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Foreword 
 

Tropical fisheries play a crucial role in sustaining national well-being and human 

livelihoods. Their vast biodiversity and ecological importance, combined with their socio-

economic value, demand precise and effective management strategies. Stock assessment, a 

cornerstone of fisheries management, provides essential insights into the health, dynamics, 

and sustainability of fish populations. With the increasing global emphasis on sustainable 

fisheries, the need for comprehensive stock assessments has grown, especially in tropical 

regions, which have traditionally been constrained by limited data availability. 

To address this need, the ICAR-Central Marine Fisheries Research Institute 

(ICAR-CMFRI) has developed this book-A practical and comprehensive guide for stock 

assessment of tropical fisheries using R. This resource underscores ICAR-CMFRI’s 

commitment to advancing fisheries science and promoting sustainable practices in the 

region. It is designed for fisheries scientists, managers, and research scholars, equipping 

them with modern tools and techniques to conduct rigorous and reliable stock assessments, 

even in data-limited contexts. The book introduces users to R, a powerful statistical 

software widely used for data analysis, modeling, and visualization. Detailed instructions on 

the installation and configuration of R and RStudio provide the foundation for 

implementing advanced stock assessment methods. By leveraging the capabilities of R, the 

book enables users to gain deeper insights into fish population dynamics, thereby 

empowering informed decision-making and sustainable management strategies. 

Focusing on tropical fisheries, the manual covers a range of methods tailored to 

their unique challenges. It delves into length-based methods, such as ELEFAN approaches, 

catch curve analysis, cohort analysis, stock simulation, and length-based Bayesian 

techniques. These methods are valuable in regions where traditional age-based assessments 

are not workable. Practical guidance and real-world examples show the application of these 

techniques, supported by clear and reproducible R code. Besides length-based approaches, 

the book explores catch-based surplus production methods, like effort standardization, 

CMSY++, and stock reduction analysis (sraplus). These approaches are especially useful in 

data-poor situations, where only catch and/or catch rate data are available. By providing 

robust tools and practical examples, the manual equips users to assess the impact of fishing 

and derive meaningful conclusions to support effective management decisions. 

This manual aligns with ICAR-CMFRI’s vision of sustainable marine resource 

management through innovative research, capacity building, and stakeholder engagement. 
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By fostering a deeper understanding of fish population dynamics and fishing effects, it aims 

to strengthen the development of strategies that balance ecosystem health, fisheries 

sustainability, and the livelihoods of coastal communities. 

The preparation of this book reflects the dedication and expertise of a team of 

scientists and contributors committed to excellence in fisheries research. Their efforts have 

helped in producing this resource. Practical and user-friendly, it empowers fisheries 

professionals to navigate the complexities of tropical fisheries management, addressing 

challenges posed by limited data availability and the urgent need for sustainable practices. 

As we face the emerging challenges of fisheries management in a changing world, 

this book serves as an essential tool for fisheries scientists and practitioners. It provides the 

knowledge and technical foundation needed to implement advanced stock assessment 

methods, contributing to the resilience and sustainability of tropical fisheries. By fostering a 

deeper understanding of fish populations and their dynamics, we can secure the resilience 

of these vital resources, safeguarding livelihoods and ecosystems for generations to come. 

 

Dr. A. Gopalakrishnan 

Director 

ICAR-CMFRI 
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Overview 

Tropical fisheries represent some of the most biologically diverse and 

economically significant marine resources globally. The abundance and variety of tropical 

fish species support millions of livelihoods, providing food, employment, and cultural value 

to many coastal communities. Effective management of these resources is essential for 

ensuring their sustainability and resilience in the face of increasing environmental and 

anthropogenic pressures. Stock assessment, the scientