SI no: 1-8)	12,35,000.00
10	Production: 4500 kg @ 90% survival with selling price @ Rs 325/kg	14,62,500.00
11	Net profit : (8-9)	2, 27, 500.00

Best Management practices to be adopted for grow out culture of Indian Pompano

- 1. Fish fingerlings of > 30 g should be stocked to obtain maximum survival, and stocking bigger seed size will reduce the grow-out period to six months.
- 2. Suggested optimum stocking density should be of 5000nos/acre for good economic return.

- 3. Pond should be fertilized at every fortnight to maintain water quality and water productivity (colour). Maintaining more zooplanktons and small crustaceans in the pond will help to reduce the use of formulated feed, increase the feed conversion efficiency, and also helps in the overall improvement of the fish pigmentation offering a better price at harvest.
- 4. The fish is active and fast moving fish, oxygen consumption by the fish is very high and thus, dissolved oxygen content should be always > 4 ppm for better survival. Thus, one acre water spread area of the pond should have minimum of 4 aerators and with minimum of 8-10 hours per day, especially late evening and early morning.
- 5. Creation of feeding zone in the pond will help to conditioning the fish for feeding to a particular area, and also will reduce feed wastage by dispersal overthe entire pond area due to wind action.
- 6. Except for the first few months (3-4 months) of operation, the subsequently water exchange of 25% should be done in every month to maintain water quality. This practice may help in reducing the use of probiotics and water conditioners.

Suggested readings

Ranjan, R., Megarajan, S., Xavier, B., Ghosh, S., Santosh, B., Gopalakrishnan, A., 2018. Broodstock development, induced breeding and larval rearing of Indian pompano, *Trachinotusmookalee*, (Cuvier, 1832) – A new candidate species for aquaculture. Aquaculture 495, 550-557

Sekar, M., Ranjan, R., Xavier, B., Ghosh, S., Viji, P., Ignatius, B., Joseph, I., Gopalakrishna A. 2021. Species validation, growth, reproduction and nutritional perspective of Indian pompano, *Trachinotusmookalee*– A candidate species for diversification in coastal mariculture. Aquaculture, 545, 737212.

Megarajan, S., Ranjan, R., Xavier, B., Ghosh, S., Shiva, P., Sadhu, N., Venkatesh, R.P., Joseph, I. 2021. Coastal pond culture of Indian pompano. CMFRI-100/2021

Sekar, M., Ranjan, R., Xavier, B., Shiva, p., Ghosh, S., Ignatius, B.. 2021. Integrated cage cum pond culture of Indian pompano. Aquaculture Asia pacific. March/April-61; 1-4.

CHAPTER - 06

Application of Probiotics in Mariculture

Jayasree Loka, Sekar Megarajan, Narasimhulu Sadhu and Relangi Durga Suresh

ICAR-CMFRI, Visakhapatnam Regional Centre, Pandurangapuram, Andhra University Post, Visakhapatnam - 530003

Introduction

The global demand for the marine cage culture industry is increasing due to its role as an alternative livelihood and its contribution to protein and export value for coastal communities. Over the past two decades, mariculture has expanded significantly worldwide, accounting for 25.5% of global aquaculture production (FAO 2017). In India, the Central Marine Fisheries Research Institute has played a significant role in standardizing breeding and cage culture technologies for various marine finfish species such as cobia, silver pompano, orange-spotted grouper, Indian pompano, seabreams, rabbit fish, and john's snapper and achieved successful production in different maritime states. To ensure the sustainable growth and production of marine finfishes, it is crucial to maintain a health protocol for both the fish and the environment in all types of culture systems. Therefore, the implementation of effective health management practices is essential for the sustainable production of cage culture. Disease outbreaks pose a significant challenge in intensive culture systems, leading to a reduction in profitability in aquaculture industries. Aquatic organisms establish a strong connection with their surrounding environment, over crowing, improper feeding practices etc., thereby increasing their vulnerability to several diseases. The application of antibiotics is a common practice in aquaculture/mariculture industry to control the outbreak of diseases. The application of antibiotics as a precautionary measure has been linked to the emergence of drug-resistant aquatic pathogens when used for longer periods. Several countries have imposed restrictions on the use of specific antibiotics in aquaculture industries. As a result, the implementation of probiotics and dietary supplementation has emerged as a highly effective approach to combat pathogenic agents. This alternative method offers a range of mechanisms to counteract these agents, serving as a viable substitute for antibiotic treatment.

Probiotics in Aquaculture

Probiotics are a type of microbial supplement that contains living microorganisms. These microorganisms have beneficial effects on the host by modifying the microbial community associated with the host or its cultivation environment. They also help improve the utilization of artificial feed and enhance the nutritional value of the feed. Additionally, probiotics enhance the host's response to diseases and improve its overall vigor. The application of probiotics provides effective and sustainable methods for maintaining good water quality and increasing the biomass of natural food organisms in various culture systems. Using water and feed probiotics in hatchery tanks, as well as feed probiotics in cage culture, is considered the best preventive measure against bacterial infections. It is recommended to use probiotics in Mariculture systems, both open and closed, along with other water quality management practices, to control bacterial infections.

Advantages of probiotic application in aquaculture

Probiotic research is gaining momentum in the aquaculture sector as a means to address the potential risks associated with disease enhancement, thereby promoting the development of sustainable practices in the industry. Probiotics application in aqua/mariculture has the following advantageous: 1. enhance growth and survival rates and immunity of fish 2. Enhances nutrient utilization 3. Exhibit bacteriostatic and bactericidal activity against pathogens 4. Prevention of colonization of fish pathogens.

Major probiotic bacteria used in Mariculture

The use of probiotics in mariculture has become increasingly popular, particularly when sourced from the gut of fish. Lactic acid bacteria (LAB), Bacillus, and Streptococcus are among the most favoured bacterial candidates. Although the application of probiotics is a relatively new approach, it has garnered attention for its potential to regulate various physiological activities in aquatic organisms. Currently, several probiotics have been identified as highly effective, including Bacillus subtilis, Lactobacillus helveticus and Enterococcus faecium which have shown significant benefits. Additionally, there have been reports suggesting that Gram-negative facultative symbiotic anaerobes like Vibrio, Pseudomonas, Plesiomonas, and Aeromonas could also be potential probiotic candidates found in the gastrointestinal tract (GIT) of fish and shellfish. Apart from laboratory-based probiotics, various

experimentally approved commercial probiotics available in the market are also found effective in aquaculture.

Fig. 1: Probiotics: Commercial probiotics (Fig 1& 2); and laboratorydeveloped probiotics (Fig.3)

Screening of probiotics

The utilization of probiotics in aquaculture has been widespread due to their diverse range of biological activities. The initial and essential step in this process is the screening of probiotics, which requires a systematic and scientific approach.

The criteria for selecting probiotics consist of the following: (1) It must not cause harm to the host; (2) it should not invade into the tissues and cause tumors; (3) it should effectively reach the intended site within the host; (4) it should contain plasmids without antibiotic and virulence resistance genes; (5) it should colonize the host for a sustained period and be able to replicate; and (6) it should demonstrate efficacy in host model systems rather than just in vitro studies.

In invitro screening for potential probiotics, the inhibitory or antagonistic activity of bacteria need to be checked. In vitro screening for inhibitory substances commonly employs four methods: the double layer method, the well diffusion method, the cross-streak method, and the disc diffusion method. All of these methods are based on the same fundamental principle, where a bacterium generates an extracellular substance that can inhibit either itself or another bacterial strain.

Application of probiotics

Application of probiotics in aquaculture employs several key procedures: (1) acquiring a comprehensive understanding of the probiotic application, (2) conducting both in vivo and in vitro assessments to determine their pathogenicity, and (3) conducting a

long-term practical evaluation of the treated probiotics. Additionally, modern techniques such as ERIC-PCR, PCR-DGGE/TGGE, FISH, and 16S rRNA gene sequencing are the best molecular tools for the selection and evaluation of probiotics.

- 1. The utilization of probiotics extends beyond their role in promoting the growth of various cultivated species in aquaculture. For instance, the addition of Bacillus spp., *Enterococcus* spp. and *Pseudomonas spp.* at concentrations of 10⁷ and 10⁹ CFU/g in the diet resulted in notable weight gain in fish.
- 2. Probiotic supplementation enhances feed utilization and weight gain in cultured fish. Probiotics can stimulate feed palatability by breaking down indigestible components, producing vitamins, and detoxifying poisonous compounds in the diet. Probiotics increase fish resistance to stress caused by environmental and technological hazards. The application of beneficial bacteria provides micronutrients such as vitamins, fatty acids, and essential amino acids to support the healthy growth of cultured fish.
- 3. Microorganisms can establish themselves in the gastrointestinal tract (GIT) because they reproduce at a faster rate than they are expelled after being administered for an extended period. Probiotics are continuously introduced into fish cultures to promote health by boosting the expression of various immunological factors and by occupying physical space in the gut mucus layer, thereby reducing the presence of pathogens. Probiotic candidates also play a vital role in nutrient enhancement in the host. Enhancement of crude lipid, total protein, and body weight in fish fed with probiotics *Lactobacillus* sp. *Bacillus* spp. and *Streptococcus* spp.

Methods of probiotic application

The application of probiotics plays a crucial role in attaining goals like disease prevention and treatment. The administration can be done through feed or water, depending on several factors such as the specific probiotics utilized, the form of supplementation, the mode of administration, the dosage level, and the duration of application. These variables influence the choice of method for probiotic application.

Probiotics can be categorized into two main groups according to their mode of action. The first group is gut probiotics, which are taken orally with food to enhance the beneficial microbial flora in the gut. The second group is water probiotics, which thrive in water environments and effectively eliminate pathogenic bacteria by

consuming all the nutrients available in the specific medium, ultimately starving the harmful bacteria and eliminating them.

Oral administration

The most commonly used method involves incorporating probiotics into the feed. Probiotics can also be introduced into the tank or pond water to protect against infections. Parabiotics, on the other hand, are inactive microbial cells derived from probiotics. They contain cell components like peptidoglycans and surface proteins, offering advantages such as being available in a pure form, easy to produce and store, and having a higher likelihood of triggering specific responses through ligand-receptor interactions. Probiotics can be administered continuously or at regular intervals. Many studies have focused on continuous feeding of the host fish for varying durations, ranging from 15 to 94 days.

Application of multi-strain probiotics

The use of multiple-strain products offers the benefit of being effective against a wider range of conditions and species. It is also common to combine probiotics with prebiotics and/or plant products. Research on the application of multistrain probiotics suggests that probiotics containing *Bacillus spp.* (1x10° CFU/mL) and *Lactobacillus spp.* (1x10° CFU/mL), provided at concentrations of 0, 0.5, and 1.0 ml/l in water for 8 weeks, can enhance the growth of fish by improving the health of their gut, liver, and muscles. Numerous reports have demonstrated the positive impact of probiotics in aquaculture/mariculture, including improved fish growth performance, immune response, and resistance against certain pathogenic bacteria.

Fig.2: Indian pompano, *Trachinotus mookal*ee fed with laboratory-developed probiotics

Probiotics in improving water quality

Bacillus sp. is particularly linked to the use of probiotics in enhancing the quality of culture water. This is because Gram-positive bacteria, such as Bacillus sp., have a superior ability to convert organic matter into CO_2 compared to Gram-negative bacteria. The presence of high levels of Gram-positive bacteria, facilitated by the use of Bacillus sp., can effectively reduce the accumulation of dissolved and particulate organic carbon. Consequently, the utilization of Bacillus sp. in aquaculture systems leads to improved water quality, enhanced survival and growth rates, as well as better health conditions for cultured shrimp and fish. The utilization of commercially available water and feed probiotics in marine culture systems is highly recommended as the most effective preventive measure against bacterial infections.

Conclusion

Probiotics have garnered attention in the aquaculture/mariculture industry, prompting research efforts to investigate their utilization and potential advantages. This is due to the increasing demand for probiotics in the aquaculture of animals. Investigations should focus on screening host-specific probiotic strains from aquaculture-rearing systems to effectively manage their quality and functional properties. Although probiotic bacteria provide numerous advantages to the host, there exist certain restrictions that need to be addressed. For instance, the antimicrobial compounds or bacteriocins produced by probiotic candidates against pathogenic bacteria are not specific to particular species. To increase the efficiency of probiotic bacteria, it is imperative to prioritize strain improvement. In conclusion, the application of single or multistrain probiotic bacteria plays a great role in the sustainable production of disease-resistant fish in cage culture or any kind of other mariculture systems.

Suggest reading

Loka, J., Ghosh, S., Ranjan, R., Xavier, B., Megarajan, S., Sadu, N., Shiva, P., Gopalkrishnan, A. 2022. Potential of laboratory-developed marine bacterial consortium as antibacterial and growth promoting agent in mariculture. Marine Fisheries Information Service Technical & Extension Series . 252; 15.

Loka, J., Sonali, S.M., Saha, P., Devarajan, K., Philiphose, K.K. 2016. Use of commercial probiotics for the improvement of water quality and rotifer density in outdoor mass culture tanks. Indian J. Fish., 63(4): 145-149, 2016

CHAPTER - 07

Economic Analysis of Indian Pompano -A case study of cage culture in back waters

S. S. Raju, Sekar Megarajan and Ravi K. Avadhanula

ICAR-CMFRI, Visakhapatnam Regional Centre, Pandurangapuram, Andhra University Post, Visakhapatnam - 530003

Introduction

In view of the opportunities for increasing aquaculture production in India, cage culture offers the fishermen and entrepreneurs with the scope to position themarine resources for a productive use. Rational use of resources by application of mariculture practices can ensure food and nutritional security, increased employment opportunities and improved socio-economic conditions of the fishermen. However, the adoption of any new technology depends upon its economic performance. The rate of return per rupee invested is the economic indicator that guides the investor to invest in the particular activity (Narayana Kumar, 2009 and Riteshet al., 2014). In this connection, we evaluated the economic performance of cage culture for Indian Pompano (*Trachinotusmookalee*) in back waters of Krishna district of Andhra Pradesh.

Materials and Methods

The economic performance of setting up of cage culture in back waters is worked out by calculating the annual fixed cost, variable cost, and return in terms of harvest from cage and revenue generated from these sales. Fixed costs are costs that are independent of the level of production and have to be paid whether or not production occurs in a particular year. An expenditure on a resource whose quantity is not varied during the production period is a fixed cost. This includes cage frame, nets, chains, ballast, floats, bouys, mild steel anchors, woodenplat form and fabrication and installation charges. Generally fixed costs are spread out over the expected life of the production input involved. This allows the producer to consider the long-term view of profitability. The variable costs are costs that are dependent on the level of production and have to be paid for every cycle of culture such as cost of fish seed, feed, labour wages, watch & ward and regular maintenance charges. Returns from

cage culture is the revenue realized from sale of harvest (Total Production in Kg x Price in Rs/Kg). Using the costs and returns figures, the following economic indicators are estimated to test the economic viability and financial feasibility of cage culture in back waters.

Table 1: Indicators of Economic Performance of Cage culture in back waters

S.No.	Economic Indicators
1	Initial investment of the Galvanised Iron (G.I) cage (Rs.)
2	Fixed Cost (Rs.) a) Depreciation b) Interest on fixed capital @ 7 % per annum.
3	Variable Costs (Rs.) a) Cost of seed b) Cost of feed c) Labour charges d) Watch and ward charges e) Other Maintenance charges
4	Total cost of production (Rs.) (2 + 3)
5	Total Production of Fish (Kg)
6	Gross revenue (Rs.) (5 * price per kg)
7	Net operating income (Rs.) (6-3)
8	Net income / profit (Rs.) (6-4)
9	Cost of production (Rs. /Kg) (4 /5)
10	Price realized (Rs. /Kg) (6/5)
11	Capital productivity / operating ratio (3/6)
12	Rate of return to capital (%) ((8/1) *100)

The different economic indicators of the economic performance of Galvanised Iron (G.I) cage culture is worked out to assess their performance in Table 1. This will serve

as the guidelines to the institutional agencies that are extending the financial support to the G.I. cage culture.

Results and Discussion

The detailed economic analysis of the All-India Network Project - SCSPexperimental cage practice demonstrated in Nagayalanka, Krishna district of Andhra Pradesh is given below to indicate how the economic analysis of a cage culture is done in back waters.

Table 2: Initial Investment of G.I Cage Culture of 5 M x 5 M

S. No.	Items	Investment (Rs.)	% to total investment	Economic Life in Years	Depreciation / annum (Rs.)
1	G.I Cage frame	42,000	30.79	6	7,000
2	Nets	30,000	21.99	6	5,000
3	G.I Chains	9,000	6.60	10	900
4	Shackles	1,800	1.32	6	300
5	Mild Steel Anchors	7,000	5.13	10	700
6	Bouys, Painting and Labour charges	12,600	9.24	3	4,200
7	Inner and Outer Ballasts	15,000	11.00	10	1,500
8	Wooden plat form	3,000	2.20	3	1,000
9	Nuts, bolts and others	2,000			1.47
10	Cage Fabrication and Installation Charges	14,000	10.26		
Total Initial Investment		1,36,400	100	20,600	

Table 3: Details of Annual Fixed Cost of G.I Cage Culture

S.No	Details	Amount (Rs.)	% to total fixed cost
1	Depreciation	20,600	68.33
2	Interest on Fixed Capital (7 % of initial investment)	9,548	31.67
Total Fixed Cost		30,148	100

Table 4: Details of Variable Cost of G.I. Cage Culture (for a crop duration of eight months)

S.No	Details	Cost (Rs.)	% to total variable cost
1	Seed cost	14,600	7.55
2	Feed Cost	1,37,700	71.24
3	Labour Charges	12,000	6.21
4	Watch and ward Charges	24,000	12.42
5	Other Maintainenace Charges	5,000	2.59
Total \	/ariable Cost	1,93,300	100

Table 5:Economic Indicators of the G.I Cage culture of Indian Pompano in Back Waters

S.No	Details	Amount (Rs.)
1	Annual Fixed Cost	30,148
2	Variable cost	1,93,300
3	Total Cost of Production	2,23,448
4	Gross Revenue	2,97,000
5	Net Income (Profit)	73,552
6	Net Operating Income	1,03,700
7	Cost of Production (Rs. /Kg)	248.28
8	Price Realized (Rs. /Kg)	330
9	Capital Productivity / Operating Ratio	0.65
10	Annual Rate of Return to Capital (%)	53.92

The initial investment for a 5 m x 5 m Galvanized Iron (G.I) Cage worked out to Rs. 1,36,400 (Table 2). The G.I cage frame accounted for the maximum share of investment (31%) followed by nets (22%), ballasts (11%), cage fabrication and installation charges (10%), bouys (9%), chains (7%), anchors (5%)and others (5%). The annual fixed cost for the G.I cage was calculated at Rs.30, 148 (Table 3). The operational costs for the culture period of eight months worked out to Rs. 1, 93,300. Feed cost alone accounted 71 per cent of the total operating cost (Table 4). Thus, the total cost of production to the fishermen worked out to Rs. 2, 23,448. The culture of Indian Pompano produced 900 kg during the harvest at the end of eight months, thus earning gross revenue of Rs.2, 97,000 to the fishermen. The culture of Indian Pompono earned a net operating income of Rs. 1, 10,800 at the end of eight months and a net profit of Rs. 73,552 at the end of the same period. The cost of production per kg of Indian Pompano worked out to Rs. 248.28 against the price realization of Rs.330 per kg. The capital productivity measured through operating ratio worked out to 0.65(Table 5). These economic parameters indicate that this open sea G.I cage culture of Indian Pompano in high back saline waters is economically viable.

Financial assistance for open sea cage culture in India

The National Fisheries Development Board (NFDB), Hyderabad is the primary funding agency for sea cage culture in India. NFDB has a scheme on mariculture aimed at increasing the marine fish production of the country. A principal component of this scheme is open sea cage culture and its popularization among fishermen of India. NFDB will provide financial assistance for setting up of a sea cage for mariculture as well as for model cage culture demonstration to traditional fishermen. The eligibility criteria for assistance for setting up of sea cage culture are:

- Entrepreneurs/companies with a previous record of undertaking large-scale aquaculture operations and having on-shore facilities for seed rearing.
- Sea going fishermen groups who will operate the scheme through Fisheries federations/corporations.
- Availability of necessary Clearances for undertaking the cage culture activity in the coastal areas.
- Commitment of state fisheries federation/corporation, entrepreneur to bear the cost less of NFDB subsidy.

The entrepreneurs / companies willing to set up open sea cage culture in a big way shall be supported by NFDB through equity participation @ 20% of the investment.

Proposal for setting up of open sea cage culture should be submitted in form which should be filled by the applicant and counter-signed by the Implementing Agency. Funds will be released in two equal installments by NFDB. The first installment will be released after approval of proposal and after applicant has utilized 50 per cent of his/her investment in the open sea cage culture. The second installment will be released after the applicant utilizes his/her remaining 50 per cent investment in the venture and also after receipt of the Utilization Certificate (U.C) regarding this first installment of NFDB fund from the Implementing Agency. All subsidy installments will be deposited to the applicant's bank account only. U.C should be submitted in on half-yearly basis i.e., during January and July of each year. The project monitoring committee of NFDB periodically reviews the progress of the activities like physical, financial and production targets.

Conclusion

It is seen from the above results that the economic analysis of the cage culture in back waters has worked out successfully with higher net operating income and net income in a crop period of eight months. It is to be noted that once the practice is further expanded to many cages, farms and areas, the cost will decline due to economies of scale of operation. Thus, it could be concluded that the cage farming in back waters is a viable alternative and economically & financially feasible mariculture operation for the stake holders to make use of. The Department of Fisheries, Ministry of Fisheries, Animal Husbandry and Dairying, Government of India, New Delhi; Andhra Pradesh State Fisheries Department, Vijayawada and the Developmental organisations like National Fisheries Development Board, Hyderabad can promote the concept of cage culture on a large scale with their institutional and financial support availing the technical expertise developed at ICAR-Central Marine Fisheries Institute.

References

Narayanakumar, R (2009). Economic analysis of cage culture of sea bass. In: Course manual: National training on cage culture of seabass. Imelda, Joseph and Joseph, V Edwin and Susmitha, V(eds.) CMFRI & NFDB, Kochi, pp. 120-122.

Raju, S. S, MukthaMenon and PhalguniPattnaik (2016). *Economics and Policies for open sea cage culture in Andhra Pradesh*. In: Training manual on Cage Culture of Marine Finfishes, SekarMegarajan, RiteshRanjhan, Biji Xavier & Shubhadeep Ghosh (eds.) VRC of CMFRI, Visakhapatnam, pp. 68-93.

RitishRanjhan, MukthaMenon, Loveson Edward and Biswajit Dash (2014). *Economics of open sea floating sea cage culture of finfishes*. In: Training manual: Cage Culture of Marine Fisheries, VRC of CMFRI, Visakhapatnam. pp 41-44.

అధ్యాయం - 01

చందువ/మూకుడు పార చేపల యొక్క విత్తనోతృత్తి

రితేష్ రంజన్, బిజి జేవియర్, చిన్నిబాబు బత్తిన, రవి కుమార్ అవధానుల మరియు దామోదరరావు పదుము

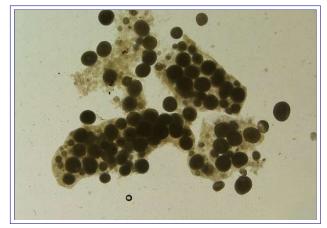
ICAR-CMFRI, విశాఖపట్నం ప్రాంతీయ కేంద్రం, పాండురంగపురం, ఆంధ్రా యూనివర్సిటీ పోస్ట్, విశాఖపట్నం - 530003

ත්රාර (Introduction)

విస్తారమైన 8129 కి.మీ. తీరప్రాంతం, 0.5 మిలియన్ల చదరపు కిలోమీటర్ల ఖందాంతర షెల్ఫ్ ప్రాంతంతో 2.2మిలియన్ చదరపు కిలోమీటర్ల ప్రత్యేక ఆర్థిక మందలి (EEZ), 1.2 మిలియన్ హెక్టార్లల లవణ ప్రభావిత ప్రదేశాలు మరియు 3.9 మిలియన్ హెక్టార్ల నదీముఖ్ ప్రాంతాలతో భారతదేశపు మత్స్యసంపద మరియు తీరప్రాంత వనరులు అలరారుతున్నాయి. అయినప్పటికీ భారతదేశం మత్స్యరంగపరంగా ఇంకా బాల్య దశలోనే ఉంది. తీర్వపాంతాలలో చేసే సాగు కేవలం ఒకేఒక్క జాతికి సంబంధించిన రొయ్యజాతులతోనే పరిమితమయ్యి, హెచ్చుతగ్గులకు లోనవుతూ వరుసగా వైఫల్యాలు చూస్తోంది. పంటల మార్పిడి లేదా విభిన్నమైన జాతులతో చేసే సాగు వల్ల రొయ్యల వ్యవస్థకు కొంత మేలు కలిగే అవకాశం ఉన్నా, దానికి వివిధ జాతుల చేపపిల్లల లభ్యత ఒక ముఖ్యమైన అంశంగా వ్యవహరిస్తోంది. దీనికై ఇండియన్ పొంపానో –ట్రాకినోటస్ ముకాలీ (మూకుడు పార) యొక్క విత్తనోత్పత్తి మరియు చేపపిల్లల పెంపకపు సాంకేతికతలు ICAR కు చెందిన కేంద్ర సముద్ర మత్స్య పరిశోధనా సంస్థ (CMFRI) యొక్క విశాఖపట్నం ప్రాంతీయ కేంద్రం ద్వారా జరుపబడింది. పశ్చిమ భారత మహాసముద్రంలోనూ, గల్ఫ్ ఆఫ్ ఒమన్ నుండి తూర్పు వైపు (శీలంక వరకు వ్యాప్తి చెంది, సింగపూరు, గల్ఫ్ అఫ్ థాయిలాండ్, హాంగ్ కాంగ్ వరకు వ్యాపించి ఉంది. భారతదేశంలో తూర్పు పశ్చిమ తీర్మపాంతాలలో ఇది లభిస్తుంది. పొంపానో చేపలను సాగు చేసేందుకు ఈ జాతికి కలిగిన విశిష్ట లక్షణాలు – విభిన్న పరిస్థితులకు తదనుగుణంగా ఎదగడం, కృతిమ ఫీదుకు తొందరగా అలవాటు పడడం, విస్తృత స్థాయిల లవణీయతల (5–35 g/L) మార్పులను తట్టుకోవడం, సత్వర అభివృద్ధి రేటు మరియు వినియోగదారు యొక్క అధిక ప్రాధాన్యత. దీనిని పంజరాలలో (కేజులలో) లేదా చేపల చెరువులలో కూడా సాగు చేసుకోవచ్చు.

బ్రూడ్ స్టాక్ అభివృద్ధి మరియు అండ విడుదల (Broodstock Development and Spawning)

ఇండియన్ పొంపానో (మూకుడు పార) చేపల యొక్క కల్చర్ పద్ధతులు, బ్రూడ్ స్టాక్ అభివృద్ధి మరియు విత్తనోత్పత్తి పద్ధతులను మొట్టమొదటిసారిగా ఇండియన్ కౌన్సిల్ ఆఫ్ అగ్రికల్చర్ రీసెర్చ్ (ICAR) కు చెందిన కేంద్ర సముద్ర మత్స్య పరిశోధనా సంస్థ (సెంట్రల్ మెరైన్ ఫిషరీస్ రీసెర్చ్

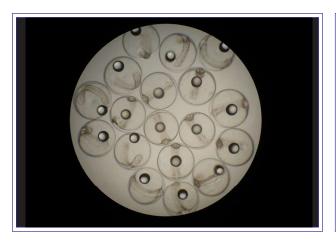


ఇన్నిట్యూట్ CMFRI) యొక్క విశాఖపట్నం ప్రాంతీయ కేంద్రం విజయవంతంగా అభివృద్ధి చేసింది.

వాణిజ్యపరమైన చేపలవేట ద్వారా పట్టబడ్డ తల్లి చేపలను (>2 Kg) రిసర్మ్యులేటరీ ఆక్వాకల్చర్ సిస్టం (RAS) ట్యాంకులలో $1 \, \text{Kg/m}^3$ స్టాకింగ్ డెన్సిటీలో ప్రవేశపెదతారు. ఈ వృత్తాకారపు RAS ట్యాంకులను ఘనపదార్ధాలని తొలగించే రాపిడ్ సాండ్ ఫిల్టర్ (RSF) , కరిగిన పదార్ధాలని తొలగించే ప్రోటీన్ స్కిమ్మర్ మరియు జీవరసాయన వృర్ధాలని వడబోసే బయోలాజికల్ ఫిల్టర్ లాంటి RAS విభాగాలతో జతచేస్తారు. ట్యాంకు యొక్క మొత్తం నీటి ప్రవాహం దాదాపుగా రోజుకు 300% పునరావృతం అవుతుంది. ప్రోటీన్ స్కిమ్మర్ మరియు RSF ద్వారా వృధా అయిన నీటి మొత్తాన్ని రోజుకి 3% చొప్పున భర్తీ చేస్తారు.

ఈ తల్లి చేపలకి ట్రతిరోజూ స్మ్రిడ్ ఆయిల్ తో జతచెయ్యబడిన స్మ్విడ్ను మరియు విటమిన్ – ఖనిజాల కలగలసిన మేతను అవి తిన్నంత మేరకు ఇవ్వాలి. చేపలను గుర్తించడానికై పాసివ్ ఇంటిగ్రేటెడ్ ట్రాన్స్ పాండర్ (PIT) ట్యాగింగ్ పద్ధతిని ఉపయోగిస్తారు. 4 నెలల తరువాత ట్రత్యుత్పత్తి వ్యవస్థ అభివృద్ధి చెందిన తల్లిచేపల యొక్క అండం పరిమాణం 450 – 550 μm m ఉంటుంది. అండాల విడుదలని సహజంగా లేదా కృత్రిమంగా (హార్మోన్ ద్వారా) జరిపించవచ్చు. అండాలు 500 μm పరిమాణం చేరుకున్నాక శరీర బరువుకు 350 IU/Kg మోతాదులో hCG (హ్యూమన్ కొరియోనిక్ గొనడోట్రోపిన్) హార్మోనును ఆడ మరియు మగ చేపలకు PIT టాగింగ్ ద్వారా అందిస్తారు. ఇంజక్షన్ చేసిన 36 – 38 గంటల సమయం తరువాత అండ విడుదల జరుగుతుంది. ట్రతి సారీ 0.6 నుండి 1.5 లక్షల దాకా గుడ్లను విడుదల చేస్తాయి.

బూడ్స్టాక్ ట్యాంక్ నుండి గుడ్లను ఉపరితల నీటిని పైపులద్వారా 500 మైక్రోమీటర్ల హపాను అమర్చిన ఒక తొట్టెలోకి పంపించడం ద్వారా సేకరిస్తారు. తదుపరి 20 పీపీఎమ్ అయోడిన్ ద్రావణంలో, బలమైన ఏరేషన్ తో 10 నిమిషాల పాటు ఉంచి ఈ గుడ్లను శుభ్రం చేస్తారు. 100 లీటర్ల అక్వెరియంలో లీటరుకు 200 గుడ్ల చొప్పున వీటిని స్టాక్ చేసి, రెండు గంటల తరువాత అడుగుభాగాన స్థిరపడిన గుడ్లను తొలగిస్తారు. ఫలదీకరణం జరిగిన 20 – 22 గంటల తరువాత, మందపాటి వాయుకుసరణ



కలిగి $28 - 30^{\circ}$ C ఉష్ణోగ్రత, 30 - 32 పీపీటీ లవణీయత దగ్గర గుడ్లు పొదగడం మొదలవుతుంది. కొత్తగా పొదిగిన చేపపిల్లలు పారదర్శకంగా ఉండి నీటి ఉపరితలంపై స్వేచ్ఛగా తిరుగుతూ ఉంటాయి.

సగటు ఫలదీకరణం రేటు 69+1.55 వరకు ఉంటూ హాచింగ్ రేటు 87.67+0.81% వరకు ఉంటుంది. తదుపరి అండ విడుదల తిరిగి 35 నుండి 40 రోజుల వ్యవధిలో RAS లో నమోదుచేయబడింది.

కొత్తగా పొదగబడిన చేపపిల్ల దాదాపుగా 2.1 - 2.2 మి.మీ. పొడపు కలిగి ఉంటుంది. 42 - 46 గంటల తరువాత దాని నోరు తెరుచుకుంటుంది. హాచింగ్ ట్యాంక్ నుండి సేకరించబడ్డ చేపపిల్లలను లార్వా ట్యాంకులలో 10 / L చొప్పున ప్రవేశపెట్టాలి. ఈ ట్యాంకుల యొక్క కనీసం నీటి లోతు 80 సెం.మీ. దాకా ఉంటూ, గ్రీన్ వాటర్ టెక్నిక్ ను అమలు పరుస్తారు.

 2^{nd} DPH నుండి రోటీఫర్లు, కోపీపోడ్ నాప్లియైలను 10-20 /mL సంఖ్యలో అందిస్తారు. అర్తేమియా నాప్లియైలను 9వ DPH నుండి అందించి, కృత్రిమ దాణాను 15 వ రోజునుండి చేపపిల్లలకు అలవాటు చేస్తారు. లార్వా యొక్క రూపాంతర ప్రక్రియ 17 వ రోజునుండి 22 వ రోజువరకు కొనసాగుతుంది.

రూపాంతరం చెందిన చేపపిల్లలు 16 నుండి 17 మి.మీ. పరిమాణంలో ఉంటాయి. 25 నుండి 30 రోజుల తరువాత వీటిని నర్సరీ పెంపకం ట్యాంకులకు బదిలీ చెయ్యాలి. లార్వా పెంపకంలో సగటు మనుగడ రేటు 12%గా ఈ మూకుడు పార చేవవిల్లలకు నమోదుచేయబడింది. 2 నుండి 8 వ రోజు వరకు ఈ ట్యాంకులకు 1000 లక్స్ కలిగిన కాంతి తీడ్రతను అందిస్తూ క్రమేపి సహజ కాంతి అదే విధంగా అమర్చాలి. ఆహార పరిమాణాలు మరియు నీటి పరిమితులను నిర్వహించే పట్టిక ఈ క్రింద ఇవ్వబడింది.

Days after hatching	0 1	2 3	4 5	6 7	8 9	10 1	1 12	13 14	15 1	6 17	18	19 20	21	22 2	3 24	1 25
Feed management																
Microalgae (10 ⁵ /ml)				22 .00	20 200					7/4	60 - 80 60 - 80	85	32 3		180	74
Copepod Nauplii (2 nos/ml)																
Rotifers (<100 µm) (10-15 nos/ml)			W (e)	37 77	01 000		100	63 - 63 h 67 - 53 E	3 98	70	8 - 80 8 - 80	85	467 - 53 352 - 53			20
Rotifers (15-25 nos./ml)																
Artemia (1-2 nos./ml)	355 0	- 23	\$0.08					- 25	7912 1512	7	80 80		687 - 53		100	2
Artificial diet	600-0 600-8			10 10	60 800 80 800					30.	(2 - SA)	**	30 V		755	W.
Water management																
Siphoning	8666 - 15 02.00 - 0			10 10	30 000		30	C 0,	12 11	40.	08 - 63	20	, L .		444	40.
Water exchange																
~ 10 %/day	000 - 0				2 00			0 X	3 38	25	8 96 8 20	8	30 - 33 10 - 6	9 3	38	8
~ 20 %/day																
~ 50 %/ day									333							
~ 100 %/day	K63 6		85 78	12 10	KK (KA)				2 1							

ລັຽ_ລໍຽ໌ ລັດລິຮັດ (Nursery Rearing)

విభిన్నమైన ఆహారాలు, కల్చర్ పద్దతుల ప్రయోగాల ఆధారంగా ఇండియన్ పంపానో చేపల యొక్క నర్సరీ పెంపకపు పద్ధతిని ప్రమాణీకరించడం జరిగింది. చేపల చెరువులో హాపా, సిమెంట్ ట్యాంకులు మరియు RAS లాంటి వివిధ పద్ధతులలో నర్సరీ పెంపకం చెయ్యబడింది. పెల్లెట్ ఫీడ్ లో 45% ప్రోటీన్ మరియు 10% కొవ్వు పదార్ధాలు ఉంటూ చేపపిల్లయొక్క శరీర బరువుకు 10% దాణాను రోజుకు 3 నుండి 4 సార్లు ఇవ్వడం జరిగింది.

కల్చర్ వ్యవస్థను ఆధారం చేసుకుని స్టాకింగ్ డెన్సిటీ ఒక క్యూబిక్ మీటరుకు 300 – 1000 చేపపిల్లలుగా ప్రమాణీకరించారు. ఈ చేపపిల్లలు 2 నెలల వ్యవధిలో 20 – 25 గ్రాములు సంతరించుకున్నాక, గ్రో అవుట్ కల్చర్ పద్ధతులు మొదలుపెట్టవచ్చు.

అభివృద్ధి చెందిన చేపపిల్లలని $(15-20\ \text{(m.)})$ పంజరాలలో $30/\text{m}^3$ స్టాకింగ్ డెన్సిటీలో వేసి 40-45% ట్రోటీన్ కలిగిన కృత్రిమ దాణాని అందిస్తూ సాగు చేస్తారు. $15-20\ \text{(m.)}$ పరిమాణం ఉన్న చేపపిల్ల క్రమేపి $120-130\ \text{(m.)}$ బరువుకు (126 ± 3.17) మూడు నెలల్లో చేరుకుని, 9 నెలలకి 969.9 ± 67.5 (m) గాముల పరిమాణానికి పెరుగుతుంది. FCR (Feed Conversion Ratio) నిష్పత్తి 1:1.7%-%1:1.9 గా ఉంటుంది. ఈ కల్చరు యొక్క ఉత్పత్తి విలువ Rs. $190\ \text{/Kg}$ ఉంటూ విక్రయ ధర Rs. $300\ \text{/Kg}$ వరకు ఉంటుంది.

అధ్యాయం - 02

విభిన్నసాగు వ్యవస్థలలో చందువ/మూకుడు పార చేప పిల్లల నర్నరీ పెంపకం

శేకర్ మేగరాజన్, బిజి జేవియర్, దామోదరరావు పదుము, చిన్నిబాబు బత్తిన మరియు దిమ్మిటి మురళీ కిరణ్

ICAR-CMFRI, విశాఖపట్నం ప్రాంతీయ కేంద్రం, పాండురంగపురం, ఆంధ్రా యూనివర్సిటీ పోస్ట్, విశాఖపట్నం - 530003

ൎ൙ൎ൞ൕഁൎ

తీరప్రాంతాలలో ఆహార చేపల ఉత్పత్తి ఆక్వాకల్చర్ రంగంలో అభివృద్ధి చెందుతున్న అంశం. దీనిని ప్రధానంగా సముద్రం మరియు తీర్రప్రాంత చెరువులలో నిర్వహిస్తారు. 2018 సంవత్సరంలో మారికల్చర్ మరియు తీర్వపాంతాలలో జరుపబడిన సాగు కార్యకలాపాలు సమిష్టిగా 30.8 మిలియన్ టన్నుల (USD 106.5 బిలియన్) జలరాశులను ఉత్పత్తి చేశాయి. అందులో ప్రధానంగా సముద్ర పంజరాలు, తీర్మపాంత పంజరాలు మరియు తీర్మపాంత చెరువుల నుండి ఉత్పత్తులు వచ్చాయి. వినూత్నమైన ఇంటెన్సివ్ కల్చర్ పద్దతుల ద్వారా సముద్ర ఆహార చేపల ఉత్పత్తిని పెంచడం వల్ల సముద్రం లేదా హేచరీ నుండి ఉత్పత్తి చేసే పిల్లచేపలకు గిరాకీ పెరిగింది. ఈ సందర్భంలో మెరుగైన మనుగడ మరియు వేగవంతమైన పెరుగుదల కోసం గ్రో –అవుట్ కల్చర్లలో తగినంత సంఖ్యలో చేపపిల్లలను సరఫరా చేయడంలో నర్సరీ రేరింగ్ ముఖ్యమైన పాత్ర పోషిస్తుంది. లార్వా ట్యాంకుల నుండి సేకరించిన రూపాంతరం చెందిన చేపపిల్లలు గ్రో-అవుట్ ప్రదేశాలలో పెంపకానికి తగినంత బలంగా ఉండవు. అందువల్ల నర్సరీ పెంపకం ద్వారా చేపలని తగిన పరిమాణం వచ్చేవరకు పెంచి తరువాత (గో-అవుట్ కల్చర్ వ్యవస్థలకు బదిలీ చెయ్యడం ఎంతో ముఖ్యం. దీని వల్ల ఆరోగ్యకరమైన పిల్లలు, మంచి పెరుగుదల ఇంకా మెరుగైన ఆర్థిక రాబడి వస్తాయి. అందువల్ల, [గో-అవుట్ వ్యవస్థలో మెరుగైన ఉత్పత్తిని సాధించదానికి ఆరోగ్యకరమైన మరియు వ్యాధి రహిత చేపల న్టాక్ను నిర్వర్తించడం ప్రాముఖ్యత సంతరించుకుంది. నర్సరీ పెంపకంలో పెద్ద సంఖ్యలో చేప పిల్లలను తక్కువ ప్రాంతంలోనే సమర్ధవంతంగా నిర్వహించడానికి మెరుగైన అవకాశం దొరుకుతుంది. వీటి పద్ధతులను ఇండోర్ మరియు అవుట్డోర్ అనే రెండు వర్గాలుగా విభజించారు. ఇక్కడ ఇండోర్ ఆధారిత వ్యవస్థని FRP (ఫైబర్ రీన్ఫోర్న్ ప్లాస్టిక్) / కాం(కీట్ ట్యాంకులలో ఫ్లో –త్రూ లేదా రీసర్మ్ములేషన్ ఆధారిత విభాగాల ద్వారా నిర్వహిస్తారు. చెరువులు, తీరప్రాంత పంజరాలు (కేజులు) మరియు సముద్ర ప్రాంతంలో నిర్మించిన హాపాలో అవుట్–డోర్ వ్యవస్థలను నిర్వహిస్తారు. ప్రతి వ్యవస్థకు ఒక్కొక్క ప్రయోజనం ఉన్నా, ఏ వ్యవస్థలో చేస్తున్నాం అనేది మాత్రం చేపపిల్ల పరిమాణం మరియు జాతి మీద ఆధారపడుతుంది. దీని ప్రకారం గ్రో –అవుట్ వ్యవస్థ జరుపబడుతుంది.

ఇండోర్ అధారిత నర్సరీ పెంపకపు వ్యవస్థలు (Indoor based nursery rearing systems) ఫ్లో–త్రూ ఆధారిత నర్సరీ వ్యవస్థ (Flow-through based nursery system)

ఖ్లో–త్రూ ఆధారిత నర్సరీ పెంపకం అనేది తక్కువ సాంద్రతతో తరచుగా చేసే పద్ధతి. దీనిని FRP లేదా కాంక్రీట్ సిమెంట్ ట్యాంకులలో నిర్వహిస్తారు. ఈ వ్యవస్థలో ట్యాంక్లలో ఒకసారి నీటిని నింపి, ఆ తర్వాత మల పదార్థాలు,

తినగా మిగిలిపోయిన మేతతో ఉన్న అదే నీటిని ట్రీట్మెంట్ చేయకుండా విడుదల చేస్తారు. లార్వా పెంపకం అనంతరం ఉండే ప్రారంభ దశకు చెందిన పిల్లలకి ఈ వ్యవస్థ అనుకూలంగా ఉంటుంది. ఈ వ్యవస్థలో $\,1\,$ మీటరు నీటి లోతు ఉన్నటువంటి 1 extstyle 1 extstyle 1 extstyle 3 extstyle 1 eచేయబడుతుంది. రోజువారీ కార్యకలాపాలు సజావుగా జరగదానికి ట్యాంక్ రంగు ముఖ్యమైన పాత్ర పోషిస్తుంది. లేత నీలం రంగు వల్ల ట్యాంకు అడుగున పేరుకున్న పదార్దాలతో పాటూ, చేపపిల్ల యొక్క దృష్టి కూడా సవ్యంగా కనిపించడం కారణంగా ఈ రంగు ఉపయోగకరంగా ఉంటుంది. మృదువైన ట్యాంక్ ఉపరితలం కోసం కాంక్రీట్ ట్యాంక్ పైభాగాన విషరహితమైన ఎపాక్సీ పెయింట్తో పూత పూయాలి. చందువ పార లార్వా (1.5 - 2.5)సెం.మీ. పొడవుతో (~0.2 గ్రా. పరిమాణంతో) 35–45 రోజుల తర్వాత ప్రారంభ దశను సంతరించుకుంటుంది. ఈ దశలో దీనిని నర్సరీ సౌకర్యాల ద్వారా ఇండోర్ ఆధారిత ఫ్లో--త్రూ వ్యవస్థలకు బదిలీ చేసి మెరుగైన మనుగడను సాధించవచ్చు. ఒక నెలరోజుల తరువాత ఇవి దాదాపు 2.5 నుండి 3.5 గ్రాముల పరిమాణానికి చేరుకున్నాక వీటిని అవుట్–డోర్ నర్సరీ వ్యవస్థలకు మార్చవచ్చు. హేచరీ కాంప్లెక్స్ సమీపంలోనే నర్సరీ సౌకర్యాలు కూడా అందుబాటు దూరంలో ఉంటే, బదిలీ చేస్తున్నప్పుడు ఆక్సిజన్తో లేదా ఆక్సిజన్ లేకుండా అయినా చిన్న ప్లాస్టిక్ బకెట్ల సహాయంతో వీటిని నర్సరీ సౌకర్యాలకు మార్చవచ్చు. అయితే, ఆక్సిజన్ సహాయంతో బదిలీ చేయడం వల్ల పిల్లలకు ఒత్తిడి కలుగకుండా ఉంటుంది.రవాణా చేయబడిన పిల్లలను నేరుగా నర్సరీ పెంపకం ట్యాంకుకు 1500– $2000 \; {
m nos/m^3} \;$ సాంద్రత వద్ద విడుదల చేస్తారు. అయితే ఈ ట్యాంకుకు గరిష్ట సామర్థ్యం $5.0 \; {
m Kg/m^3} \;$ కంటే తక్కువగా ఉండాలి. బదిలీ తర్వాత, చేప పిల్లలకు $500~\mu$ పరిమాణంలో ఫీడ్ ఇవ్వబడి, 100% నీటి మార్పిడి సిఫార్సు చేయబడింది. రోజువారీ పనిలో ఉన్నప్పుడు, ట్యాంక్ మధ్య ఉన్న రండ్రాన్ని కప్పుతూ డైన్ కవర్లు గానీ PVC పైపులతో గానీ కప్పాలి. ట్యాంకులో ఉన్న పిల్ల పరిమాణానికి అనుగుణంగా ఈ పైపులను మరియు డెయిన్ కవర్లను చిన్న మెష్ సైజు వలతో చుట్టడం వలన నీటి మార్పిడిలో చేపపిల్లలు తప్పించుకోకుండా పనిచేస్తుంది. రోజుకు 4-6 సార్లు చేపపిల్ల శరీర బరువులో 5-6% లేదా అవి సంతృప్తి చెందే వరకు ఆహారం ఇవ్వడం సిఫార్సు చేయబడింది. ప్రారంభ దశలో దాణా ఎక్కువ సార్లు ఇవ్వాలి కనుక, నీటి మార్పిడి ఉదయం మరియు సాయంత్రం రెండు వేర్వేరు సమయాల్లో 50% చొప్పున 100% చెయ్యాలి. ప్రతిరోజూ నీటిని మార్పిడి చేస్తున్నందున, కరిగిన

చిత్రం 1. ఇండోర్ కల్చర్ వ్యవస్థలో చందువ పార చేపపిల్లల నర్సరీ పెంపకం

FRP ట్యాంకులలో చేపలకు మేత

కాంక్రీటు ట్యాంకులలో చేపలకు మేత

చేపపిల్లల నమూనాలు

చేపపిల్లల నమూనాలు

ఆక్సిజన్ (DO) కీలకమైన నీటి పారామితిగా పరిగణిస్తారు. లవణీయత 10–35 పీపీటీతో, ఆక్సిజన్ సాంద్రత ఎల్లఫ్ఫుడూ 4.0 ppm కంటే ఎక్కువగా ఉన్నట్లు చూసుకోవాలి. 1.5 ppm కంటే తక్కువ DO ఉండకుండా చూసుకోవాలి. పెంపకం సమయంలో, నీటి ఉపరితలం మరియు ట్యాంక్ అంచుకు మధ్య ఒక అడుగు దూరం అవసరం. చందువ పార చేపపిల్లలు కాంతిలో మరియు ధ్వని స్థాయిలలో తేడా ఉన్నట్లయితే ట్యాంకు నుండి దూకుతాయి. అందువల్ల అవి నీటి నుండి దూకకుండా ఉండటానికి తగినంత స్థలం ఉండడం అవసరం. చిన్న పరిమాణపు మెష్**తో** ట్యాంకును కప్పినా మంచిదే. వృద్ధిచెందిన పిల్లలు సగటున 3.0 గ్రాములకు చేరుకోవడానికి దాదాపు ఒక నెల సమయం పడుతుంది. నర్సరీ నిర్వహణ పద్ధతులను బట్టి వీటి మనుగడ రేటు 75–95% మధ్య ఉంటుంది.

RAS ఆధాలత నర్నలి పెంపకం

నర్సరీ పెంపకం మరియు ఇతర ఆక్వాకల్చర్ కార్యకలాపాలలో భూమి మరియు నీటి లభ్యత, జల పర్యావరణ వ్యవస్థల క్షీణత, తరచుగా వ్యాధులు ట్రబలడం మరియు వ్యర్థ పదార్ధాల శుద్ధిలో ఇబ్బందులు లాంటి అంశాలు ట్రధాన పరిమితులుగా చెప్పవచ్చు. అందువల్ల, వ్యర్థాలని నియంత్రిస్తూ నీటి వినియోగం సరైన క్రమంలో ఉంటూ పర్యావరణ ట్రభావాన్ని తగ్గించడానికి నూతన సాగు పద్ధతులను అభివృద్ధి చేయడం చాలా ముఖ్యం. ఈ సమస్యలను పరిష్కరించడానికి ఒక ముఖ్యమైన ట్రభావవంతమైన పద్ధతి రీసర్యులేటింగ్ ఆక్వాకల్చర్ సిస్టమ్స్ (RAS)లో చేపల పెంపకం. RAS అనేది ఇండోర్ ట్యాంక్ ఆధారిత నీటి పునర్వినియోగ వ్యవస్థ. దీనిలో ఏడాది పొడవునా చేపలను పెంచడానికి నియంత్రత పర్యావరణంలో అధిక సాంద్రతతో చేపలు పెంచుతారు. ఈ వ్యవస్థలు (గో –అవుట్ కల్చర్ సైట్ సమీపంలో ఉత్పత్తి సౌకర్యాలను అందించడం, అనుకూలమైన పంటకోత సౌలభ్యం, త్వరితగతిన ట్రభావవంతమైన వ్యాధి నియంత్రణను కలిగి ఉంటాయి. భూమి లేదా నీరు పరిమితంగా ఉన్న చోట, నిర్దిష్ట జాతులను సాగు చేయడానికి పర్యావరణ పరిస్థితులు అనువైనవి కానప్పుడు ఉత్పత్తిని పెంచడానికి ఈ వ్యవస్థలను ఉపయోగించవచ్చు. ఇది భూ –ఆధారిత జల వ్యవస్థ. ఇక్కడ నీరు మరియు శక్తి వినియోగాన్ని తగ్గించడానికి యాంత్రిక మరియు జీవసంబంధమైన సహాయక ట్రడ్రియలు నీటిని శుద్ధి చేసి తిరిగి ఉపయోగించేలా అమరికలు చేస్తారు. ఈ వ్యవస్థ ఉ బ్లోగ్రత మరియు ఇతర నీటి నాణ్యత పారామితులను నియంత్రించగల ట్రయోజనాలను అందిస్తుంది. అధునిక RAS వ్యవస్థలలో ఎక్కువ భాగం సాధారణంగా ఘనపదార్ధికి అనుకూలమైన వాతావరణాన్ని అందిస్తుంది. ఆధునిక RAS వ్యవస్థలలో ఎక్కువ భాగం సాధారణంగా ఘనపదార్ధాల సేకరణ/వడగట్మే/తొలగింపు వ్యవస్థలు

(డ్రమ్ ఫిల్టర్/సాండ్ ఫిల్టర్), ఫోమ్ ఫ్రాక్షనేషన్ యూనిట్ (స్రోటీన్ స్కిమ్మర్), బయో–ఫిల్టర్, కార్బన్ డయాక్షైడ్ డీగాస్సర్, నైటేట్ ఫిల్టర్, స్టెరిలైజేషన్ పాయింట్ (సాధారణంగా UV స్టెరిలైజర్), ఉష్ణోగ్రత నియంత్రణ, ఆక్సిజన్ ఇంజెక్షన్ సిస్టమ్, pH నియంత్రణ మరియు ఆల్కలీనిటీ డోసింగ్ విభాగం వంటి వివిధ భాగాలను కలిగి ఉంటాయి. ఈ భాగాలన్నీ కలిసి మంచి నీటి నాణ్యత పారామితులను నిర్వహించడానికి, స్టాక్ చేయబడిన చేపలు పెరగడానికి అనుకూలమైన వాతావరణాన్ని సృష్టించడానికి సహాయపడతాయి. ఇందులో పెంపకానికి సిఫార్సు చేయబడిన చేపపిల్ల పరిమాణం 1.0 నుండి 3.0 (గ్రాములు. డ్రతి క్యూబిక్ మీటరుకు దాదాపు ~ 15 నుండి 20 కిలోలు మొత్తం బయోమాన్ వరకు సాంద్రతతో చేపపిల్లలను స్టాక్ చేస్తారు. నీరు నిరంతరం పునః డ్రసరణ జరుగుతూనే ఉంటుంది. ఈ వ్యవస్థలో అధిక సాంద్రతతో చేపపిల్లలను స్టాక్ చేస్తారు. నీరు నిరంతరం పునః డ్రసరణ జరుగుతూనే ఉంటుంది కాబట్టి ఆక్సిజన్ యొక్క స్థాయి సరైన నీటి నాణ్యతను చేకూర్చడం అధిక మనుగడను నిర్వహించడానికి చాలా దోహదపడుతుంది. ట్యాంక్ ఆధారిత ఫ్లో-డ్రూ వ్యవస్థలో ఇచ్చినట్లుగానే మేత ఇవ్వబడుతుంది. చేపపిల్ల పరిమాణం మరియు నిర్వహణ పద్ధతులను బట్టి మనుగడ రేటు 80-95% దాకా ఉంటుంది. ట్యాంక్ పరిమాణం 5.0నుండి 10.0 టన్నుల నీటి సామర్థ్యం కలిగి 1.5 మీటర్ల లోతు ఉండడం సూచించబడింది.

చిత్రం 2: ఇండోర్ RAS అధారిత కల్చర్ వ్యవస్థలలో చందువ పార యొక్క నర్సరీ పెంపకం.

RAS వ్యవస్థలో నర్సరీపెంపకం

RAS వ్యవస్థలో చేపలకు మేత వేయడం

అవుట్-డోర్ కల్బర్ విధానం (OUTDOOR CULTURE SYSTEMS)

చందువ పార చేపపిల్లల పెంపకం తీర్మపాంత చెరువులు, తీర్మపాంత పంజరాలు మరియు సముద్ర పంజరాలలో సాధారణంగా హేచరీ సౌకర్యాలకు దూరంగా ఉండే (ప్రదేశాలలో చేస్తారు. అందువల్ల, నర్సరీలో పెరిగిన చేపపిల్లను వివిధ రవాణా పద్ధతుల ద్వారా సంబంధిత కల్చర్ వ్యవస్థకు తరలించాలి. ఈ నేపథ్యంలో రవాణా సంబంధిత ఒత్తిడి మరియు వ్యయాన్ని తగ్గించడానికి (గో-అవుట్ కల్చర్ వ్యవస్థలలోనే నర్సరీ పెంపకం సిఫార్సు చేయబడింది. దీనివల్ల చేపపిల్ల తొందరగా పెద్ద పరిమాణానికి పెరగడమే కాకుండా, పెరుగుదలకు పట్టే కాలవ్యవధిని కూడా తగ్గించవచ్చు.

చందువ పార సాగుకై తీర్వపాంత చెరువులో చేసేపెంపకం ముఖ్యమైన వ్యవస్థలలో ఒకటి. దీనికి సరియైన పరిమాణం 25 నుండి 30 గ్రాములు. ఒకవేళ అందుబాటులో ఉన్న పరిమాణం చిన్నది (extstyle 1 అంగుళం) అయితే, ముందుగా పిల్లలను నర్సరీలో పెంచి తరువాత (గో-అవుట్ వ్యవస్థకు మార్చాలి. అదే చెరువులో నర్సరీ పెంపకాన్ని హపాలలో కూడా చేయవచ్చు. సాధారణంగా, మొత్తం ప్రాంతంలో కేవలం 10% కంటే తక్కువ ప్రాంతాన్ని నర్సరీ పెంపకం కోసం వినియోగించవచ్చు. వెదురు లేదా సరుగుడు స్తంభాలతో మద్దతు ఇస్తూ చెరువులో దీర్ఘచతుర్వసాకార హపాలను ఏర్పాటు చేస్తారు. ఈ హాపాలను మనకు అనుకూలంగా ఏర్పాటు చేసుకోవచ్చు. సిఫార్సు చేయబడిన పరిమాణాలు $2 \times 2 \times 1.5$ మీ. నుండి $4 \times 4 \times 1.5$ మీ. వరకు వుండి 0.5 మి.మీ. మెష్సు అమర్చాలి. అయితే, హాపా పరిమాణం పెద్దదయ్యే కొద్దీ మెష్ మార్చడం లాంటి నిర్వహణ పద్ధతులు, వాటికి కావాల్సిన కార్మికశక్తి కూడా ఎక్కువవుతాయి. ఈ వ్యవస్థలో తగిన చేపపిల్ల పరిమాణం 1.0 నుండి 2.0 గ్రాములు. చేపపిల్లను హాపాలో విడిచిపెట్టిన కొంత సేపటి తరువాత అవి కొంచెం అలవాటు పడ్దాక వాటికి తేలియాడే గుళికల మేత ఇవ్వాలి. హాపా యొక్క మెష్ పరిమాణాన్ని పిల్ల పెరుగుదలను బట్టి పెంచవచ్చు. ఒక అడుగు ఎత్తు దోమతెరను నీటి ఉపరితలం నుండి హాపా వలకు జతచేయడం వలన వేసిన మేత చెల్లాచెదురయి వృధాగా పోకుండా కాపాడుకోవచ్చు. నర్సరీ పెంపకంలో హాపా కోసం నైలాన్ నెట్ ప్రాధాన్యత కలిగి ఉంది. ఎందుకంటే ఇది HDPE నెట్ కంటే మృదువైనది. 3.0 నుండి 20.0 గ్రాముల పరిమాణంలో ఉన్న చేపపిల్లలని ఒక క్యూబిక్ మీటరుకు 250 నుండి 450 సంఖ్యల సాంద్రతలో స్టాక్ చేస్తారు. ఒకే రకమైన పెరుగుదలను సాధించడానికి (పతి 15 రోజులకొకసారి గ్రేడింగ్ను జరపాలి. నర్సరీ పెంపకంలో అనేక వృర్ధాలు ఇంకా మలినాలు హాపా పై పేరుకు పోవడం వలన నెలకు ఒకసారి మెష్/హాపాను మార్చాలి. నిర్దిష్ట వ్యవధిలో ఈ మార్పిడి చేయకపోతే, అది నీటి పారామితులు తద్వారా చేపపిల్లల ఆక్సిజన్ లోపాన్ని పెంచి పెరుగుదలకు అడ్దంకిగా నిలుస్తుంది. నర్సరీ పెంపకం కోసం అధిక పోషకాలు కలిగిన ఆహారాన్ని (బ్రోటీన్ 45% మరియు కొవ్వు 10%) చేపలకు ఇచ్చే కృతిమ మేతగా సూచించబడింది. మొదటి దశలో శరీర బరువులో 5-8% చొప్పున రోజుకు 4-6 సార్లు ఆహారం ఇవ్వడం సిఫార్సు చేయబడింది.నర్సరీ చేపలకు ఇచ్చే ఫీడ్ల యొక్క సరఫరాదారులు స్రైట్టింగ్ (నార్వే), లక్కీ స్టార్ (సింగపూర్), యూని–ప్రెసిడెంట్ ఎంటర్(పైజెస్ కార్పొరేషన్ (తైవాన్), గ్రోవెల్ ఫీడ్స్ (పైవేట్ లిమిటెడ్ (ఇండియా). 2.0 నుండి 3.0 గ్రాముల పరిమాణంలో ఉన్న పిల్లలు 60 నుండి 75రోజుల కల్చర్ వ్యవధిలో 30-40 గ్రాములకు చేరుకున్నాక వీటిని గ్రో-అవుట్ చెరువులో విడుదల చేసి పెంచడం మొదలుపెడతారు. హాపా ఆధారిత నర్సరీ పెంపకం సమయంలో నిర్వహణ పద్దతులు సమర్ధవంతంగా ఉన్నప్పుడు చేపల మనుగడ రేటు దాదాపు 80-95% ఉంటుంది. నర్సరీ పెంపకంలో మంచి నీటి నాణ్యతను నిర్వహించడం చాలా ముఖ్యం. హాపాలో చేప పిల్లలు అధిక సాంద్రత వద్ద పెంచబడే కారణంగా నర్సరీ చెరువులో తగినంత గాలి ప్రసరణను అందించాలి. చెరువులో పాడిల్ వీల్ ఏరేటర్లను ఉపయోగించడం ద్వారా 4 నుండి 6.0 ppm వరకు ఆక్సిజన్ స్థాయిని నిర్వహించడం సిఫార్సు చేయబడింది. మంచి పెరుగుదలకు సిఫార్సు చేయబడిన లవణీయత 15–35 ppt. నీటి pH 7.5 నుండి 8.5 వరకు ఉండవచ్చు. కానీ చెరువులోని వృక్షాప్లవకాల (ఆల్దె) కారణంగా రోజువారీ pH లో అధిక హెచ్చుతగ్గులు, అమ్మోనియా స్థాయిని పెంచి చేపపిల్లలపై (పభావం చూపుతాయి కాబట్టి జాగ్రత్త వహించాలి. తగిన పరిమాణాన్ని చేరుకున్న తర్వాత, నర్సరీలో పెంచబడిన చేప పిల్లలను నేరుగా (గో– అవుట్ వ్యవస్థల్లోకి విడుదల చేస్తారు.

చిత్రం 3 : చెరువులలో అమర్చిన హాపాలో చందువ పార చేపల నర్సరీ పెంపకం.

చెరువులో అమర్చిన హాపాలో చేపపిల్లల స్టాకింగ్

హాపాలోచేపల మేత

చందువ పార చేపల నమూనా సేకరణ

వ్యాధి చికిత్స<u>క</u> KMnO4 ట్రీట్మెంట్

ම්ර්බුංරම් බ්රස්පංචම කිබ්බ ස්පාචම් බ්රුව් බ්රබ්ජිර (HAPA-BASED NURSERY REARING IN COASTAL CAGES)

భారతదేశంలో, తీర్వపాంతాల సరిహద్దులో భారీగా నదీముఖద్వార వనరులు అందుబాటులో ఉన్నాయి. అతి తక్కువగా వినియోగంలో ఉన్న ఈ వనరులలో లవణీయత తగినంత వుండి వివిధ జాతుల చేపలను సమర్థవంతంగా కల్చర్ చేసుకోవడానికి ఉపయోగించుకోవచ్చు. ఈ పంజరాలలో చేపల పెంపకం కోసం (ప్రారంభ పరిమాణం 20 నుండి 25 (గ్రాములుగా ఉంటుంది. సరైన పరిమాణంలో పెంచబడిన చేప 750 (గ్రాముల మార్కెట్ పరిమాణాన్ని చేరుకోవడానికి దాదాపు 10 నెలలు పడుతుంది. అయితే చేపలు పెద్ద పరిమాణంలో ఉంటే కల్చర్ వ్యవధిని మరింత తగ్గించవచ్చు. అందువల్ల, చేపల కేజ్ కల్చర్ లో పెరుగుదల వ్యవధి తగ్గించడానికి నర్సరీ కల్చర్ను ఒక ముఖ్యమైన అంశంగా పరిగణిస్తారు. బ్యాక్ వాటర్ సౌకర్యాలలో పరిసరాలు అనుకూలంగా ఉంటే హపాలను ఉపయోగించి నర్సరీ పెంపకాన్ని కొన్ని పంజరాలలోనే నిర్వహించవచ్చు. ముఖ్యంగా హేచరీ బ్యాక్ వాటర్ పంజరాల మధ్య దూరం ఎక్కువగా ఉన్న చోట హపా ఆధారిత బ్యాక్ వాటర్ నర్సరీ పెంపకం నిర్వహిస్తారు. కల్చర్ పరిస్థితిని

చిత్రం 4: తీర్వహాంత పంజరాలలో అమర్చిన హాపాలో చందువ పార చేపల యొక్క నర్సరీ పెంపకం

తీరప్రాంత బ్యాక్ వాటర్ పంజరాలు

తీర్పపాంత బ్యాక్ వాటర్ పంజరాలలో హాపా అమరిక

తీర్వపాంత బ్యాక్ వాటర్ పంజరాలలో చేపపిల్లల పెంపకం

పంజరాల నుండి చందువ పార చేపపిల్లల నమూనా సేకరణ

పరిగణనలోకి తీసుకుని, చేపపిల్లల యొక్క రవాణా సంబంధిత సమస్యలను తగ్గించడానికి, ప్రారంభ దశలోనే పెద్ద సైజు చేపపిల్లలను వేసి పెంచడానికి బ్యాక్ వాటర్ కేజ్ ఆధారిత నర్సరీ పెంపకం సిఫార్సు చేయబడింది. ఇండోర్ ట్యాంక్ ఆధారిత నర్సరీ సౌకర్యాల మాదిరిగా కాకుండా, వాతావరణ పరిస్థితుల కారణంగా చేపపిల్ల పరిమాణం 3.0-5.0 గ్రాములు ఉండాలి. సాధారణంగా $5 \times 5 \times 3$ మీటర్ల GI బోనులను గ్రో-అవుట్ కల్చర్ కోసం ఉపయోగిస్తారు. అందువల్ల, పంజరాలలో నర్సరీ కోసం $2 \times 2 \times 2.5$ లేదా $3 \times 3 \times 2.5$ సైజులో హాపా సిఫార్సు చేయబడింది. హాపా యొక్క మెష్ పరిమాణం 5 మి.మీ. పరిమాణంలో వుండి హోపా మెష్ ద్వారా మేత వృధాను నివారించడానికి నీటి ఉపరితలానికి ఒక అడుగు ఎత్తులో ఫీడ్ మెష్త్ కుట్టాలి. సరియైన సాంద్రత ఒక క్యూబిక్ మీటరుకు 350-500 పిల్లగా 25.0 గ్రాముల పరిమాణం వచ్చేవరకు నిర్వహించబడుతుంది. ఈ చేపపిల్లలకు వాటి శరీర బరువులో 5-6% చొప్పున 0.8 నుండి 1.0 మి.మీ. పరిమాణంలో వుండి తేలియాడే గుళికలను మేతగా ఇవ్వవచ్చు. ప్రారంభ దశలో మేతని రోజుకి 4-6 సార్లు ఇవ్వాలి. బ్యాక్ వాటర్ జలాల్లో మలినాలు సర్వసాధారణంగా ఉంటాయి కనుక బ్యాక్టీరియా పెరిగే అవకాశం ఉన్నందున, నర్సరీ పెంపకం చేపపిల్ల ఆరోగ్యాన్ని

నిరంతరం పర్యవేక్షిస్తూ దాణాతో పాటూ అవసరమైన మందులను కూడా చేర్చాలి. ఈ వ్యవస్థలో మనుగడ రేటు 75–80% వరకు ఉంటుంది. నర్సరీ పెంపకం ప్రారంభ దశలో, ముఖ్యంగా మెష్స్ మార్చే సమయంలో ఎక్కువగా చేపపిల్లలు చనిపోకుండా చూసుకోవాలి.

సముద్ర పంజరాలలో నర్నల్ పెంపకం: (NURSERY REARING IN MARINE CAGES)

సముద్ర పంజరాలలో హాపా ఆధారిత నర్సరీ పెంపకం (Hapa-based nursery rearing in marine cages)

చేపల ఉత్పత్తిని పెంచదానికి కేజ్ ఫార్మింగ్ టెక్నాలజీ, అంటే పంజరాలలో చేపలను పెంచడం అనే ప్రక్రియ అత్యంత ముఖ్యమైనదిగా గుర్తించబడింది. సముద్ర పంజరాలలో వివిధ జాతుల సముద్రపు చేప జాతులను పెంచుతారు. ఇలాంటి జాతులలో చందువ పార చేపలు కూడా ఒకటి. తీరం నుండి 1–5 కి.మీ. దూరంలో ఉన్న అనేక ప్రదేశాలలో కేజ్ కల్చర్ నిర్వహిస్తారు. ఎక్కువ దూరం నుండి చేపలను బదిలీ చేయడం సమస్యాత్మకం కాబట్లి పంజర వ్యవస్థలోనే అనుకూలమైన పర్యావరణ పరిస్థితులు ఉన్నప్పుడు చిన్న హాపాను అమర్చి అందులోనే నర్సరీ పెంపకాన్ని నిర్వహించడం మంచిది. తీర్రపాంత పంజరాల మాదిరిగానే, నర్సరీ పెంపకానికి 2 x 2 x 2.5 లేదా $3 \times 3 \times 2.5$ కొలతలతో HDPE పదార్థాల ద్వారా తగిన పరిమాణంలో హాపాను తయారు చేయడం వలన వివిధ వాతావరణ పరిస్థితులకు తట్టుకునేలా ఇది పనిచేస్తుంది. సముద్ర పంజరం ఏర్పాటు చేసే ప్రదేశంలో తరంగాల అలజడి , నీటి ఎద్దడి ఎక్కువగా ఉంటుంది కాబట్టి చేపపిల్ల పరిమాణం పెద్దదిగా ఉండాలి (~ 5.0 గ్రాములు). ఒక క్యూబిక్ మీటరుకు 10 కేజీల కంటే తక్కువగా ఉండాలి ($20.0\,$ గ్రాముల పరిమాణం వచ్చేవరకు ఒక క్యూబిక్ మీటరుకు 400-500 చేపపిల్లలు ఉండాలి). అవి పెరిగే కొద్దీ నెమ్మదిగా సాంద్రతను తగ్గించాలి. రోజుకు కనీసం 4 సార్లు చేపపిల్లల శరీర బరువులో $5{-}6\%$ గుళికల మేతను ఇవ్వాలి. చేపల మేత వృధా కాకుండా ఉండటానికి దోమతెరను నీటి ఉపరితలానికి జతచేయాలి. చేపలను ఉంచే వలల యొక్క రంధ్రాలలో రకరకాల వ్యర్ధ పదార్ధాలు గుమిగూడి నీటి ప్రవాహం లోపలి నుండి బయటకి సరఫరా జరగకుండా ఇబ్బంది పెడతాయి కాబట్టి కనీసం నెలకు ఒకసారి హాపాను మార్చాలి. పంజరంలో అమర్చిన హాపా అలల కారణంగా మడతకు గురవుతుంది కాబట్టి హాపాలో బాల్లాస్ట్ పైపును ఉపయోగించడం మంచిది. ఈ వ్యవస్థలో నర్సరీ పెంపకం చేయడం వల్ల మనుగడ రేటు 70-80% మధ్య ఉంటుంది.

చిత్రం 4: సముద్ర పంజరాలలో చందువ పార చేపల యొక్క నర్సరీ పెంపకం

పాలిథీన్ సంచులలో చేపపిల్లలను రవాణా చేయుట

పంజరంలో అమర్చిన హాపాలో చేపపిల్లలని వదలదం

నర్సలి పెంపకంలో చేపపిల్లల పెరుగుదలపై విభిన్న వాతావరణ ప్రభావాలు (EFFECT OF DIFFERENT ENVIRONMENTAL FACTORS ON NURSERY REARED FISH)

వాణిజ్యపరంగా చేసే సాగులో ఒక జాతి యొక్క దీర్ఘకాలిక ఉనికిని నిర్ణయించే ముఖ్యమైన లక్షణాలలో పెరుగుదల ఒకటి. చేపల పెరుగుదల అనేది ఒక సంక్లిష్టమైన ప్రక్రియ, దీనిలో తీసుకున్న ఆహరం బయోమాస్గా మార్చబడుతుంది. అంతేకాకుండా ఇది చేపలలో వుండే జన్యువుల సామర్థ్యం మరియు కల్చర్ వ్యవస్థలలో ఉండే ఇతర కారకాల ద్వారా కూడా నియంత్రించబడుతుంది. వివిధ కల్చర్ వ్యవస్థలలో చందువ పార చేపల పెరుగుదల వివిధ పర్యావరణ కారకాలచే ప్రభావితమవుతుంది. ఇండోర్ కల్చర్ వాతావరణాలతో పోల్చితే, అవుట్–డోర్ కల్చర్ వ్యవస్థలో దొరికే ఆహారం మెరుగైన పెరుగుదలను ప్రదర్శిస్తుంది. సహజంగా ఉండే నీటి కదలిక కూడా పెరుగుదలను పెంచుతుంది. అయితే, అవుట్–డోర్ వ్యవస్థలలో బ్యాక్టీరియా మరియు ఇతర ఇన్ఫెక్షన్లకు ఎక్కువ అవకాశం కాబట్టి ఇవి అరుదుగా మనుగడను తగ్గించే అవకాశం కూడా ఉంది. వివిధ కల్చర్ వ్యవస్థలలో ఏ చేపల నర్సరీ పెంపకంలో వృద్ధి రేటు మరియు మేత వివరాలు క్రింద ఇవ్వబడ్గాయి.

పట్టిక 1 : వివిధ నర్సరీ వ్యవస్థలలో చందువ పార చేపపిల్లల అభివృద్ధి

కల్చర్ వ్యవధి (రోజులలో)	చెరువు	పంజ రం	ట్యాంకు	RAS	మేత పరిమాణం	ఎన్నిసార్లు ఇవ్వాలి	ఎంత బరువు శాతానికి ఇవ్వాలి
(DOC)	۵	న్ని గ్రాములు	ා පුవ్వాවී (දු	g)	(మి.మీ.)	(రోజుకి ఎన్ని మార్లు)	% of BW
0	3.5	3.5	3.5	3.5	0.8 to 1.2	4-6	5-6
30	19.35	27.7	10.55	18.8	1.2 - 1.8	4–5	4–5
60	48.05	48.4	21.35	35.55	1.8 to 2.0	4	4
90	73.3	90.5	39.8	73.6	2.0 to 3.00	4	4
మనుగడ (%)	80-90	70-80	85-95	80-95			

ವಿತ್ತನ ರವಾಣ್ (Seed transportation)

రవాణా సౌలభ్యం కోసం నర్సరీ రేరింగ్ యూనిట్ను గ్రో-అవుట్ కల్చర్ సైట్ సమీపంలో ఏర్పాటు చేయడం మంచిది. నర్సరీ నుండి గ్రో-అవుట్ కల్చర్ వ్యవస్థకు అభివృద్ధి చెందిన చేపపిల్లలను రవాణా చేస్తున్నపుడు ఆక్సిజన్తో నిండిన పాలిథిన్ బ్యాగ్ల ద్వారా గానీ లేదా ఆక్సిజన్తో ఉన్న సింటెక్స్ / FRP ట్యాంకుల ద్వారా బదిలీ చేస్తారు. 5.0 గ్రాముల కంటే ఎక్కువ పరిమాణంలో ఉన్న చేపపిల్లలను తరలించాల్సి వచ్చినప్పుడు, మంచి మనుగడ రేటును సాధించడానికి స్వచ్ఛమైన ఆక్సిజన్తో జతచేసిన కంటైనర్ ద్వారా రవాణా చేయాలి. అదే 1.0 గ్రాము కంటే తక్కువ పరిమాణంలో ఉన్న చిన్న సైజు చేపపిల్లలను పాలిథిన్ బ్యాగ్లల ద్వారా రవాణా చేయవచ్చు. ఒత్తిడితో కూడిన స్థితిలో (అధిక సంఖ్య మరియు తక్కువ ఆక్సిజన్) రవాణా చేయబడిన చేపపిల్లలకు బ్యాక్టీరియా సంక్రమణం వచ్చే

అవకాశం ఎక్కువగా ఉంటుంది. అందువల్ల, జంతువులను ఒత్తిడి లేని పరిస్థితులలో ఉంచదానికి తగిన జాగ్రత్త వహించాలి. పరిశీలనల ఆధారంగా సరైన చేపల పరిమాణం, సాంద్రత మరియు రవాణా విధానం క్రింది పట్టికలో ఇవ్వబడ్డాయి.

పట్టిక 2: చందువ పార చేపల యొక్క వివిధ అభివృద్ధి దశలలో రవాణా విధానాలు

చేపపిల్ల పరిమాణం (గ్రాములలో)	సమయం (గంటలలో)	స్టాకింగ్ డెన్సిటీ (ఒక లీటరుకు ఎన్ని)	రవాణా పద్ధతి
> 0.25	24–36	50-60	ఆక్సిజన్ సరఫరా ఉన్న పాలిథీన్ బ్యాగ్
1.0 to 2.0	15-30	20-25	ఆక్సిజన్ సరఫరా ఉన్న పాలిథీన్ బ్యాగ్
2.0 to 5.0	12-24	10–15	ఆక్సిజన్ సరఫరా ఉన్న సిన్టెక్స్ ట్యాంక్
5.0 to 15.0	12-20	5-6	అక్సిజన్ సరఫరా ఉన్న సిన్టెక్స్ ట్యాంక్
25.0 to 30.0	12-20	2–2.5	ఆక్సిజన్ సరఫరా ఉన్న సిన్టెక్స్ ట్యాంక్

చందువ పార చేపలయొక్క నర్నల్ పెంపకంలో పలగణించవలసిన అంశాలు (Factors to be considered during the nursery rearing of Indian pompano)

- చేపల లార్వాల ప్రారంభ జీవిత దశలను నర్సరీలో నిర్వహిస్తారు. హేచరీ మరియు (గో-అవుట్ విభాగాల మధ్య దశ ఇది. అందువల్ల, (గో-అవుట్ కల్చర్ లో పెంపకం చేసే ముందు సరియైన పరిమాణం వచ్చేవరకు చేపలని నర్సరీ లో పెంచుతారు
- గ్రో-అవుట్ కల్చర్ వ్యవధిని తగ్గించదానికి కేజ్ కల్చర్లో నర్సరీ పెంపకం చాలా అవసరం. ప్రధానంగా రెండు రకాల నర్సరీ వ్యవస్థలను ఉపయోగిస్తారు: ఇండోర్ మరియు అవుట్డోర్ ఆధారిత వ్యవస్థలు. ఈ వ్యవస్థల ఉపయోగం గ్రో-అవుట్ కల్చర్ పై ఆధారపడి ఉంటుంది.
- నర్సరీలో ఉపయోగించే మేత 45% బ్రోటీన్ మరియు 10% కొవ్వుతో అధిక పోషక విలువలను కలిగి ఉండాలి; చేపల యొక్క 5–8% శరీర బరువులో, రోజుకి 4–6 సార్లు మేత ఇవ్వడం సిఫార్సు చేయబడింది. చేపల అభివృద్ధిని బట్టి ఫీడింగ్ రేటు మారుతుంది.

- చందువ పార చేపలు నీటిలో వేగంగా ఈదుతూ ఉంటాయి కాబట్టి వీటిని పెంచే ట్యాంకులలో DO విలువలు 4.5 ppm కంటే ఎక్కువగా ఉందాలి.
- సరైన దాణా మరియు నీటి నాణ్యత నిర్వహణతో, ఇండోర్ కల్చర్లలో మనుగడ దాదాపుగా 80-95% ఉంటుంది, అయితే హాపా ఆధారిత అవుట్-డోర్ వ్యవస్థలలో 70-85% మనుగడ ఉంటూ, మనుగడ రేటు నిర్వహణ పద్దతులపై ఆధారపడి ఉంటుంది.
- నర్సరీ పెంపకం సమయంలో చేపలు చాలా చురుకుగా ఉంటాయి; అవి నీటి మట్టానికి కనీసం 15.0 సెం.మీ. ఎత్తు వరకు దూకుతాయి. అందువల్ల చేపల బయటికి దూకకుండా ఉండడానికి నీటి మట్టం ట్యాంక్ ఉపరితలం కంటే కనీసం 30.0 సెం.మీ. దిగువన ఉండాలి. చేపలు ట్యాంక్ పైనుండి దూకకుండా ఉండటానికి ట్యాంక్ ఉపరితలాన్ని చేపల వలలతో కప్పాలని సూచించబడింది.
- ఒత్తిడి కారణంగా నర్సరీ సమయంలో సంభవించే అత్యంత సాధారణ బాక్టీరియల్ ఇన్ఫెక్షన్ విబ్రియోసిస్. నర్సరీలో ఒత్తిడిని తగ్గించడం చేపలను బాక్టీరియల్ ఇన్ఫెక్షన్ నుండి దూరంగా ఉంచడానికి సహాయపడుతుంది. ముఖ్యంగా ఒత్తిడికి గల కారణాలు ఎక్కువ సంఖ్యలో చేపలు ఉండడం, ట్యాంక్ అడుగున ఎక్కువ వ్యర్థాలు పేరుకుపోవడం, దురుసుగా, నిర్లక్ష్మంగా హేచరీ పనులు చేయడం, అధిక నీటి ఉష్మోగ్రత మరియు తక్కువ DO ఆక్సిజన్. వీటిని గమనించుకుంటూ ఉండాలి.

అదనపు సమాచారం కొరకు సంప్రదించండి: (Suggested reading)

Megarajan, S., Ranjan, R., Ghosh, S., Xavier, B., Suresh, R.D., Chinnibabu, B., Ravi, K.A. 2021.Marine cage farming of orange spotted grouper. CMFR-97/2021

Megarajan, S., Ranjan, R., Ghosh, S., Xavier, B., Sadhu, N., Shiva, P., Vamsi, B. 2021.Coastal farming of orange spotted grouper. CMFRI 98/2021

Megarajan, S., Ranjan, R., Xavier, B., Ghosh, S., Shiva, P., Sadhu, N., Venkatesh, R.P., Joseph, I. 2021.Coastal pond farming of Indian pompano. CMFRI-100/2021

Ranjan, R., Megarajan, S., Xavier, B., Chinnibabu, B., Ghosh, S., Gopalakrishnan, A. 2022. Practical manual on seed production of orange spotted grouper and Indian pompano; CMFRI, special publication number. 144, pages 72

Megarajan, S., Ranjan, R., Xavier, B., Dash, B., Ghosh, S., Gopalakrishnan, A. 2022. Good Aquaculture Practices (GAP) in sea cage farming of Indian pompano and orange spotted grouper; CMFRI, special publication number. 143, pages 71

అధ్యాయం - 03

సముద్రపు పంజరాలలో చేపల పెంపకం : చందువ /మూకుడు పార చేపలపై ప్రత్యేక అధ్యయనం

శేకర్ మేగరాజన్, జో కె. కిజకుదన్, రేలంగి దుర్గా సురేష్, రేలంగి ప్రసన్న వెంకటేష్ మరియు దిమ్మిటీ మురళీ కిరణ్

ICAR-CMFRI, విశాఖపట్నం ప్రాంతీయ కేంద్రం, పాండురంగపురం, ఆంధ్రా యూనివర్సిటీ పోస్ట్, విశాఖపట్నం - 530003

ൎ൙൮ൢൕഁൎ

సముద్ర పంజరాలలో సాగు కొరకు ఇండియన్ పొంపానో (చందువ పార, ట్రేకినోటస్ మూకాలీ) ఎన్నుకోబడిన జాతి. దీనికి గల కారణాలు – నియంత్రిత స్థితిలో సంతానోత్పత్తికి అనుకూలత, విభిన్న కల్చర్ పరిస్థితులకు సానుకూలత, కృత్రిమ మేతకు చాలా తొందరగా అలవాటు పడడం, ఆరోగ్యంగా పోషక విలువతో కలిగిన నాణ్యత మరియు వినియోగదారులు కోరుకునే ప్రాధాన్యత వంటి పై లక్షణాలన్నీ ఈ చేప కలిగి ఉండి వాణిజ్యపరమైన ఉత్పత్తి కోసం ఎన్నుకోబడిన కొత్త రకం జాతులలో ఈ చేప ఒకటి. భారతీయ కృషి అనుసంధాన పరిషద్ (ICAR) యొక్క సెంట్రల్ మెరైన్ ఫిషరీస్ రీసెర్చ్ ఇన్బిట్యూట్ (CMFRI, కేంద్రీయ సముద్ర మత్స్య పరిశోధనా సంస్థ) యొక్క శాగ్రప్రవేత్తలు ఈ చేపల యొక్క పెంపకాన్ని, వీటి చేప పిల్లల అభివృద్ధి దశలను క్షున్నముగా అధ్యయనం చేసి ఒక సాంకేతికతను రూపొందించారు.

ទីæි් (ක්රසර්ර) කු්වර බරබ්ජ (Cage site selection)

పంజరాలలో పొంపానో చేపల సాగు (కేజ్ కల్చర్) ఏ స్థలంలో చేస్తున్నాం అనేది ఒక ముఖ్యమైన అంశం. ఎంచుకున్న ప్రదేశం మానవ నివాసాలకు దూరంగా, సముద్ర ముఖద్వారం నుండి కనీసం 5 కి.మీ. దూరంలో ఉండి, సరైన నీటి ప్రవాహంతో కాలుష్య కారకాలు లేకుండా చూసుకోవాలి. నీటి ఉష్ణోగ్రత: 26 – 30°C, నీటి లోతు: 6 – 10 మీ. మెరుగైన ఆక్సిజన్ సరఫరా కోసం నిరంతర నీటి కదలికలు ఉండే చోటును ఎంచుకోవాలి. ఎంచుకున్న స్థలం కేజ్ స్థలాలన్నీ చేరుకోవడానికి సులభంగా అందుబాటులో ఉండాలి.

పంజరం నిర్మాణం (Cage Design)

వృత్తాకారపు HDPE పైపులు 6 మీటర్ల లోపలి వ్యాసం, 8 మీటర్ల బాహ్య వ్యాసం కలిగి 8 నిలువు మరియు 8 అడ్డగోలు సహాయపు పైపులతో నిలిచి ఉంటుంది. HDPE తో అల్లిన వలలు మూడు రకాలుగా ఉంటాయి. వెలుపలి వల 7 మీ. వ్యాసం మరియు 4 మీ. లోతు, 40 మి.మీ. మెష్, 63 ప్లై, 3 మి.మీ. ట్వైన్ మందం (Twine Thickness); లోపలి వల 6 మీ. వ్యాసం మరియు 4.5 మీ. లోతు, 25 మి.మీ. మెష్; 80 మి.మీ. మందం కలిగిన నైలాన్ పక్షుల వల. ఈ రూపాన్ని కదలకుండా ఉంచడానికి మూరింగ్ వ్యవస్థలు ఉంటాయి – వాటిలో 2 టన్నుల సిమెంట్ దిబ్బలు/గాబియన్ బాక్స్/లంగరు . ఈ లంగరులు కేజ్ తో కలిపి ఉంచడానికి ఒక పొడవాటి ఉ క్కు గొలుసు (14 మి.మీ. వ్యాసం మరియు 22 టన్నుల ఒత్తిడి సామర్ధ్యం) ఉంటాయి. D ఆకృతి సంకెళ్లు మరియు

గుండ్రపు వలయం దీనికి తగిలించి ఉంటుంది. నీటి ఎద్దడిని తట్టుకుంటూ సరైన ఆకృతిలో ఉండదానికి పంజరానికి బాల్లాస్ట్ పైపులు అమర్చబడి ఉంటాయి. చేపలు తిరిగే జాగా కొరకు లోపలి వలను పైపులతో క్రిందభాగాన మరియు నదువు భాగాన కట్టి, వెలుపలి వలను క్రింది భాగాన ఒక్క బల్లాస్ట్ పైపుతో జత చేస్తారు.

పంజరాలలో చేపల సాగు (Cage Culture of Finfishes)

పంజరాలలో పొంపానో చేపల సాగు చేయడానికి చేపల యొక్క సరైన పరిమాణం 20 నుండి 25 గ్రాములు. సరైన పరిమాణంలో స్టాక్ చెయ్యబడిన చేపపిల్ల 750 గ్రాముల కంటే ఎక్కువగా మార్కెట్ గిరాకీ పరిమాణాన్ని చేరుకోవడానికి దాదాపు 10 నెలలు పడుతుంది. అయితే కేజ్ లో వేసిన చేపపిల్లలు పెద్ద సైజులో ఉన్నట్లయితే కల్చర్ వృవధిని మరింత తగ్గించవచ్చు. అందువల్ల కల్చర్ కాలాన్ని తగ్గించడానికి నర్సరీ పెంపకం ఒక ముఖ్యమైన అంశంగా పరిగణించబడుతుంది. పంజరాలలో చేపల సాగు. సంబంధించి 2 రకాల నర్సరీ వ్యవస్థలు అనుకూలంగా ఉంటాయి. అవి:

- 1. FRP లేదా కాంక్రీట్ ట్యాంకులలో ఫ్లో-త్రూ అధారంగా చేసుకుని చేసే పెంపకం
- 2. రీసర్మ్ములేటింగ్ ఆక్వాకల్చర్ సిస్టమ్ ఆధారిత నర్సరీ వ్యవస్థలు

చేపల బదిలీ సౌలభ్యం కోసం ఈ నర్సరీ సౌకర్యాలను కేజులు ఉండే ట్రదేశానికి దగ్గరగా ఏర్పాటు చేసుకోవాలి. దూరాన్ని బట్టి నర్సరీలో పెంచిన చేపలను బదిలీ చేసేటప్పుడు ఆక్సిజన్తో ((పాణవాయువు) నిండిన పాలిథిన్ సంచుల్లో గాని లేదా ఆక్సిజన్తో కూడిన కంటైనర్లలో కేజులదగ్గరకు రవాణా చేయబడతాయి.

ිරි−<mark>මෙනුట් ඡ</mark>වුරි ක්<mark>රූම</mark> (Grow-Out Culture)

ఒక కేజ్ లో 2500 చేప పిల్లలను అనగా ఒక క్యూబిక్ మీటరుకు 25 చేప పిల్లల చొప్పున (స్టాకింగ్ డెన్సిటీ 25 1000

కల్చర్ వ్యవధి	చేప సైజు	దాణా సైజు	ದాణా ට්టා	దాణా (ఫ్రీక్వెన్సీ
DOC	(দে.)	(మి.మీ.)	Feed Rate(%)	(రోజుకి ఎన్నిసార్లు)
		Feed Size		
0-30	25 -50	1.2-1.8	8 %	4-5
30-120	50 -100	1.8-3.0	6-5 %	4
120-180	100-300	3.0-4.0	5-4 %	4
180-210	300-500	4.0-6.0	4-3%	3
210-300	500-750	6.0-7.0	2.5%	3
300-360	750-1100	7-10	2%	2

ទිස් තපෘත තර්ක්ණ (Cage Structure Management)

కేజ్ కల్చర్ ద్వారా చందువ పారని వాణిజ్యపరమైన గిరాకీ ఉన్న పరిమాణం వచ్చేదాకా సాగు చెయ్యాలంటే కనీసం ఒక సంవత్సరం దాకా పడుతుంది. ఇందులో భాగంగా పంజరపు వ్యవస్థని శుథ్రంగా ఉంచుకుంటూ, ఎప్పటికప్పుడు వలను మారుస్తూ, కేజ్ (ఫేము మరియు మూరింగ్ వ్యవస్థను తనిఖీ చేసుకోవాలి. వాతావరణం, ఋతువులని బట్టి కేజ్ (ఫేముకు బర్నాకిల్స్, చిన్న చిన్న ఇసక రేణువులు, రాళ్లు, రప్పలు, సముద్రపు నాచు లాంటి పదార్ధాలు అంటుకుని ఉంటాయి. కాబట్టి [పతి రెండు నెలలకోసారి వలని మారుస్తూ, నెలకొకసారి పంజరాన్ని, పైపులను శు భ్రపరుస్తూ ఉండాలి. మూరింగ్ వల్ల మొత్తం కేజ్ ఆకారం స్థిరంగా నిలిచి ఉంటుంది కనుక నెలకొకసారి మూరింగ్ గొలుసులను శు(భవరుస్తూ ఉండాలి. ఇటువంటి మూరింగ్ వ్యవస్థ కనీసం రెండేళ్లు పదిలంగా ఉంటుంది, ఆపైన మారుతున్న కాలాన్ని బట్టి మూరింగ్ గొలుసుని మార్చే నిర్ణయం తీసుకోవాలి.

ដី<mark>៦០ សឋ</mark>្យ**ទាខា (Fish management)**

పంజరాలలో కల్చర్ చేసే చేపల యొక్క ఆరోగ్య స్థితి మరియు అవి ఆహారం తీసుకునే తీరు తనిఖీ చేసేందుకు కనీసం ప్రతి 15 రోజులకు ఒకసారి చేపల మరియు నీటి నమూనాలు పరిశీలించాలి. పంజరాలలో వచ్చే ప్రధాన ఆరోగ్య సమస్యలు బాక్టీరియల్ అంటువ్యాధులు (ఇన్ఫెక్షన్) మరియు మొప్పల ద్వారా శ్వాస తీసుకోలేని ఉక్కిరిబిక్కిరి ప్రవర్తన. బాక్టీరియల్ ఇన్ఫెక్షన్ ఎక్కువగా విట్రియో జాతుల ద్వారా మరియు అప్పుడప్పుడు ఇతర బాక్టీరియా ద్వారా, వేసవి కాలంలో ఎక్కువగా సంక్రమిస్తుంది. విట్రియోసిస్ సంక్రమించిన చేపలు నీటిపై తేలియాడుతూ, వాటి కళ్ళు మొప్పలు ఎర్రటి రంగులోకి మారతాయి. చేపలలో ఇటువంటి బాక్టీరియల్ ఇన్ఫెక్షన్ రాకుండా మందు కలిపిన ఫీడ్లు మరియు యాంటీబయోటిక్స్ ఉపయోగించడం అవసరం. ఇక చేపలు, పరాన్నజీవుల బారిన పడినట్లైతే వాటి బాహ్య త్వచం (చర్మం) మీద పెద్ద బొడిపెలుగా, గుంతలుగా కనిపిస్తుంది. దీనికి చేపలని కొంత సేపు మంచి నీటిలో ఉంచడం ద్వారా, లేదా ప్రాజిక్విస్టల్ మందుతో తయారు చేసిన మేతని ఇవ్వడం ద్వారా నివారించవచ్చు.

चි<mark>ත්ව බටත්ජට කාවරාා කාටි_{දි}ඔටර් (ජුරාබජුරාාමා)</mark> (Fish Harvest and Marketing)

పంజరాలలో చేపలు ఒక చిన్న పరిమిత వాతావరణంలో ఉంటాయి కాబట్టి చేపలను పంట రూపంలో బయటికి తీయడం ఇతర కల్చర్ పద్ధతులకంటే సులభం. లోపలి వలను పైకెల్తి చేతి వల సహాయంతో లోపలి వలలో నాలుగు మూలలా ఉన్న చేపలను బయటికి తీయవచ్చు. బయటికి తీసిన మొత్తాన్ని వెంటనే పరిశుభమైన నీటిలో కడిగి, శీతలీకరణం ద్వారా (ఐస్ ముక్కలు) చేపలని తాజాగా మరియు నాణ్యత పోకుండా ఉంచవచ్చు. తదుపరి వీటిని ప్లాస్టిక్ ట్రేలలో గానీ లేదా థర్మోకోల్ పెట్టెల్లో పెట్టి చేపల యొక్క దిగువ మరియు పై భాగాలలో ఐస్ ముక్కలు చల్లి ప్యాక్ చేస్తారు. పెద్దమొత్తంలో సాగు చేయడమే కాకుండా, స్థానిక మార్కెట్ లో గిరాకీని బట్టి నదీముఖ పంజరాలలో బ్యాచ్ పధ్ధతి లో కూడా హార్వెస్ట్ చేయవచ్చు. అందువల్ల, గిరాకీని బట్టి ఏరోజుకారోజు అవసరమైన మొత్తాన్ని బయటికి తీసి అమ్ముకోవచ్చు. చేపలను విక్రయించడానికి అత్యంత అనువైన రాష్ట్రాలు కేరళ, పశ్చిమ బెంగాల్ మరియు ఆంధ్రప్రదేశ్, తమిళనాడు, కర్ణాటక, మహారాడ్లులలో ఎంపిక చేసిన కొన్ని ప్రదేశాలు. ఎంపిక చేసిన క్రయవిక్రయదారులలో కొందరు మాక్స్వెల్ ఎగుమతిదారులు (MAXWELL EXPORTERS), కొచ్చిన్, కేరళ మత్స్యఫెడ్ (MATSYAFED), కేరళ, పశ్చిమ బెంగాల్ ఫిషరీస్ డెవలప్మెంట్ కార్పొరేషన్ (WEST BENGAL FISHERIES DEVELOPMENT CORPORATION), కోల్మతా.

మొత్తం 10 కేజులలో చేపల పెంపకం కోసం వెచ్చించిన కార్యాచరణ వ్యయం మరియు లాభం 2వ పట్టికలో ఇవ్వబడింది (పట్టిక - 2).

ఒక క్యూబిక్ మీటరుకు 25 చేపల చొప్పున ($25/m^3$) పెంపకం చేయడం వల్ల రైతుకు సుమారు రూ. 16.9 లక్షల నికర లాభం మరియు రూ. 325/కిలో ధర పలికే అవకాశం అవుతుంది.

క్ష. సం.	వివరాలు	వ్యయం (లక్షల్లో)
1	10 సంవత్సరాల ఉపయోగ సగటు కాలం పై పంజరం మరియు ఉపకరణాల తరుగుదల విలువ (కేజ్ మరియు ఉపకరణాల ధర:30,000/యూనిట్) మరియు తరుగుదల 43,000/యూనిట్/సంవత్సరం	4.3
2	చేప పిల్ల (సీడ్) ధర – 32,500 ఏ రూ. 20/విత్తనం (రవాణాతో సహా): 1500 లు/ఒక కేజుకు మరియు నర్సరీ పెంపకం అదనంగా	6.5
3	ఫీడ్ (దాణా) @ FCR 1:1.70; మొత్తం 35.7 టన్నుల ఫీడ్ (FCR ఆధారంగా మరియు కాలమ్ 8 నుండి ఉత్పత్తి) @ రూ. 100/కేజీ; మనుగడ రేటు 85%, హార్వెస్ట్ చేసేటప్పుడు సగటు పరిమాణం 750 గ్రాములు	35.70
4	లేబర్ ఖర్చు ఏ రూ 30,000/ఒక లేబరుకు/ఒక నెలకు (10 నెలలు) (చూసుకోవడానికి మరియు ఉండడానికి సహా)	3.00

5	బోటు, ఇంధనం మరియు మేతయొక్క రవాణా ఖర్చులు – నెలకు రూ. 6000 చొప్పున 10 నెలలు	0.60
6	వల మార్చాడనికి అయ్యే ఖర్చు – 3 వ్యక్తులకు, తల ఒక్కింటికి రూ. 500 చొప్పున, ప్రపీ కేజు యొక్క ఉత్పత్తి కాలంలో 5 సార్లు	0.75
7	అదనపు ఖర్చులు: విద్యుత్, ఫీడ్ లో కలిపేందుకు మందులు మరియు ట్రోబయోటిక్తతో సహా	0.5
8	వ్యయం (క్రమ సంఖ్య: 1 నుండి 7)	51.35
9	మొత్తం ఆదాయం ఉత్పత్తి: 21 టన్నులు @ 85% మనుగద రేటుతోబీ ప్రతి చేప 750 గ్రా సైజు తో @ రూ. 325/కేజీ	68.25
10	నికర లాభం: (9 – 8)	16.90

చందున పార (జండియన్ పాంపానో) యొక్క కేజ్ కల్చర్ ఉత్తమ నిర్వహణా పద్ధతులు (Best Management Practices for Cage Culture of Indian Pompano)

- ♦ సమతుల్యమైన అలల తాకిడి ఉండే మ్రదేశంలో పంజరం ఏర్పాటు చేయాలి
- ♦ అత్యధిక ఉత్పత్తి సాధించేందుకు 25 గ్రాముల కంటే ఎక్కువ సైజు చేప పిల్లలను స్టాక్ చేసుకోవాలి
- ఫీడ్ (మేత) వృధాను నివారించడానికి 1 మి.మీ. మెష్ సైజులో ఉండే ఫీడ్ వలను లోపలి కేజ్ వలతో జత చేయాలి.
- కేజు యొక్క లోపలి వలకి తోడ్పడే విధంగా మధ్యలో బల్లాస్ట్ పైపును అమర్చడం వల్ల కేజు యొక్క ఆకారం చెదరకుండా స్థిరంగా ఉంటూ, వల మడతలు పడకుండా కూడా ఉంటుంది
- చేపలు, పంజరపు వల మరియు ఇతర పంజర విభాగాల యొక్క పనితీరును కాలానుగుణంగా ఎప్పటికప్పుడు పర్యవేక్షణ చేస్తూ ఉండాలి.
- చేపలకి వచ్చే వివిధ ఇన్ఫెక్షన్లు కనుగొనడానికి ఎప్పటికప్పుడు విట్రియోసిస్ మరియు అవి మొప్పల ద్వారా శ్వాస సరిగ్గా తీసుకుంటున్నాయా లేదా అని పరిశీలిస్తూ ఉండాలి. ఒకవేళ ఇన్ఫెక్షన్ సంక్రమిస్తే తక్షణ చికిత్సా చర్యలు మొదలుపెట్టాలి.

అధ్యాయం - 04

తీరప్రాంత పంజరాలలో చందువ/మూకుడు పార చేపల పెంపకం

శేకర్ మేగరాజన్, జయ్మశీ లోకా, బళ్ల వంశీ మరియు పద్మజా రాణి

ICAR-CMFRI, విశాఖపట్నం ప్రాంతీయ కేంద్రం, పాండురంగపురం, ఆంధ్రా యూనివల్సిటీ పోస్ట్, విశాఖపట్నం - 530003

ക്ൺന്ത്യൂര് O

. ම්සි ఫార్మింగ్ (పంజరాలలో చేపల సాగు) అనేది చేపల ఉత్పత్తిని పెంచే సాంకేతికత [ప్రక్రియలలో (టెక్నాలజీ) అత్యంత ముఖ్యమైనదిగా ప్రపంచవ్యాప్తంగా గుర్తించబడింది. అధిక లవణీయత కలిగిన నదీముఖాల ప్రాంతాలు గ్రామీణ జనాభా యొక్క జీవనోపాధిని మెరుగుపరచడానికి ఎన్నుకోబడే ఏకీకృత పర్యావరణ వ్యవస్థలలో ఒకటిగా పరిగణించబడుతున్నాయి. భారతదేశంలో, తీర్మపాంతాల సరిహద్దులలో నదీముఖ వనరులు అందుబాటులో ఉన్నాయి కనుక అమర్చిన పంజరాలలో వివిధ జాతుల సముద్ర చేపలను సాగు చేయడం ద్వారా ఈ వనరులను అత్యధిక శాతంలో ఉపయోగించుకోవచ్చు. ఇలాంటి వివిధ రకాల సముద్రపు చేప జాతులలో చందువ పార (ఇండియన్ పొంపానో; ట్రాకినోటస్ ముకాలీ) ఎన్నకోబడింది. పంజరాలలో పొంపానో చేపలను సాగు చేసేందుకు కావాల్సిన లక్షణాలు: విభిన్న పరిస్థితులకు తదనుగుణంగా ఎదగడం, కృతిమ ఫీడుకు తొందరగా అలవాటు పడడం, వివిధ స్థాయిల లవణీయతల మార్పులను తట్టుకోవడం, సత్వర అభివృద్ధి రేటు మరియు వినియోగదారుల యొక్క అధిక ప్రాధాన్యత. ఈ పొంపానో చేపల కల్చర్ విశేష లక్షణాలు మరియు దీని విత్తనోత్పత్తి పద్దతులను ఇండియన్ కౌన్సిల్ ఆఫ్ అగ్రికల్చర్ రీసెర్చ్ (ICAR) కు చెందిన కేంద్ర సముద్ర మత్స్య పరిశోధనా సంస్థ (సెంట్రల్ మెరైన్ ఫిషరీస్ రీసెర్చ్ ఇన్బిట్యూట్ CMFRI) యొక్క విశాఖపట్నం ప్రాంతీయ కేంద్రం అభివృద్ధి చేసిన తర్వాత దీనిని నదీముఖ జలాలలో సాగుకు అనుకూరించేలా కేజ్ కల్చర్ టెక్నాలజీకి ప్రమాణాలు నెలకొల్పింది. భారత ప్రభుత్వం యొక్క నేషనల్ ఫిషరీస్ డెవలప్మెంట్ బోర్డ్ (NFDB) నుండి ఆర్థిక సహకారంతో ఆంధ్రప్రదేశ్లోని వివిధ ప్రాంతాలలో నీలి విప్లవం పథకం (బ్లూ రెవల్యూషన్ స్కీమ్) క్రింద ఈ టెక్నాలజీని విశదీకరించడం జరిగింది. ఈ పొంపానో జాతియొక్క కేజ్ కల్చర్ పద్ధతిలో ఇమిడి ఉన్న వివిధ దశలు ఈ ప్రకారంగా ఉన్నాయి.

కేజ్ స్థలం కొరకు కావలసిన పలమాణాలు (Cage site selection)

పంజరాలలో పొంపానో చేపల సాగు (కేజ్ కల్చర్) ఏ స్థలంలో చేస్తున్నాం అనేది ఒక ముఖ్యమైన అంశం. ఎంచుకున్న (పదేశం మానవ నివాసాలకు దూరంగా, సముద్ర ముఖద్వారం నుండి కనీసం 5 కి.మీ. దూరంలో ఉండి, సరైన నీటి (పవాహంతో కాలుష్య కారకాలు లేకుండా చూసుకోవాలి. నీటి ఉష్ణోగ్రత: 26 – 30°C, నీటి లోతు: 4 – 10 మీ. మెరుగైన ఆక్సిజన్ సరఫరా కోసం నిరంతర నీటి కదలికలు ఉండే చోటును ఎంచుకోవాలి. ఎంచుకున్న స్థలం కేజ్ సైట్ను చేరుకోవడానికి సులభంగా అందుబాటులో ఉండాలి.

ఆటు పోట్ల సమయంలో నీటి ప్రవాహం సమతుల్యంగా ఉండేటట్లు చూసుకోవాలి. అలల తాకిడి ఎక్కువగా ఉంటే, కేజ్ యొక్క మూరింగ్ మరియు వలయొక్క సామర్థ్యం తగ్గే అవకాశం ఉంది కాబట్టి కేజ్ ను వేరే చోటికి మార్చే అవసరం పడవచ్చు. అలల ఒత్తిడి కారణంగా వల యొక్క బలం తగ్గి, దీని ప్రభావం వల లోపల ఉండే చేపల కదలికలకు ఎంతో ఇబ్బంది కలిగిస్తుంది.

పంజరం నిర్మాణం (Cage Design)

గాల్వనైజ్డ్ ఐరన్ (GI) పైపులని (B- $\bar{\eta}$ డ్) చతుర్వస పంజరాల ఆకృతిలో $1.5\,$ అంగుళాల వ్యాసం కలిగి, $5\,$ మీటర్ల పొడవు \mathbf{x} 5 మీటర్ల వెడల్పు కొలతలతో తయారు చేస్తారు. కేజ్ రూపకల్పనలో బేస్ పైపులు మరియు హ్యాండ్ రైల్ ముఖ్యమైనవి, పనితీరులో సౌలభ్యం కోసం బేస్ పైపుల పైన 0.8 మీటర్ల దూరంలో హ్యాండైల్ ఉంచబడుతుంది. ರಾಂದು ಪೆಸ್ పైపులు 1 ಅದುಗು ದూರಂಲ್ ಸಮಾಂತರಂಗಾ ఉಂచబడి, ఆహారం మరియు నమూనాల సేకరణ సమయంలో సులువు కోసం చెక్క పలకలు లేదా స్టీల్ ప్లేట్ల సహాయంతో పనికొరకు కొంత స్థలం నిర్మించబడుతుంది. నీటిపై తేలదం కోసం గాలితో నింపిన బారెల్స్ (200 లీటర్లు) కేజ్ (ఫేమ్కు జోడించబడతాయి. పంజరానికి నాలుగు వైపులా, ఒక్కో వైపు రెండేసి చొప్పున మొత్తం 8 బారెల్స్ ఉపయోగించబడతాయి. HDPE తో అల్లిన వలలు మూడు రకాలుగా ఉంటాయి. బయట ఉన్నది 63 ప్లై, 40 మి.మీ. మెష్ $(6 \times 6$ మీ. పరిమాణం మరియు 4 మీ. లోతు) మరియు 3 మి.మీ. పురిబెట్లు మందం (Twine Thickness); లోపల ఉన్న వల 63 ప్లై, 25 మి.మీ. మెష్ (5 x 5 మీ. పరిమాణం మరియు 4 మీ. లోతు) మరియు 3 మి.మీ. పురిబెట్టు మందంబీ పక్షుల నుండి చేపల రక్షణ కోసం 80 మిల్లీమీటర్ల నైలాన్ వలని బర్డ్ నెట్గ వాడతారు. నీటి కదలికల వలన పంజరా నిర్మాణం మారకుండా స్థిరీకరించేందుకు నాలుగు ఇనుప లంగర్లను (ఒక్కొక్కటి 50 నుండి 75 కిలోల బరువు) వాడతారు. లంగర్లతో కేజ్ ను కట్టడానికి 24.0 మి.మీ. వ్యాసం కలిగిన పాలీ్రపొపైలిన్ తాడులు లేదా ఉక్కు (స్టీల్) గొలుసులు వాడతారు. నదీముఖభాగాల దిగువున ఎక్కువగా బంకమట్టి ఉండే అవకాశం ఉన్నందున, కేజ్ సడలకుండా దృధమైన పట్టు ఉండేలా వాడి కలిగిన లంగర్లను వాడడం మంచిది. ప్రవహించే నీటిలో వలయొక్క ఆకారం మరియు పరిమాణం చెదరకుండా రండ్రాలు కలిగిన $(0.5 ext{ అంగుళాల వ్యాసం})$ GI పైపులతో తయారు చేయబడిన బలాస్ట్ పైపులను ఉపయోగిస్తారు. నీటి కదలికల రాపిడికి వలలు చిరిగిపోకుండా బలాస్ట్ పైపుల చివరిభాగాలు చుట్టబడతాయి. సులభమైన పనితీరు కోసం పైపులను నేరుగా బేస్ పైపుల నుండి వేలాడదీయాలి.

పంజరాలలో చేపల సాగు (Cage Farming)

పంజరాలలో పొంపానో చేపల సాగు చేయడానికి చేపల యొక్క సరైన పరిమాణం 20 నుండి 25 గ్రాములు. ఈ చేపపిల్లలు

మార్కెట్ గిరాకీ పరిమాణం అంటే 750 గ్రాముల కంటే ఎక్కువగా చేరుకోవడానికి దాదాపు 10 నెలలు పడుతుంది. అయితే కేజ్ లో వేసిన చేపపిల్లలు పెద్ద సైజులో ఉన్నట్లయితే కల్చర్ వ్యవధిని మరింత తగ్గించవచ్చు. అందువల్ల కల్చర్ కాలాన్ని తగ్గించడానికి నర్సరీ పెంపకం ఒక ముఖ్యమైన అంశంగా పరిగణించబడుతుంది. కేజ్ కల్చర్కు సంబంధించి మూడు రకాల నర్సరీ వ్యవస్థలు అనుకూలంగా ఉంటాయి. అవి:

- 1. FRP లేదా కాంక్రీట్ ట్యాంకులలో ఫ్లో –్రతూ (Flow-Through) ఆధారంగా చేసుకుని చేసే పెంపకం
- 2. రీసర్మ్యులేటింగ్ ఆక్వాకల్చర్ సిస్టమ్ (RAS) ఆధారిత నర్సరీ వ్యవస్థలు
- 3. చెరువులలో/ఇతర నీటి సముదాయాలను ఆధారంగా చేసే నర్సరీ వ్యవస్థలు

చేపల బదిలీ సౌలభ్యం కోసం ఈ నర్సరీ సౌకర్యాలను కేజులు ఉండే ట్రదేశానికి దగ్గరగా ఏర్పాటు చేసుకోవాలి. దూరాన్ని బట్టి నర్సరీలో పెంచిన చేప పిల్లలను బదిలీ చేసేటప్పుడు ఆక్సిజన్తో (ప్రాణవాయువు) నిండిన పాలిథిన్ సంచుల్లో గానీ లేదా ఆక్సిజన్తో కూడిన కంటైనర్లలో గానీ కేజుల దగ్గరకు రవాణా చేయబడతాయి.

႐ြိ**-စချွစ် နိဗ္ဗ္မဝ် စ်ဝ္ဂုစ (**Grow-Out Culture)

కేజ్ (ప్రదేశానికి చేరుకున్న తర్వాత రవాణా చేయబడిన చేపపిల్లలని నెమ్మదిగా విడుదల చేస్తారు. ఒక కేజ్*లో* 1500चිंపపిల్లలను అనగా ఒక క్యూబిక్ మీటరుకు 15 चెंపపిల్లల చొప్పున (స్టాకింగ్ డెన్సిటీ 15 \cos $/m^3$) స్టాక్ చెయ్యవచ్చు. [గ్లో-అవుట్ కల్చర్ పద్ధతిలో చేపలకు ఇచ్చే ఆహరం తేలుతూ ఉండి అధిక ట్రోటీన్తో కూడిన కృతిమ గుళికల రూపంలో ఆహార గుళికలను (Floating Artificial Pelleted Feed) చేపపిల్లలకు ఆహారంగా ఇవ్వబడుతుంది. చేపలకు మేత ఇస్తున్నప్పుడు గాలివాటానికి అనుగుణంగా మరియు మేత వృధా కాకుండా పంజరపు లోపలి వలలో ఫీడ్ మెష్ ను (1 మీటర్లు లోతు) ఏర్పాటు చెయ్యాలి. ఇచ్చిన మేత మెరుగ్గా జీర్ణంకావడం కోసం, ప్రతి రెండు మేత సమయాల మధ్య కనీసం 3 గంటల వ్యవధి ఉండేలా చూసుకోవాలి తదనుగుణంగా ఎంత తరచుగా మేత ఇవ్వాలో నిర్ణయించుకోవాలి. కేజులో ఉన్న చేపల పెరుగుదలకు రోజుకు నాలుగు సార్లు ఆహారం అందించడం (శేయస్కరం. నదీముఖ ప్రాంతాలలో నెలకొల్పిన కేజులు సులభంగా అందుబాటులో ఉంటాయి కాబట్టి, కనీసం నాలుగు సార్లు (ఉదయం 6 గంటలకి, 10 గంటలకి, మధ్యాహ్నం 2 గంటలకి మరియు సాయంత్రం 6 గంటలకి) రోజువారీ దాణా సిఫార్సు చేయబడింది. [గ్లో—అవుట్ కల్చర్లో చేపల పెరుగుదలను [పతి 15 రోజులకు ఒకసారి పర్యవేక్షించాలి మరియు బరువు ఆధారంగా దాణా రేటును నిర్ణయించి సర్దుబాటు చేయాలి. అనేక పరిశీలనల ఆధారంగా తేలిందేమిటంటే 20 నుండి 25 గ్రాముల చేపలని ఒక క్యూబిక్ మీటరుకు 15 చేపల చొప్పున వేశాక, అవి 800– 850 గ్రాముల పరిమాణానికి చేరుకోవడానికి దాదాపు 10 నెలలు పడుతుంది. అయితే 100 గ్రాముల పరిమాణంలో గనక వేస్తే అదే పరిమాణాన్ని చేరుకోవడానికి అది 5 నెలలు పడుతుంది. నదీముఖ నీటి వనరులలో చిన్న చిన్న చేపలు మరియు ఇతర చిన్న సముద్ర జీవులు పుష్కలంగా ఉంటాయి కనుక ఇటువంటి (పదేశాలలో సాగు చేయబడే చేపలు వీటిని తినే అవకాశం ఎక్కువగా ఉండి ఫలితంగా మెరుగైన పెరుగుదల ఉంటుంది. చేపల పెరుగుదల మరియు దాణా రేటు ఈ క్రింది పట్టికలో (పట్టిక $\,1$) ఇవ్వబడింది. వర్నాకాలంలో నదీముఖ ఆధారిత వ్యవస్థలలో వరద తాకిడి ఉండే అవకాశం ఉంటుంది కాబట్టి చేపల పెంపకం కేవలం 8-10 నెలల వరకు మాత్రమే సాధ్యమవుతుంది. అందువల్ల పూర్తి పంట కాలాన్ని సఫలీకృతం చెయ్యదానికి నర్సరీ వ్యవస్థను సమర్ధవంతంగా నిర్వహించి గ్రో –అవుట్ కల్చర్ యొక్క ప్రణాళిక సిద్ధం చేయాలి.

కల్చర్ వ్యవధి	చేప సైజు	దాణా సైజు	<u> </u>	దాణా ఢ్రీక్వెన్సీ
DOC	(LL)	(మి.మీ.)	Feed Rate(%)	(రోజుకి ఎన్నిసార్లు)
		Feed Size		
0-30	25 - 50	1.2-1.8	8-6	5
30-120	50 -200	1.8-3.0	6-5	4
120-180	200-400	3.0-4.0	5-4	4
180-210	400-650	4.0-6.0	4- 2.5	4
210-300	650-900	6.0-1.0	2.5-1.5	3

ទිස් (බ්oසර්o) බලෑಣ බර්_ග්ණ (Cage Structure Management)

ఇండియన్ పొంపానో (చందువ పార) యొక్క కేజ్ కల్చర్కు 10 నెలల పాటు కల్చర్ వ్యవధి అవసరం, కాబట్టి కేజ్ నిర్మాణాన్ని చక్కగా నిర్వహించాలి మరియు ఇందులో ఎప్పటికప్పుడు వలని మార్చడం, కేజ్ యొక్క నిర్మాణ సామాగ్రిని శుథ్రపరచడం మరియు మూరింగ్ ను తరచూ తనిఖీ చెయ్యడం చేస్తూ ఉండాలి. వలకి బార్ఫాకిల్స్ (ఒక తరహా నత్త గుల్లలు), మెస్సెల్ లాంటి పెంకు కలిగిన జీవులు పేరుకుపోయే అవకాశం ఉంది కనుక అవసరాన్ని బట్టి వలని శుథ్రం చేసి మార్చవలసి ఉంటుంది. ఋతువుని, ట్రుదేశాన్ని బట్టి ఫోఉలింగ్ జీవజాతులు ఒక్కోసారి ఒక్కోరకంగా పేరుకుపోతుంది. పరిశీలనల ట్రకారం ఆంధ్రట్రదేశ్ నదీసంబంధిత కాలువలలో ఇంకా వాగులలో ముఖ్యంగా సిల్ట్ (మెత్తని మట్టి) పేరుకుపోవడం ఒక పెద్ద సమస్య. ఇటువంటి సమస్యకి జెట్ పైపుతో నీటిని (స్పే రూపంలో బలంగా కొట్టి శుథం చేస్తే సరిపోతుంది, దీనికి నీటిని మార్చే అవసరం లేదు. మరోవైపు, చిన్నపాటి ఏరులలో కేజు వలలకి ఆకుపచ్చ పెంకు కలిగిన మెస్సెల్స్ (Green Mussells) ఎక్కువగా అంటుకుని ఉంటాయి, దీనికోసం ఎప్పటికప్పుడు వలని మారుస్తూ ఉండాలి. కేజ్ మూరింగ్ మొత్తం కేజ్ నిర్మాణాన్ని మరియు దాని పరిమాణాన్ని పట్టి ఉంచదానికి ఎంతో సహాయపడుతుంది, అందువల్ల మూరింగ్ గొలుసులను కనీసం నెలకు ఒకసారి అయినా పర్యవేక్షణ చెయ్యడం ఎంతో అవసరం.

చేపల **నిర్వహణ** (Fish management)

పంజరాలలో కల్చర్ చేసే చేపల యొక్క ఆరోగ్య స్థితి మరియు అవి ఆహారం తీసుకునే తీరును తనిఖీ చేసేందుకు కనీసం [ప్రతి 15 రోజులకు ఒకసారి చేపల మరియు నీటి నమూనాలు పరిశీలించాలి. సునిశితంగా పరిశీలిస్తూ, రోజువారీ ఆహారం తీసుకునేటప్పుడు చేపల [ప్రవర్తనను గమనించడం వాటి ఆరోగ్య స్థితిని అంచనా వెయ్యడానికి మంచి సూచిక. నదీముఖ పంజరాలలో వచ్చే [ప్రధాన ఆరోగ్య సమస్యలు బాక్టీరియల్ అంటువ్యాధులు (ఇన్ఫెక్షన్) మరియు మొప్పల ద్వారా శ్వాస తీసుకోలేని [ప్రవర్తన. బాక్టీరియల్ ఇన్ఫెక్షన్ ఎక్కువగా విట్రియో జాతుల ద్వారా మరియు అప్పుడప్పుడు ఇతర బాక్టీరియా ద్వారా, వేసవి కాలంలో ఎక్కువగా సం[కమిస్తుంది. అందువల్ల, వేసవిలో చేపలను స్టాక్ చెయ్యకుండా నివారించాలి మరియు ముందే వేసిన చేపలకు వేడి తగలకుండా వలను నీటిలో కనీసం 3 నుండి 4 మీటర్ల లోతుకు ఉండేలా చూసుకోవాలి. చేపలలో ఇటువంటి బాక్టీరియల్ ఇన్ఫెక్షన్ రాకుండా మందు కలిపిన ఫీడ్లు మరియు ప్రోబయోటిక్స్ ఉపయోగించడం అవసరం. బంకమన్ను లాంటి మట్టి పేరుకుపోయి చేపలు మొప్పలద్వారా ఊపిరి తీసుకోలేక మరణించడం లాంటి సమస్యలను తరచుగా వలను శుభపరచడం ద్వారా నివారించవచ్చు.

चි්<mark>න්ම పెටබ්ජට කාවරාා කාංට</mark>ු ඔ<mark>ීටර් (ඡුරාාබජුර</mark>ාාමා) (Fish Harvest and Marketing)

పంజరాలలో చేపలు ఒక చిన్న పరిమిత వాతావరణంలో ఉంటాయి కాబట్టి చేపలను పంట రూపంలో బయటికి తీయడం ఇతర కల్చర్ పద్ధతులకంటే సులభం. లోపలి వలను పైకెత్తి చేతి వల సహాయంతో లోపలి వలలో నాలుగు మూలలా ఉన్న చేపలను బయటికి తీయవచ్చు. బయటికి తీసిన మొత్తాన్ని వెంటనే పరిశుభమైన నీటిలో కడిగి ప్లాస్టిక్ ట్రేలలో గానీ లేదా థర్మోకోల్ పెట్టెల్లో పెట్టి చేపల యొక్క దిగువ మరియు పై భాగాలలో ఐస్ ముక్కలు చల్లి ప్యాక్ చేయడం వలన చేపలని తాజాగా మరియు నాణ్యత పోకుండా ఉంచవచ్చు. పెద్దమొత్తంలో సాగు చేయడమే కాకుండా, స్థానిక మార్కెట్ లో గిరాకీని బట్టి నదీముఖ పంజరాలలో బ్యాచ్ పద్ధతి లో కూడా హార్వెస్ట్ చేయవచ్చు. అందువల్ల, గిరాకీని బట్టి ఏరోజుకారోజు అవసరమైన మొత్తాన్ని బయటికి తీసి అమ్ముకోవచ్చు.

చేపలను విక్రయించదానికి అత్యంత అనువైన రాష్ట్రాలు కేరళ, పశ్చిమ బెంగాల్ మరియు ఆంధ్రప్రదేశ్, తమిళనాడు, కర్ణాటక, మహారాడ్హులలో ఎంపిక చేసిన కొన్ని ప్రదేశాలు. ఎంపిక చేసిన క్రయవిక్రయదారులలో కొందరు మాక్స్వెల్ ఎగుమతిదారులు (MAXWELL EXPORTERS), కొచ్చిన్, కేరళ; మత్స్యఫెడ్ (MATSYAFED), కేరళ; పశ్చిమ బెంగాల్ ఫిషరీస్ డెవలప్మెంట్ కార్పొరేషన్ (WEST BENGAL FISHERIES DEVELOPMENT CORPORATION), కోల్మతా.

ಆಶ್ಚಿತ ವಿషಯಾಲು (Economics)

మొత్తం 10 కేజుల సమూహంలో చేపల పెంపకం కోసం వెచ్చించిన కార్యాచరణ వ్యయం మరియు లాభం 2వ పట్టికలో ఇవ్వబడింది (పట్టిక - 2).

ఒక క్యూబిక్ మీటరుకు 15 చేపల చొప్పున $(15/m^3)$ పెంపకం చేయడం వల్ల రైతుకు సుమారు రూ. 8.0 లక్షల నికర లాభం మరియు రూ. 325/కిలో ధర పలికే అవకాశం అవుతుంది.

110		
క్ష. సం.	వివరాలు	వ్యయం
		(లక్షల్లో)
1	5 సంవత్సరాల ఉపయోగ సగటు కాలం పై పంజరం మరియు	
	ఉపకరణాల తరుగుదల విలువ (కేజ్ మరియు ఉపకరణాల ధర:	
	1,36,400/యూనిట్) మరియు తరుగుదల 23,700/యూనిట్/సంవత్సరం	2.73
2	చేప పిల్ల (సీడ్) ధర – 15,750 ఏ రూ. 15/విత్తనం (రవాణాతో సహా)	
	1500 లు/ఒక కేజుకు మరియు నర్సరీ పెంపకంలో మరణాలను భర్తీ	0.00
	చేయడం కొరకు అదనంగా 5%	2.36
3	హాపాలో నర్సరీ పెంపకం	0.5
4	ఫీద్ (దాణా) @ FCR 1:1.60; మొత్తం 17.30 టన్నుల ఫీద్	
	(FCR ఆధారంగా మరియు కాలమ్ 8 నుండి ఉత్పత్తి) @ రూ. 110/కేజీ	19.03
5	లేబర్ ఖర్చు @ రూ 12,000/ఒక లేబరుకు/ఒక నెలకు	
	(12 నెలలు) (చూసుకోవడానికి మరియు ఉండడానికి సహా)	1.44
6	అదనపు ఖర్చులు: విద్యుత్, ఫీడ్లో కలిపేందుకు మందులు మరియు	
	ట్రోబయోటిక్స్తో సహా	1.0
7	వ్యయం (క్రమ సంఖ్య: 1 నుండి 6)	27.06
8	ఉత్పత్తి: 10.80 టన్నులు @ 85% మనుగడ రేటుతో; డ్రుతి చేప 850 గ్రా	
	సైజు తో ఏ రూ. 325/కేజీ	35.1
9	నికర లాభం: (8 – 9)	8.04

చందువ పార (జండియన్ పాంపానో) యొక్కబ్యాక్యాటర్ కేజ్ కల్చర్ ఉత్తమ నిర్వహణా పద్ధతులు (Best management Practices for Coastal Cage Culture of Indian Pompano)

- సమతుల్యమైన అలల తాకిడి ఉండే ప్రదేశంలో పంజరం ఏర్పాటు చేయాలి మరియు ఆ ప్రదేశం సముద్రానికి కనీసం 5 కి.మీ. దూరంలో ఉండాలి.
- ♦ అత్యధిక ఉత్పత్తి సాధించేందుకు 20 గ్రాముల కంటే ఎక్కువ సైజు చేప పిల్లలను స్టాక్ చేసుకోవాలి
- ఫీడ్ (మేత) వృధాను నివారించడానికి 1 మి.మీ. మెష్ సైజులో ఉండే ఫీడ్ మెష్ను లోపలి కేజ్ నెట్తో జత చేయాలి.
- ♦ మేత అన్ని చేపలకు అందుబాటులో ఉండే విధంగా ఇవ్వాలి.
- చేపలు, పంజరపు వల మరియు ఇతర పంజర విభాగాల యొక్క పనితీరు కాలానుగుణంగా ఎప్పటికప్పుడు పర్యవేక్షణ చేస్తూ ఉండాలి
- చేపలకి వచ్చే వివిధ ఇన్ఫెక్షన్లు కనుగొనడానికి ఎప్పటికప్పుడు చేపల కదలికలను మరియు వ్యాధి లక్షణాలను
 ఎప్పటికప్పుడు గమనిస్తూ ఉండాలి. ఒకవేళ వ్యాధి సంక్రమిస్తే తక్షణ చికిత్సా చర్యలు మొదలు పెట్టాలి.

అధ్యాయం - 05

ම්රතුංරම ඩ්බව ඩිරාතු)වෙ[®] ස්රජාත්/කාංජාඡා බංර ඩ්බව බංරා

శేకర్ మేగరాజన్, రితేష్ రంజన్, నరసింహులు సాధు మరియు బళ్ల వంశీ

ICAR-CMFRI, విశాఖపట్నం ప్రాంతీయ కేంద్రం, పాండురంగపురం, ఆంధ్రా యూనివర్సిటీ పోస్ట్, విశాఖపట్నం - 530003

൙൮ൢൕ൦

ఇండియన్ పొంపానో / చందువ పార (ట్రాకినోటస్ ముకాలీ) చేపలు, తీర్మసాంత ఆక్వాకల్చర్కు మంచి ఎన్నుకోబడిన జాతులలో మంచి గిరాకీ ఉన్న జాతిగా పరిగణించబడతాయి. నియంత్రిత స్థితిలో సంతానోత్పత్తికి అనుకూలత, విభిన్న కల్చర్ పరిస్థితులకు సానుకూలత, కృత్రిమ మేతకు చాలా తొందరగా అలవాటు పడడం, ఆరోగ్యంగా పోషక విలువతో కలిగిన నాణ్యత మరియు వినియోగదారులు కోరుకునే ప్రాధాన్యత వంటి పై లక్షణాలన్నీ ఈ చేప కలిగి ఉండి వాణిజ్యపరమైన ఉత్పత్తి కోసం ఎన్నుకోబడిన కొత్త రకం జాతులలో ఈ చేప ఒకటి. ఈ చేపలను సముద్రపు పంజరాలలో మరియు తీర ప్రాంత చెరువులలో కూడా సౌకర్యవంతంగా పెంచవచ్చు. ఈ జాతి యొక్క పెంపకం మరియు విత్తనోత్పత్తి కార్యక్రమాల సాంకేతికతను ICAR-CMFRI, విశాఖపట్నం ప్రాంతీయ కేంద్రం ప్రమాణీకరించింది మరియు తీర్వపాంత వ్యవసాయ క్షేతాలలో కూడా వీటి సాంకేతికత కార్యక్రమాలు అభివృద్ధి చేయబడింది. వీటి సాగును తీర్వపాంతాలలో లేదా ఇప్పటికే ఉన్న చేపల చెరువులలో కూడా నిర్వహించవచ్చు. చెరువుల తయారీ, నీటి శుద్ధి, నర్సరీ పెంపకం, గ్రో –అవుట్ సాగు మరియు హార్వెస్టింగ్ లాంటి వివిధ దశలు వీటి కల్చర్ లో భాగంగా చేయబడతాయి.

చెరువు సిద్ధం చెయ్యటం

చెరువుని సాగుకు అనుకూలంగా తయారుచేసేందుకు, సగటు లోతు 1.5 మీటర్లు ఉండేలా చేసుకోవాలి. ఒకవేళ పాత చెరువుని మళ్ళీ పునర్నిర్మించినట్లైతే పైన ఉన్న వ్యర్ధ పదార్ధాలు కల భాగాన్ని తీసివేసి అడుగు భాగాన్ని దున్నాలి. నీటి యొక్క pH సగటుగా 7.5 నుండి 8.5 ఉండేలా చేసుకోవాలి. pH యొక్క స్థాయినిబట్టి అగ్రికల్చర్ లైమ్ (వ్యవసాయ సున్నం) ఎంత పెట్టాలి అనేది ఆధారపడి ఉంటుంది.

రిజర్వాయిర్ నుండి లేదా కాల్వ నుండి గానీ నీటిని నింపాలి. ఈ సమయంలో 100 మైక్రానులు (100 ') కంటే తక్కువ పరిమాణం ఉన్నటువంటిని ఫిల్టర్ బ్యాగును వాడడం వల్ల కలుపు చేపలు రాకుండా నివారించవచ్చు. చెరువులో ఉన్న చిన్న చిన్న వ్యర్ధ జంతుజీవాల్ని 10 ppm మోతాదు క్లోరిన్ ఉపయోగించి నశింపజేయవచ్చు. నాలుగు రోజుల తరువాత క్లోరిన్ కలిపిన నీటిలో యూరియా (2.5 ppm) మరియు ట్రిపుల్ సూపర్ ఫాస్ఫేట్ (TSP) (3 ppm) కలిపి చెరువుయొక్క నీటి నాణ్యతను పెంపొందించాలి.

సేంద్రియ లేదా రసాయనిక ఎరువులు వాడడం వల్ల మైక్రో ఆల్గే జాతులు చెరువు నీటిలో బాగా వృద్ధి చెందుతాయి. దీనివల్ల నీటి యొక్క నాణ్యత మెరుగుపడుతుంది. వాటికి 5 నుండి 40 ppt మధ్యలో లవణీయతను తట్టుకునే శక్తి చేపలకు ఉంటుంది. అయితే చేపలలో మంచి అభివృద్ధిని సమతుల్యంగా 15 నుండి 35 ppt మధ్య చూడవచ్చు.

ವೆಏಪಿಲ್ಲಲ ಯಾಕ್ಕ ರವಾಣಾ

చేపపిల్లల రవాణాను అత్యంత (శద్ధతో చెయ్యాలి. ఈ క్రమంలో ఒత్తిడి కలిగినటైైతే చేప పిల్లలకు సూక్ష్మ (క్రిములు సోకడమే కాకుండా అవి చనిపోయే పరిస్థితి కూడా వస్తుంది. ఆక్సిజన్ (ప్రాణవాయువు) యొక్క సరఫరా ఉండేటట్లుగా సింటెక్స్ ట్యాంకులలో గానీ పాలిథీన్ బ్యాగులలో గానీ బదిలీ చెయ్యాలి. రవాణా చేసే ప్రక్రియ చేప పిల్ల యొక్క పరిమాణం, బదిలీ చేసే వ్యవధి అనే అంశాలపై ఆధారపడి ఉంటుంది. అనుభవాన్ని బట్టి సరైన పరిమాణం, స్టాకింగ్ డెన్సిటీ మరియు రవాణా యొక్క పద్ధతి ఈ క్రింది పట్టిక 1 లో ఇవ్వబడింది.

ವేపపిల్ల <u>ව</u> ිස (ලුෆ)	వ్యవధి (గంటలు)	స్టాకింగ్ డెన్సిటీ (లీటరుకు ఎన్ని)	రవాణా పద్ధతి
> 0.25	24-36	100	పాలిథీన్ బ్యాగు
1.0 నుండి 1.5	15-30	40	పాలిథీన్ బ్యాగు
2.5 నుండి 5.0	12-24	8-10	సింటెక్స్ ట్యాంకు
5 నుండి 15	12-20	5-6	సింటెక్స్ ట్యాంకు
25 నుండి 50	12-20	2-2.5	సింటెక్స్ ట్యాంకు

నర్నల్ పెంపకం

రవాణా జరిగిన వెంటనే చేపపిల్లలని హాపాలలో బదిలీ చెయ్యాలి. వృద్ధి చెందిన చేపపిల్లలని స్టాక్ చెయ్యబోయే హాపా యొక్క పరిమాణం $2 \times 2 \times 1.5$ మీ. నుండి $4 \times 4 \times 1.5$ మీ. ఉండి 4 నుండి 5 మిల్లిమీటర్ల మెష్ సైజు ఉండాలి. పిల్ల యొక్క అభివృద్ధిని బట్టి భవిష్యత్తులో ఏ సైజు వాడాలో నిర్ణయిచవచ్చు. చేపపిల్లల అభివృద్ధి ప్రకారం మెష్ యొక్క సైజు పెంచాలా వద్దా అని నిర్ణయించవచ్చు. హోపాని స్థిరంగా ఉంచిన పిదప ఒక మీటరు వెడల్పు ఉన్న దోమతెరతో కుట్టడం ద్వారా వేసే మేత వృధా కాకుండా ఉంటుంది. HDPE వల కన్నా నైలాన్ నెట్ అయితే మృదువుగా ఉంటూ హోపాలలో నర్సరీ పెంపకానికి అనువుగా ఉంటుంది. ఒక మీటరుకి 200 నుండి 250 పిల్లచేపలు తగినంత స్టాకింగ్ డెన్సిటీగా చెప్పవచ్చు. చేపలు కృత్రిమ మేతకు అలవాటుపడతాయి, అయితే మేతలో మంచి పోషకవిలువలు కలిగేవిధంగా సిఫార్సు చెయ్యబడింది (ట్రోటీన్ శాతం 45% మరియు కొవ్వు శాతం 10%). శరీర బరువులో 8 - 10%, రోజుకి 4 నుండి 5 సార్లు మేతని మొదటి దశలో ఇచ్చే విధంగా చూసుకోవాలి. సాధారణంగా లభించే నర్సరీ దాణా సరఫరాదారులు ఈ క్రింది పట్టికలో ఇవ్వబడ్డాయి. 2 - 3 గ్రాములు కలిగిన ఎదిగిన పిల్లచేపలని 30 నుండి 40 గ్రాములు వచ్చేవరకు 60 నుండి 75 రోజులు పాటూ పెంచాలి. ఈ సైజు

చేపలు (గ్లో – అవుట్ చెరువులకు సరైన ఎంపిక. ఆక్సిజన్ స్థాయిలు 4 ppm కన్నా ఎక్కువ ఉండేటట్లు నిర్వహించినట్లైతే హాపాలలో నర్సరీ పెంపకపు చేపలలో దాదాపుగా 90 – 95% మనుగడ రేటు సాధించవచ్చు.

దాణా సరఫరాదారు	దేశం
(స్కేట్టింగ్	నార్వే
లక్కీ స్టార్	సింగపూర్
యూని(పెసిడెంట్ ఎంట(ర్పైసెస్ కార్పొరేషన్	<u>త</u> ైవాన్
గ్రోవెల్ ఫీడ్స్ (పైవేట్ లిమిటెడ్	ఇండియా

గ్రో-అవుట్ కల్టర్

తగినంత సైజు వచ్చేసరికి నర్సరీలో పెంచబడిన చేపపిల్లలని చెరువులలోకి వదిలిపెట్టి బదిలీ చెయ్యవచ్చు. దీనికి ఉత్తమమైన స్టాకింగ్ డెన్సిటీ ఒక ఎకరాకు 5000 చేపపిల్ల. చేపలు DO స్థాయిలో హెచ్చుతగ్గులకు వేగంగా స్పందిస్తాయి కనుక, ఏరేటర్లను చెరువుయొక్క నాలుగు దిక్కులా అమర్చాలి. క్రమం తప్పకుండ ఎరువులని జల్లుతూ నీటియొక్క నాణ్యత (వాటర్ క్వాలిటీ) చూసుకుంటూ ఉండాలి. [గో-అవుట్ కల్చర్ పద్ధతిలో చేపలకు ఇచ్చే ఆహరం తేలుతూ ఉండి అధిక ప్రోటీన్తో కూడిన కృత్రమ గుళికల రూపంలో (40% ప్రోటీన్ & 10% కొవ్వు పదార్ధాలు) ఆహార గుళికలను (Floating Artificial Pelleted Feed) చేపపిల్లలకు ఆహారంగా ఇవ్వబడుతుంది. చేపలకు మేత ఇస్తున్నప్పుడు గాలివాటానికి అనుగుణంగా మరియు మేత వృధా కాకుండా పంజరపు లోపలి వలలో ఫీడ్ మెష్ ను (1 మీటర్లు లోతు) ఏర్పాటు చెయ్యూలి. తొందరగా జీర్ణం కావడం కోసం, ప్రతి 3 గంటలకొకసారి దాణా ఇస్తూ, తదనుగుణంగా ఎన్ని సార్లు ఇవ్వాలో నిర్ణయించుకోవాలి. ప్రతి పదిహేను రోజులకొకసారి చేపల యొక్క బరువు తూచి వాటి ఎదుగుదల ఆధారంగా దాణాని లెక్కవేసుకోవాలి. ఇంతకుమునుపు చేసిన అధ్యయనాల ప్రకారం, 10 నుండి 20 గ్రాములు ఉన్న చేప పిల్లలని క్యూబిక్ మీటరుకు 1 నుండి 1.25 చొప్పున స్టాక్ చేసినప్పుడు సుమారు

కల్చర్ వ్యవధి	చేప సైజు	దాణా సైజు	ದాణా ට්టා	దాణా (ఫ్రీక్వెన్సీ
DOC	(LT°.)	(మి.మీ.)	Feed Rate(%)	(రోజుకి ఎన్నిసార్లు)
		Feed Size		
0-30	10 -50	1.2-1.8	8 %	4-5
30-120	50 -100	1.8-3.0	6-5 %	4-5
120-180	100-300	3.0-4.0	5-4 %	4
180-210	300-500	4.0-6.0	4-3 %	3
210-300	500-750	6.0-7.0	3-2.5 %	4-3
300-360	750-1100	7-10	2 %	3

12 నెలల వ్యవధిలో అవి 1000 గ్రాములకి ఎదుగుతాయి. అయితే 100 గ్రాముల పరిమాణం ఉన్నప్పుడు స్టాక్ చేస్తే కేవలం 7 నెలలు మాత్రమే పడుతుంది. సాధారణంగా చెరువు యొక్క అడుగు భాగంలో ఉండే చెత్తని, బురదని ఎప్పటికప్పుడు తీసివేసి, శుభ్రపరచి ఉంచడం వల్ల విష వాయువుల ప్రభావం తక్కువగా ఉండి నీటి నాణ్యత కూడా మెరుగ్గా ఉంటుంది. చందువ పార యొక్క నెలసరి వృద్ధి, మేత మరియు ఇతర విశేషాలు ఈ క్రింద పట్టికలో ఇవ్వబడ్డాయి.

ධ්ක්ව කිව්ට_ක්බ් කාවරාාා ජුරාා කීජුවෙන් කික්පාවා

చందువ పార చేపలు పెలాజిక్ ప్రవర్తనను కలిగి ఉంటాయి కాబట్టి డ్రాగ్ నెట్ వల సహాయంతో వీటిని అత్యంత సులువుగా పట్టుకుని వెలికి తీయవచ్చు బయటికి తీసిన మొత్తాన్ని వెంటనే పరిశుభమైన నీటిలో కడిగి, శీతలీకరణం ద్వారా (ఐస్ ముక్కలు) చేపలని తాజాగా మరియు నాణ్యత పోకుండా ఉంచవచ్చు. తదుపరి వీటిని ప్లాస్టిక్ ట్రేలలో గానీ లేదా థర్మోకోల్ పెట్టెల్లో పెట్టి చేపల యొక్క దిగువ మరియు పై భాగాలలో ఐస్ ముక్కలు చల్లి ప్యాక్ చేస్తారు. పెద్దమొత్తంలో సాగు చేయడమే కాకుండా, స్థానిక మార్కెట్ లో గిరాకీని బట్టి నదీముఖ పంజరాలలో బ్యాచ్ పద్ధతి లో కూడా హార్వెస్ట్ చేయవచ్చు. అందువల్ల, గిరాకీని బట్టి ఏరోజుకారోజు అవసరమైన మొత్తాన్ని బయటికి తీసి అమ్ముకోవచ్చు. చేపలను విక్రయించడానికి అత్యంత అనువైన రాష్ట్రాలు కేరళ, పశ్చిమ బెంగాల్ మరియు ఆండ్రప్రదేశ్, తమిళనాడు, కర్ణాటక, మహారాష్ట్రలలో ఎంపిక చేసిన కొన్ని ప్రదేశాలు. ఎంపిక చేసిన క్రయవిక్రయదారులలో కొందరు మాక్స్వెల్ ఎగుమతిదారులు (MAXWELL EXPORTERS), కొచ్చిన్, కేరళ; మత్స్యఫెడ్ (MATSYAFED), కేరళ; పశ్చిమ బెంగాల్ ఫిషరీస్ డెవలప్మెంట్ కార్పొరేషన్ (WEST BENGAL FISHERIES DEVELOPMENT CORPORATION), కోల్మతా.

ఈ క్రింద ఇవ్వబడిన పట్టికలో ఒక ఎకరాకు వెచ్చించిన మదుపు మరియు ఆదాయ వ్యయాలు ఇవ్వబడ్డాయి. ఒక ఎకరాకు 5000 పిల్ల వేస్తే ఒక సంవత్సరానికి గాను కేజీకి 325 రూపాయల చొప్పున మత్స్యకార రైతుకు వచ్చే నికర లాభం సుమారు 2.25 లక్షలు. ఈ క్రింద పట్టికను పరిశీలంచండి.

క్ర. సం.	వివరాలు	వ్యయం (లక్షల్లో)
1	చెరువుని సిద్ధం చెయ్యటం మరియు నీటిని శుద్ధిచేయటం	40,000
2	చేపపిల్ల ధర (పిల్లకు 10 రూపాయల చొప్పున మొత్తం 5000 పిల్ల)	50,000
3	చేపల రవాణా – పిల్లకు 4 రూపాయల చొప్పున	20,000
4	నర్సరీ పెంపకం (హాపా మరియు అదనం ఖర్చులు)	25,000
5	FCR 1 :1.75 తో దాణా; మనుగద రేటు 90% (కేజీకి 110 రూపాయల చొప్పున దాదాపు 8 టన్నుల దాణా)	8,80,000
6	నెలకి తల ఒక్కింటికి 12,000 చొప్పున కూలీ ఖర్చు	1,20,000
7	విద్యుత్ ఖర్చు	50,000

8	ఇతర్రతా వ్యయాలు	50,000
9	మొత్తం నిర్వహణా వ్యయం (క్రమ సంఖ్యలు 1 నుండి 8)	12,35,000
10	అమ్మకం ధర 90 % మనుగడ రేటుతో కేజీకి 325 రూపాయల చొప్పున మొత్తం 4500 కేజీల ఉత్పత్తికి	14,62,500
11	నికర లాభం (క్రమ సంఖ్యలు 10 నుండి 9 తీసివేయగా)	2,27,500

ස්ටර්ධත් බෟර (සටයීරාාති බෟටබාති) ට් ටාජෑ ලි්-මතුඩ් ජවුර් ఉత్తమ බරුණණ ත්ර්මා (Best management Practices for Grow-out Culture of Indian Pompano)

- ♦ అత్యుత్తమ మనుగడ రేటు సాధించడం కోసం కనీసం 30 గ్రాములు పైబడిన చేపపిల్లలను స్టాక్ చెయ్యాలి
- ♦ నీటి నాణ్యతను మరియు రంగును కాపాడడం కోసం ప్రతి నెలకు రెండుసార్లు ఎరువుని వినియోగించాలి
- ♦ ఆక్సిజెన్ శాతం కనీసం 4 ppm పైన ఉండేటట్టు చూసుకోవాలి
- ♦ చెరువులో ఫీడింగ్ జోన్ ఏర్పాటు చెయ్యడం ద్వారా చేపలన్నీ ఒకే చోటుకు వచ్చి ఆహారాన్ని తీసుకునే అలవాటు చెయ్యాలి
- నీటి నాణ్యతని క్రమంగా ఉంచడం కోసం ప్రతీ నెలా కనీసం 25% నీటిని మార్పిడి చెయ్యాలి. దీని ద్వారా
 ప్రోబయోటిక్స్ మరియు ఇతర రసాయనాల వాడుకను తగ్గించుకోవచ్చు.
- lacktriangle కనీసం రోజుకు 10 గంటల చొప్పున ఎకరానికి 3 నుండి 4 పాడిల్-వీల్ ఏరేటర్లను అమర్చాలి
- ♦ ఎకరానికి 5000 పిల్లను వేస్తే ఆర్దికంగా లాభదాయకం

అధ్యాయం - 06

సముద్రపు పంజరాలలో ప్రయోజన కారక బాక్టీలియా (ప్రోబయోటిక్స్) యొక్క అనువర్తనం

జయ్మలీ లోకా, శేకర్ మేగరాజన్, నరసింహులు సాధు మరియు రేలంగి దుర్గా సురేష్

ICAR-CMFRI, విశాఖపట్నం ప్రాంతీయ కేంద్రం, పాండురంగపురం, ఆంధ్రా యూనివర్సిటీ పోస్ట్, విశాఖపట్నం - 530003

෫෯෭෩ඁ෮෮

సముద్రపు చేపలు అధిక పోషక విలువలు మరియు అధిక మార్కెట్ విలువలు కలిగి ఉండడం వలన, (ప్రపంచ వ్యాప్తంగా సముద్రపు పంజరాలలో చేపల పెంపకం యొక్క గిరాకీ పెరుగుతోంది. భారతదేశంలో, సెంట్రల్ మైరైన్ ఫిషరీస్ రీసెర్చ్ ఇన్ఫిట్యూట్, సముద్ర ఫిన్ ఫిష్ జాతుల సంతానోత్పత్తి మరియు పంజరాలలో చేపల పెంపకం యొక్క సాంకేతికతలను డ్రామాణీకరించడంలో ముఖ్యమైన పాత్ర పోషించింది. అంతేకాక, వివిధ సముద్ర తీర రాడ్రాలలో విజయవంతమైన ఉత్పత్తిని సాధించింది. సముద్ర చేపల ఉత్పత్తి మరియు పెరుగుదలను నిర్ధికరించడానికి, చేపల మరియు పర్యావరణ సంబంధిత ఆరోగ్య నిర్వహణ నియమాలను పాటించడం చాల ముఖ్యం. అందువల్ల, పంజరపు పెంపకం యొక్క స్థిరమైన ఉత్పత్తికి సమర్థవంతమైన ఆరోగ్య నిర్వహణ పద్ధతుల అమలు అవసరం. ఇంటెన్సివ్ కల్చర్ వ్యవస్థలలో వ్యాధి వ్యాప్తి గణనీయమైన సవాలును కలిగిస్తుంది, ఇది ఆక్వాకల్చర్ పరిశ్రమలలో లాభదాయకత తగ్గడానికి దారితీస్తుంది. జల జీవులు, వాటి చుట్టూ ఉన్న వాతావరణం, హెచ్చు తగ్గులు కలిగిన దాణా పద్ధతులు, మొదలైన వాటి వలన (ప్రభావితమై, తద్వారా అనేక వ్యాధులకు దారితీస్తాయి. ఆక్వారంగం లో వ్యాధులను నివారించడానికి యాంటీబయాటిక్స్ వాడకం అతి సాధారణ పద్దతి. ముందుజాగ్రత్త చర్యగా యాంటీబయాటిక్స్ వాడకం ఏక్కువ కాలం ఉపయోగించినప్పుడు ఔషధ –నిరోధక వ్యాధికారక జీవుల ఆవిర్భావంతో ముడిపడి ఉంది. ఆక్వాకల్చర్ పరిశమలలో నిర్దిష్ణ యాంటీబయాటిక్స్ వాడకంపై అనేక దేశాలు ఆంక్షలు విధించాయి. తత్ఫలితంగా,వ్యాధికారక సూక్ష్మజీవులతో పోరాదటానికి (ప్రయోజన కారక బాక్టీరియా (సూక్ష్మజీవులు) అత్యంత (ప్రభావంతమైన మార్గం గా పరిగణించబడింది.

ಆಕ್ವಾ ಕಲ್ಬರ್ ರಂಗಂ ಲೆ್ ಪ್ರೌಬಯಾಬಿಕ್ಸ್ ವಿನಿಯಾಗಂ

ట్రోబయోటిక్స్ అనేది జీవన సూక్ష్మజీవులను కలిగి ఉండే ఆహార సప్లిమెంట్గా ఉపయోగించే ఒక రకమైన సూక్ష్మజీవుల సముదాయం. ఈ సూక్ష్మజీవులు హోస్ట్ లేదా దాని సాగు వాతావరణంతో అనుబంధించబడిన సూక్ష్మజీవుల సముదాయంని సవరించడం ద్వారా హోస్ట్ పై (ప్రయోజనకరమైన (ప్రభావాలను కలిగి ఉంటాయి. కృతిమ ఫీడ్ యొక్క వినియోగాన్ని మెరుగుపరచడానికి మరియు ఫీడ్ యొక్క పోషక విలువను మెరుగుపరచడానికి కూడా ఇవి సహాయపడతాయి. అంతేకాక, ఈ (ప్రోబయోటిక్స్, చేపలలో వచ్చే వ్యాధులకు హోస్ట్ యొక్క (ప్రతిస్పందనను మరియు దాని మొత్తం శక్తిని మెరుగుపరుస్తాయి. (ప్రోబయోటిక్స్ యొక్క వినియోగం మంచి నీటి నాణ్యతను అదే పరిస్థితులలో కొనసాగించడానికి మరియు వివిధ సంస్మృతి వ్యవస్థలలో సహజ ఆహార జీవుల జీవపదార్ధాన్ని పెంచడానికి

సమర్థవంతమైన మరియు స్థిరమైన పద్ధతులను అందిస్తుంది. హేచరీ ట్యాంకులలో నీరు మరియు ఫీడ్ బ్రోబయోటిక్స్ ఉపయోగించడం, అలాగే పంజరపు సాగు లో ఫీడ్ బ్రోబయోటిక్స్ వాడకం ద్వారా సముద్ర చేపలలో కలిగే బ్యాక్టీరియా ఇన్ఫెక్షన్లను నివారించవచ్చును.

ఆక్యాకల్సర్లో ప్రాబయోబిక్ వాడకం యొక్కప్రయోజనాలు

వ్యాధి పెంపుదలతో ముడిపడి ఉన్న నష్టాలను పరిష్కరించే సాధనంగా ఆక్వాకల్చర్ రంగంలో ట్రోబయోటిక్ పరిశోధన ఊపందుకుంటోంది, తద్వారా పరి(శమలో స్థిరమైన పద్ధతుల అభివృద్ధిని ట్రోత్సహిస్తుంది

ఆక్పా/మారికల్చర్లో బ్రోబయోటిక్స్ అనువర్తనం వలన బ్రయోజనాలు :

- ♦ చేపల పెరుగుదల, మనుగడ రేటు మరియు రోగనిరోధకశక్తి పెరుగుతుంది
- ♦ పోషకాల వినియోగం మెరుగు పడుతుంది
- ♦ వ్యాధికారక కారకాలకు వ్యతిరేకంగా బ్యాక్టీరియాస్టాటిక్ మరియు బ్యాక్టీరియానాశక చర్యలను (పదర్శిస్తాయి
- చేపల వ్యాధికారక జీవులు గుంపులు గా చేరదాన్ని నివారిస్తాయి

మారికల్చర్లో ఉపయోగించే ప్రధాన ప్రోబయోటిక్ బ్యాక్టీలయా

చేపల గట్ నుండి ఐసోలేట్ చేసిన బ్రోబయోటిక్స్ వాడకం మారికల్చర్లో బాగా ప్రాచుర్యం పొందింది. లాక్టిక్ యాసిడ్ బ్యాక్టీరియా (ల్యాబ్), బాసిల్లస్ మరియు (స్టెప్టోకోకస్ ఆక్వా కల్చర్లో తరచుగా వాడే బ్యాక్టీరియా. ప్రస్తుతం, బాసిల్లస్ సబ్టిలిస్, లాక్టోబాసిల్లస్ హెల్వెటికస్ మరియు ఎంటెరోకాకస్ ఫేసియం తో సహా అనేక బ్రోబయోటిక్స్ చాలా ప్రభావవంతంగా గుర్తించబడ్డాయి, ఇవి గణనీయమైన ప్రయోజనాలను చూపించాయి. విబ్రియో, సూడోమోనాస్, ప్లైసియోమోనాస్ మరియు ఏరోమోనాస్ వంటి గ్రామ్–నెగటివ్ ఫ్యాకల్టేటివ్ సింబియోటిక్ బాక్టీరియాలు చేపలు మరియు షెల్ఫిష్లు గట్ లో కనిపించే ప్రయోజనకరక బ్రోబయోటిక్ బాక్టీరియా కూడా కావచ్చు అని పలు నివేదికలు వెల్లడించాయి.

Fig. 1: Probiotics: Commercial probiotics (Fig 1& 2); and laboratorydeveloped probiotics (Fig.3)

ప్రాబయోటిక్స్ స్ర్మీనింగ్

• ఆక్వాకల్చర్లో బ్రోబయోటిక్స్ వినియోగం, వాటి విభిన్న(శేణి జీవకార్యకలాపాల కారణంగా విస్తృతంగా ఉంది. బ్రోబయోటిక్స్ యొక్క స్కోనింగ్, ఈ ప్రక్రియలో ప్రారంభ మరియు ముఖ్యమైన దశ. దీనికి క్రమబద్ధమైన మరియు శాస్త్రీయ విధానం అవసరం.

ಪ್ರೌಬಯಾಬಿಕ್ಸ್ ಎಂದುಕ್ ವಡಾಗಿಕಿ ಕಾವಾಶ್ಸಿನ ಪ್ರಮಾಣಾಲು

- ♦ ఇవి హూస్ట్ చేపలకు హాని కలిగించకూడదు
- ♦ ఇవి కణజాలాలలో మ్రవేశించి కణితులను కలిగించకూడదు
- ♦ ఇవి యాంటీబయాటిక్ మరియు వైరలెన్స్ రెసిస్టెన్స్ జన్యువులు లేని ప్లాస్మిడ్లను కలిగి ఉండాలి
- ♦ ఇవి హూస్ట్ చేపల లో నిర్ధిష్ట ప్రదేశాలలో గుంపులుగా సమర్థవంతంగా చేరి నిరంతరం అధిక సంఖ్యలో ఉండాలి.
- ♦ అధిక శక్తివంతమైన ట్రోబయోటిక్స్ కోసం లాబరేటరీ పద్దతులలో, బ్యాక్టీరియా యొక్క నిరోధక చర్యను తనిఖీ చేయాలి.

మారికల్టర్ లో ప్రోబయోటిక్స్ యొక్క వాడకం మరియు ఉపయోగాలు

ఆక్వాకల్చర్లలో ప్రోబయోటిక్స్ యొక్క అనువర్తనంలో కీలక విధానాలు

బ్రోబయోటిక్ అప్లికేషన్ యొక్క సమగ్ర అవగాహన

వాటి వ్యాధికారకతను ఇన్షైవో మరియు ఇన్ విట్రో పద్దతుల ద్వారా నిర్వహించడం

෯ෲ෩ඁ෯ඁ෫ඁඁ,෩ඁ෪ඁ෫ඁ෬ඁ෦ඁ෦෧ඁ෧ඁ෩ඁ෯෮ඁඁ෫෮෮෪෧෮

ERIC-PCR, PCR-DGGE/TGGE, FISH, and 16S rRNA gene sequencing (ఎరిక్-పిసిఆర్, పిసిఆర్- డిజిజిఇ/టిజిజిఇ, ఫిష్ మరియు 16 ఎస్ ఆర్ఆర్ఎన్ఎ జన్యు (శేణి) వంటి ఆధునిక పద్ధతులు ద్వారా (ప్రోబయోటిక్స్ ఎంపిక మరియు మూల్యాంకనం కోసం ఉత్తమ పరమాణు సాధనాలుగా గుర్తించబడ్డాయి.

ఆక్వాకల్చర్లో వివిధ జాతుల పెరుగుదలను బ్రోత్సహించడంలో బ్రోబయోటిక్స్ వినియోగం చాల విస్తరించింది. ఉదాహరణకు, బాసిల్లస్, ఎంటెరోకాకస్ మరియు సూడోమోనాస్ స్పీసీస్ని ఆహారంలో 107 మరియు 109 cfu/g సాంద్రతలలో ఇవ్వడం వలన చేపలలో బరువు 8% పెరుగుతుంది.

కల్చర్డ్ చేపలలో స్రోబయోటిక్ భర్తీ వలన ఫీడ్ వినియోగము మరియు బరువు పెరుగుదల పెరుగుతుంది.

ప్రోబయోటిక్స్ విటమిన్లు ఉత్పత్తి చేయడం, జీర్ణం కాని భాగాలను విచ్ఛిన్నం చేయడం మరియు ఆహారంలో విషపూరిత సమ్మేళనాలను నిర్వీర్యం చేయడం ద్వారా ఫీడ్ పాలటబిలెటీని (పేరేపించగలదు.

బ్రోబయోటిక్స్ పర్యావరణ మరియు సాంకేతిక ప్రమాదాల వల్ల కలిగే ఒత్తిడికి చేపల నిరోధకతను పెంచుతాయి.

ప్రయోజనకరమైన బ్యాక్టీరియా యొక్క వాడకం వలన చేపల ఆరోగ్యకరమైన పెరుగుదలకు తోద్పడే విటమిన్లు, కొవ్వు ఆమ్లాలు మరియు అవసరమైన అమైనో ఆమ్లాలు వంటి సూక్ష్మపోషకాలు అందుతాయి.

వివిధ రోగనిరోధక కారకాల యొక్క వ్యక్తీకరణను పెంచడం ద్వారా మరియు గట్ శ్లేష్మ పొరలో ప్రవేశించడం ద్వారా చేపల ఆరోగ్యాన్ని బ్రోత్సహించడానికి బ్రోబయోటిక్స్ని నిరంతరం చేపలలోకి ప్రవేశపెడతారు, తద్వారా వాటి వ్యాధికారక కారకాల ఉనికిని తగ్గించవచ్చు.

ప్రొబైయటిక్స్ కూడా హోస్ట్ లో పోషక మెరుగుదలలో కీలక పాత్ర పోషిస్తాయి.

బ్రోబయోటిక్స్ లాక్టోబాసిల్లస్, బాసిల్లస్ మరియు (స్టైప్టోకోకస్ తో తినిపించిన చేపలలో (ప్రోటీన్ మరియు శరీర బరువు పెరుగుతుంది.

ప్రోబయోబిక్ అప్లికేషన్ యొక్కపద్ధతులు

వ్యాధి నివారణ మరియు చికిత్స వంటి లక్ష్యాలను సాధించడంలో బ్రోబయోటిక్స్ కీలక పాత్ర పోషిస్తాయి

నిర్దిష్ట ప్రోబయోటిక్స్ ఉపయోగించి అనేక అంశాలను (నిర్ధిష్టమైన ప్రోబయాటిక్స్, ఉపయోగించే విధానం, మోతాదు స్థాయి మరియు అప్లికేషన్ వ్యవధి) పరిగణ లోకి తీసుకుని ఆ ఉపయోగకారక సూక్ష్మ జీవులు (ప్రొబయాటిక్స్) నీటి ద్వారా గానీ లేదా మేత ద్వారా కానీ ఇవ్వడం జరుగుతుంది.

బ్రోబయోటిక్స్ ని వాటి చర్యల విధానం ప్రకారం రెండు ప్రధాన సమూహాలుగా వర్గీకరించవచ్చు

వాటిలో మొదటిది, గట్ స్రోబయోటిక్స్, ఇవి చేపల గట్ లో ప్రయోజనకరమైన సూక్ష్మ్రజీవుల సమూహాన్ని పెంచదానికి ఆహారంతో మౌఖికంగా తీసుకోబడతాయి. రెండవది, వాటర్ స్రోబయోటిక్స్, ఇవి నీటి వాతావరణంలో వృద్ధి చెందుతాయి. ఇవి నిర్దిష్ట మాధ్యమంలో లభించే అన్ని పోషకాలను వినియోగించడం ద్వారా వ్యాధికారక మరియు హానికరమైన బ్యాక్టీరియాను సమర్ధవంతంగా తొలగిస్తాయి.

ఓరల్ అడ్మినిస్టేషన్

- సాధారణంగా ట్రోబయోటిక్లలను ఉపయోగించే పద్ధతి మేతతో చేర్చడం ద్వారా ఉంటుంది. ఇన్ఫెక్షన్ల నుండి రక్షించడానికి ట్రోబయోటిక్స్ ని ట్యాంక్ లేదా చెరువు నీటిలో కూడా (ప్రవేశపెట్టవచ్చు.
- ♦ పారాబయోటిక్స్ అనగా, ట్రోబయోటిక్స్ నుండి పొందిన నిట్మియాత్మక సూక్ష్మజీవుల కణాలు.
- ♦ అవి పెప్టిడోగ్లైకాన్స్ మరియు ఉపరితల (ప్రోటీన్ల వంటి సెల్ భాగాలను కలిగి ఉంటాయి.
- ♦ ఇవి స్వచ్ఛమైన రూపంలో లభించే (ప్రయోజనాలను అందిస్తాయి.
- ♦ వీటిని ఉత్పత్తి చేయడం మరియు నిల్వ చేయడం ద్వారా నిర్దిష్ట ప్రతిస్పందనలను (పేరేపించే అధిక అవకాశాలను కలిగి ఉంటాయి.

మల్టీస్టైయిన్ ప్రోబయోబిక్స్ యొక్కఅనువర్తనం

- ♦ విస్తృతమైన వైవిధ్యాలు కలిగిన నీటిలో ఈ మల్టీ (స్టైయిన్ (ప్రొబిషక్ బాక్టీరియా వాడకం ఎంతో ఉపయోగకారకంగా ఉంటుంది.
- ట్రోబయోటిక్లలను ట్రీబయోటిక్స్ లేదా ఔషధ మొక్కలు ఉత్పత్తులతో కలపడం వలన మరింత సమర్థవంతం
 గా వ్యాధికారక జీవులని నిరోధించదానికి అవకాశం ఎక్కువ.

- 1x109 CFU/mL 1x1011 CFU/mL మోతాదు కలిగిన మల్టీర్ట్మెయిన్ ప్రోబయోటిక్స్ (బాసిల్లస్ మరియు లాక్టోబాసిల్లస్) 8 వారాలు వాడడం ద్వారా చేపల యొక్క ఆరోగ్యం మరియు పెరుగుదల ని మెరుగుపరుస్తాయి.
- ♦ బ్రోబైయటిక్స్ని వాడడం ద్వారా మెరుగైన చేపల పెరుగుదల పనితీరు, రోగనిరోధక శక్తీ మరియు వ్యాధికారక బ్యాక్టీరియాకు వ్యతిరేక బ్రభావాన్ని పెంచుతాయి.

Fig.3: Indian pompano, Trachinotus mookalee fed with laboratory-developed probiotics

- ♦ నీటి నాణ్యతను పెంచడంలో (ప్రోబయోటిక్స్ (బాసిల్లస్ sp.) వాడకంతో (ప్రత్యేకంగా ముడిపడి ఉంది.
- ♦ ఎందుకంటే బాసిల్లస్ స్పీసీస్ వంటి గ్రామ్−పాజిటివ్ బ్యాక్టీరియా, గ్రామ్−నెగటివ్ బ్యాక్టీరియాతో పోలిస్తే ఆర్గానిక్ మేటర్ని కార్బన్ డయాక్ష్పెడ్గా మార్చగల సామర్థ్యాన్ని కలిగి ఉంటుంది.
- అధిక స్థాయి లో ఉన్న గ్రామ్ –పాజిటివ్ బ్యాక్టీరియా (బాసిల్లస్ స్పీసీస్) వాడకం ద్వారా నీటిలో కేంద్రీకృతమైన డిసోల్మ్ పార్టిక్యూలేట్ ఆర్గానిక్ మేటర్ ని సులభతరం మరియు సమర్థవంతంగా తగ్గించవచ్చును.
- ♦ పర్యవసానంగా, బాసిల్లస్ యొక్క వినియోగం ఆక్వాకల్చర్ వ్యవస్థలలో మెరుగైన నీటి నాణ్యత, మెరుగైన మనుగడ మరియు పెరుగుదలకి, అలాగే కల్చర్డ్ రొయ్యలు మరియు చేపలకు మెరుగైన ఆరోగ్య పరిస్థితులకు దారితీస్తుంది.
- సముద్ర పంజరంలో చేపల పెంపకంలో వాణిజ్యపరంగా లభించే (ప్రోబయోటిక్స్ (వాటర్ మరియు ఫీడ్) యొక్క వినియోగం, బ్యాక్టీరియా ఇన్ఫెక్షన్లకు వ్యతిరేకంగా అత్యంత (పభావంతమైన నివారణ కొలతగా సిఫార్సు చేయబడింది. (ప్రోబయోటిక్ బ్యాక్టీరియా (స్ట్రయిన్స్ మెరుగుదలకు (పాధాన్యత ఇవ్వదం ద్వారా మారికల్చర్ వ్యవస్థలలో సింగిల్ లేదా మల్టీ(స్టైయిన్ (ప్రోబయోటిక్ బ్యాక్టీరియా యొక్క అనువర్తనం గొప్ప పాత్ర పోషిస్తుంది.

అధ్యాయం - 07

చందువ/మూకుడు పార చేపల యొక్క ఆర్ధిక విశ్లేషణ - బ్యాక్ వాటర్ కేజ్ కల్చర్ పద్ధతిపై ప్రత్యేక అధ్యయునం

ఎస్. ఎస్. రాజు, శేకర్ మేగరాజన్, మరియు రవి కుమార్ అవధానుల

ICAR-CMFRI, విశాఖపట్నం ప్రాంతీయ కేంద్రం, పాండురంగపురం, ఆంధ్రా యూనివర్సిటీ పోస్ట్, విశాఖపట్నం - 530003

൙൮ൢൕ൦

భారతదేశంలో ఆక్వాకల్చర్ ఉత్పత్తిని పెంచే అవకాశాల దృష్ట్యా, కేజ్ కల్చర్ అనే పద్ధతి మత్స్యకారులు మరియు వ్యవస్థాపకులకు అత్యంత ఉత్పాదకతను సాధించే గొప్పఅవకాశాన్ని అందిస్తుంది. మారికల్చర్ పద్ధతులను అందిపుచ్చుకోవడం ద్వారా సముద్ర వనరులను హేతుబద్ధంగా ఉపయోగించడం వల్ల ఆహారం మరియు పోషక భద్రతను మెరుగుపరచడం, ఉపాధి అవకాశాలు పెరగడం మరియు మత్స్యకారుల సామాజిక-ఆర్థిక పరిస్థితులు మెరుగు పడడంలాంటి అనేక లాభాలు ఉన్నాయి. అయితే, ఏదైనా కొత్త సాంకేతిక పరిజ్ఞానాన్ని స్వీకరించడంఅనే అంశం దాని ఆర్థిక పనితీరుపై ఆధారపడి ఉంటుంది. పెట్టబడి పెట్టిన (పతి రూపాయికి రాబడి చక్కగా ఉండడం అనేది పెట్టబడిదారుకు ఎందులో పెట్టబడి పెట్టాలో మార్గనిర్దేశం చేసే ఒక ముఖ్యమైన ఆర్థిక సూచిక (నారాయణ కుమార్, 2009; రితేష్ మరియు ఇతరులు, 2014). ఈ విషయంలో, అంద్రప్రదేశ్లోని కృష్ణా జిల్లాలోని బ్యాక్ వాటర్లలో చందువ పార/మూకుడు పార అంటే ఇండియన్ పొంపానో (ట్రాకినోటస్ మూకాలీ) కోసం కేజ్ కల్చర్ యొక్క పనితీరును ఆర్ధిక పరంగా విశ్లేషించడం జరిగింది.

ನಾಮಾಗ್ರಿ ಮಲಯು ಪದ್ಧತುಲು

వార్షికంగా ఉండే స్థిరమైన ఖర్చు, వేరియబుల్ ఖర్చు మరియు కేజ్ నుండి పంటపరంగా రాబడి మరియు అమ్మకాల నుండి వచ్చే ఆదాయాన్ని లెక్కించడం ద్వారా బ్యాక్ వాటర్ కేజ్ కల్చర్ ఏర్పాటు యొక్క ఆర్థిక పనితీరును అంచనా వేస్తారు. ముందుగా స్థిర ఖర్చులు అంటే ఉత్పత్తితో సంబంధం లేకుండా, స్వతంత్రంగా ఉండే ఖర్చులు. ఒక నిర్దిష్ట సంవత్సరంలో ఉత్పత్తి జరిగినా లేదా జరగకపోయినా వీటిని చెల్లించాల్సిందే. ఉత్పత్తి యొక్క కాలవ్యవధిలో ఒక నిర్దిష్టమైన వనరు యొక్క ఖర్చులో హెచ్చుతగ్గులు లేకుండా స్థిరంగా ఉంటే దానిని స్థిర ఖర్చు అంటారు. ఇందులో కేజ్ (ఫేమ్, వలలు, గొలుసులు, బ్యాలస్ట్, ఫ్లోట్లు, బౌయ్లు, మైల్డ్ స్టీల్ యాంకర్లు, చెక్క పలకలు, తయారీ మరియు ఏర్పాటు ఛార్జీలు ఉంటాయి. సాధారణంగా ఉత్పత్తి వ్యవస్థ యొక్క సగటు జీవితకాలం ఉన్నంతవరకు ఈ స్థిరమైన ఖర్చులు ఉంటాయి. లాభదాయకత ఎక్కువ కాలం ఉండేవిధంగా చూసుకునే సదుపాయాన్ని ఉత్పత్తిదారుడికి లభిస్తుంది. వేరియబుల్ ఖర్చులు ఉత్పత్తి స్థాయిపై ఆధారపడి ఉంటాయి. [పతి పంటలోనూ చేపల విత్తనాల ఖర్చు, దాణా, కార్మిక వేతనాలు, వాచ్ అండ్ వార్డ్ మరియు నిర్వహణ ఛార్జీలు వంటివి వీటిలోకి వస్తాయి. రాబడి అంటే కేజ్ కల్చర్ లో చేసిన పంట యొక్క అమ్మకం నుండి వచ్చే ఆదాయం (మొత్తం ఉత్పత్తి (కిలోలలో) %ఞ్ రర్గి కలోకి ఎన్ని రూపాయలు). ఖర్చులు మరియు రాబడి గణాంకాలను ఉపయోగించి, బ్యాక్ వాటర్స్ల్ కేజ్ కల్చర్ యొక్క ఆర్థిక సాధ్యతను పరీక్షించడానికి [క్రింది ఆర్థిక సూచికలు అంచనా వేయబద్దాయి.

పట్టిక 1: బ్యాక్ వాటర్స్లో కేజ్ కల్చర్ పనితీరుయొక్క ఆర్థిక సూచికలు

క్రమ సంఖ్య	ఆర్థిక సూచికలు		
1	గాల్వనైజ్డ్ ఐరన్ (G.I.) పంజరం యొక్క ప్రారంభ పెట్టుబడి (రూ.)		
2	స్థిర వ్యయం (రూ.)		
	a) తరుగుదల		
	b) స్థిర మూలధనంపై వడ్డీ సంవత్సరానికి @ 7%.		
3	వేరియబుల్ ఖర్చులు (రూ.)		
	a) విత్తన వ్యయం		
	b) ထားစာ ఖర్చు		
	c) కార్మిక ఖర్చులు		
	d) వాచ్ మరియు వార్డ్ ఖర్చులు		
	e)		
4	మొత్తం ఉత్పత్తి ఖర్చు (రూ.) (2 + 3)		
5	చేపల మొత్తం ఉత్పత్తి (కిలో)		
6	స్థూల ఆదాయం (రూ.) (కిలోకు 5 * ధర)		
7	నికర నిర్వహణ ఆదాయం (రూ.) (6–3)		
8	నికర ఆదాయం / లాభం (రూ.) (6–4)		
9	ఉత్పత్తి ఖర్చు (రూ. / కిలో) (4 /5)		
10	రియలైజ్డ్ ధర (రూ. / కిలో) (6/5)		
11	మూలధన ఉత్పాదకత / నిర్వహణ నిష్పత్తి (3/6)		
12	మూలధనానికి రాబడి రేటు (%) ((8/1) *100)		

గాల్పనైజ్డ్ ఐరన్ (G.I.) వాడబడుతున్న కేజ్ కల్చర్ వ్యవస్థ పనితీరు యొక్క వివిధ ఆర్థిక సూచికలను అంచనా వేయడానికి పట్టిక 1లో వివరాలు ఇవ్వబడ్దాయి. G.I. కేజ్ కల్చర్కు ఆర్థిక సహాయాన్ని అందిస్తున్న సంస్థలకు ఇది మార్గదర్శకంగా ఉపయోగపడుతుంది.

ත්වණවා කාවරහා කවඡීවත්වා

బ్యాక్ వాటర్స్లో కేజ్ కల్చర్ ఎలా జరుగుతుందో వివరించడానికి ఆంధ్రప్రదేశ్లోని కృష్ణా జిల్లా నాగయలంకలో ఆల్–ఇండియా నెట్వర్క్ ప్రాజెక్ట్ – SCSP లో భాగంగా ప్రదర్శించబడిన ప్రయోగాత్మకమైన పద్దతిగా ఈ కేజ్ కల్చర్ ను ఏర్పాటు చేయగా, దీని ఆర్థిక విశ్లేషణను ఈ క్రింది విధంగా రూపొందించారు.

పట్టిక $\mathbf{2}$: G.I కేజ్ కల్చర్ ($\mathbf{5}$ మీ. $\times\,\mathbf{5}$ మీ. కొలతలుగల) యొక్క ప్రారంభ పెట్టుబడి

				_	•
క్ర.సం.	ಅ ೦ಕ್ ಲು	పెట్టుబడి (రూ.)	మొత్తం పెట్టుబడిలో ఎంత శాతం	ఆర్థిక మన్నిక (సంవత్సరాలలో)	సంవత్సరానికి తరుగుదల (రూ.)
1	G.I. కేజ్ (ఫేమ్	42,000	30.79	6	7,000
2	వలలు	30,000	21.99	6	5,000
3	G.I గొలుసులు	9,000	6.60	10	900
4	సంకెళ్ళు	1,800	1.32	6	300
5	మైల్డ్ స్టీల్ యాంకర్లు	7,000	5.13	10	700
6	బోయలు, పెయింటింగ్ మరియు లేబర్ ఖర్చులు	12,600	9.24	3	4,200
7	లోపలి మరియు బయటి బ్యాలస్ట్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల్ల	15,000	11.00	10	1,500
8	చెక్క బల్లలు	3,000	2.20	3	1,000
9	నట్స్, బోల్ట్స్ మరియు ఇతర సామాగ్రి	2,000	1.47		
10	కేజ్ ఫ్యాబికేషన్ మరియు ఏర్పాటు ఖర్చులు	14,000	10.26		
	మొత్తం ప్రారంభ పెట్టుబడి	1,36,400	100		20,600

పట్టిక 3: G.I. కేజ్ కల్చర్ యొక్క వార్నిక స్థిర వ్యయం వివరాలు

క్ర.సం.	వివరాలు	రూపాయలు	మొత్తం స్థిర వ్యయంలో శాతం%
1	తరుగుదల	20,600	68.33
2	స్థిర మూలధనంపై వడ్డీ (ప్రారంభ పెట్టుబడిలో 7%)	9,548	31.67
మొత్తం స్థిర వ్యయం		30,148	100

పట్టిక 4: G.I. కేజ్ కల్చర్ యొక్క వేరియబుల్ ఖర్చు వివరాలు (ఎనిమిది నెలల పంట కాలానికి)

క్ర.సం.	వివరాలు	ఖర్చు (రూ.)	మొత్తం వేరియబుల్ ఖర్చులో ఎంత శాతం%
1	చేపపిల్లల ఖర్చు	14,600	7.55
2	దాణాఖర్చు	1,37,700	71.24
3	కార్మిక ఖర్చులు	12,000	6.21
4	వాచ్ మరియు వార్డ్ ఖర్చులు	24,000	12.42
5	ఇతర నిర్వహణ ఖర్చులు	5,000	2.59
మొత్తం వేరియబుల్ ఖర్చు		1,93,300	100

పట్టిక 5: బ్యాక్ వాటర్ G.I. పంజరాలలో చందువ పార చేపల కల్చర్ యొక్క ఆర్థిక సూచికలు

క్ర.సం.	వివరాలు	ఖర్చు (రూ.)
1	వార్షిక స్థిర వ్యయం	30,148
2	వేరియబుల్ ఖర్చు	1,93,300
3	మొత్తం ఉత్పత్తి వృయం	2,23,448
4	స్థూల ఆదాయం	2,97,000
5	నికర ఆదాయం (లాభం)	73,552
6	నికర నిర్వహణ ఆదాయం	1,03,700
7	ఉత్పత్తి వ్యయం (రూ. / కిలో)	248.28
8	రియలైజ్డ్ ధర (రూ. / కిలో)	330
9	మూలధన ఉత్పాదకత / నిర్వహణ నిష్పత్తి	0.65
10	మూలధనానికి వార్షిక రాబడి రేటు (%)	53.92

5 మీ. x 5 మీ. కొలతలుగలగాల్వనైజ్డ్ ఐరన్ (G.I) పంజరం యొక్క ప్రారంభ పెట్టబడి రూ. 1,36,400 (పట్టిక 2) గా రూపొందించబడింది. G.I కేజ్ (ఫ్లేమ్ ఏర్పాటులో గరిష్టంగా పెట్టబడిలో (31%), వలలు (22%), బ్యాలస్ట్ర్ల్లు (11%), కేజ్ తయారీ మరియు ఏర్పాటు ఛార్జీలు (10%), బౌయ్లు (9%), గొలుసులు (7%), లంగర్లు (5%) మరియు ఇతర్మలా (5%) ఉన్నాయి. G.I. కేజ్ కోసం వార్షిక స్థిర వ్యయం రూ.30,148 (టేబుల్ 3) గా లెక్కించబడింది. ఎనిమిది నెలల కల్చర్ కాలానికి నిర్వహణ ఖర్చులు రూ.1,93,300 గా లెక్కించబడ్డాయి. కేవలం దాణాఖర్చు మాత్రమే మొత్తం నిర్వహణ వ్యయంలో 71 శాతం (టేబుల్ 4) తీసుకుంది. అందువలన, మత్స్యకారులకు మొత్తం ఉత్పత్తి ఖర్చు రూ. 2,23,448 గా అంచనా వేయబడింది. ఎనిమిది నెలల తరువాత చందువ పారలో 900 కిలోల ఉత్పత్తితో గరిష్ఠంగా స్థాల ఆదాయం రూ.2,97,000. ఇందులో నికర నిర్వహణ ఆదాయం రూ.1,10,800 గా, నికర లాభం రూ.73,552 గా ఆర్జించింది. ఒక కిలోకి ఖర్చు రూ.248.28కి చేరుకోగా, ప్రతి కిలోకు రూ.330/-తో గిరాకీ ధర పలుకుతుంది. ఆపరేటింగ్ నిష్పత్తి ద్వారా కొలిచిన మూలధన ఉత్పాదకత <math>0.65 గా నమోదు చేయబడగా (పట్టిక 5), ఈ మొత్తం విలువల సారాంశంగా బ్యాక్ వాటర్ G.I పంజరాలలో చందువ పార యొక్క కల్చ ఆర్థికంగా లాభదాయకమైనదని సూచిస్తున్నాయి.

భారతదేశంలో ఓపెన్ సీ కేజ్ కల్టర్ ఆర్థిక సహాయం

భారతదేశంలో బహిరంగంగా సముద్రంలో చేసే ఓపెన్ సీ కేజ్ కల్చర్ కార్యక్రమానికి హైద్రాబాదులో ఉండే నేషనల్ ఫిషరీస్ డెవలెప్మెంట్ బోర్డు (NFDB) ప్రధాన నిధులు సమకూర్చే సంస్థగా నిలిచింది. దేశంలో సముద్ర చేపల ఉత్పత్తిని పెంచే లక్ష్యంతో NFDB ఒక మారికల్చర్ పథకాన్ని రూపొందించింది. ఈ పథకంలో ప్రధాన భాగం ఓపెన్ సీ కేజ్ కల్చర్ మరియు భారతదేశ మత్స్యకారులలో దానిపై అవగాహన మరియు ప్రజాదరణ సదస్సులు సమీకరించడం. కల్చర్ చేయడం కోసం సముద్ర పంజరాల ఏర్పాటుకు, అలాగే సాంప్రదాయ మత్స్యకారులకు వీటి గురించి చేసే అవగాహనా కార్యక్రమాలకు NFDB ఆర్థిక సహాయం అందిస్తుంది. కేజ్ కల్చర్ ఏర్పాటుకు అర్హత ప్రమాణాలనుఈ విధంగా సూచించడం జరిగింది:

- ♦ పెద్ద ఎత్తున ఆక్వాకల్చర్ కార్యకలాపాలను మరియు చేపపిల్లల పెంపకం కోసం సౌకర్యాలను కలిగి ఉన్న వ్యవస్థాపకులు/కంపెనీలు
- ♦ మత్స్య సమాఖ్యలు/కార్పొరేషన్ల ద్వారా ఈ పథకాన్ని నిర్వహించే మత్స్యకారుల సమూహాలు
- ♦ తీరఁపాంతాలలో కేజ్ కల్చర్ కార్యకలాపాలను చేపట్టదానికి అవసరమైన అనుమతుల లభ్యత
- NFDB సబ్సిడీ ఖర్చు కాకుండా మిగిలిన ఖర్చును భరించే వ్యవస్థాపకులు లేదా రాడ్హ్ల మత్స్య సమాఖ్య/ కార్పొరేషన్ యొక్క సహకారం
- కేజ్ కల్చర్ ను పెద్ద ఎత్తున ఏర్పాటు చేయాలనుకునే వ్యవస్థాపకులు / కంపెనీలకు NFDB పెట్టుబడిలో
 20% ఈక్విటీ భాగస్వామ్యం ద్వారా మద్దతు అందించడం

దరఖాస్తుదారుడు ఓపెన్ సీ కేజ్ కల్చర్ ఏర్పాటు యొక్క ప్రతిపాదననునింపిన పిదపఆ పత్రంపైఅమలుపరిచే సంస్థ యొక్క ప్రతి సంతకం ఉందాలి. నిధులను NFDB రెండు సమాన వాయిదాలలో విడుదల చేస్తుంది. ప్రతిపాదన అమోదం పొందిన తర్వాత మరియు దరఖాస్తుదారుడు ఓపెన్ సీ కేజ్ కల్చర్లో తన పెట్టబడిలో 50 శాతం వినియోగించిన తర్వాత మొదటి విడత విడుదల చేయబడుతుంది. దరఖాస్తుదారుడు వెంచర్లో తన మిగిలిన 50

శాతం పెట్టుబడిని వినియోగించిన తర్వాత మరియు అమలు సంస్థ నుండి NFDB నిధి యొక్క ఈ మొదటి విదతకు సంబంధించిన యుటిలైజేషన్ సర్టిఫికేట్ (U.C) అందిన తర్వాత రెండవ విదత విడుదల చేయబడుతుంది. అన్ని సబ్సిడీ వాయిదాలు దరఖాస్తుదారుడి బ్యాంకు ఖాతాకు మాత్రమే జమ చేయబడతాయి. యూటిలైజషన్ సర్టిఫికెట్ ని అర్ధ–వార్షిక ప్రాతిపదికన అంటే ప్రతి సంవత్సరం జనవరి మరియు జూలై నెలల్లో సమర్పించాలి. NFDB యొక్క ప్రాజెక్ట్ పర్యవేక్షణ కమిటీ భౌతికంగా, అర్థికంగా మరియు ఉత్పత్తి లక్ష్యాలు ఎంతవరకు చేరుకోగలిగాయి వంటి కార్యకలాపాల పురోగతిని కాలానుగుణంగా సమీక్షిస్తుంది.

ລານດິດຈັງ

పైన పేర్కొన్న ఫలితాల ఆధారంగా బ్యాక్ వాటర్ కేజ్ కల్చర్ యొక్క ఆర్థిక విశ్లేషణ ఎనిమిది నెలల పంట కాలంలో అధిక నికర నిర్వహణ ఆదాయం మరియు మంచి నికర ఆదాయంతో విజయవంతంగా పనిచేసిందని తెలుస్తోంది. ఈ పద్ధతిని అనేక పంజరాలు, పొలాలు మరియు వివిధ ప్రాంతాలకు విస్తరించిన తర్వాత, ఆర్థికపరంగా ఖర్చు తగ్గుతుందని గమనించాలి. అందువల్ల, బ్యాక్ వాటర్ లో కేజ్ ఫార్మింగ్ అనేది ఒక ఆచరణీయమైన ప్రత్యామ్నాయంమాత్రమే కాకుండావాటాదారులకు ఆర్థిక సాధ్యత కలిగినటువంటి ఒకచక్కని మారికల్చర్ కార్యకలాపంకూడా అని నిర్ధారించవచ్చు. రాడ్ల మత్స్య శాఖ, కేంద్ర మత్స్యబీపశుసంవర్ధక మరియు పాడి పరిశ్రమ మంత్రిత్వ శాఖబీభారత ప్రభుత్వం, న్యూఢిల్లీబీ ఆంధ్రప్రదేశ్ రాడ్ల మత్స్య శాఖ, విజయవాదబీ మరియు నేషనల్ ఫిషరీస్ డెవలప్రమెంట్ బోర్డ్, హైదరాబాద్ వంటి అభివృద్ధి సంస్థలు ఐ.సి.ఎ.ఆర్. – కేంద్ర సముద్ర మత్స్య పరిశోధన సంస్థ (CMFRI) అభివృద్ధి చేసిన సాంకేతిక నైపుణ్యాన్ని ఉపయోగించి వారు అందించే ఆర్థిక మద్దతుతో కేజ్ కల్చర్ కార్యకలాపాలను పెద్ద ఎత్తున ప్రోత్సహించగలవు.

<mark>මතාబරధ సమాచార</mark>ం కొరకు సంప్రదించా<mark>ల్</mark>నినవి

Narayanakumar, R (2009). Economic analysis of cage culture of sea bass.In: Course manual: National training on cage culture of seabass. Imelda, Joseph and Joseph, V Edwin and Susmitha, V (eds.) CMFRI & NFDB, Kochi, pp. 120-122.

Raju, S. S, MukthaMenon and PhalguniPattnaik (2016). Economics and Policies for open sea cage culture in Andhra Pradesh. In: Training manual on Cage Culture of Marine Finfishes, SekarMegarajan, RiteshRanjhan, Biji Xavier & ShubhadeepGhosh (eds.) VRC of CMFRI, Visakhapatnam, pp.68-93.

RitishRanjhan, MukthaMenon, Loveson Edward and Biswajit Dash (2014). Economics of open sea floating sea cage culture of finfishes. In: Training manual: Cage Culture of Marine Fisheries, VRC of CMFRI, Visakhapatnam. pp 41-44.

Visakhapatnam Regional Centre of ICAR- Central Marine Fisheries Research Institute

Pandurangapuram, Visakhapatnam, Andhra Pradesh, India – 530003

2025

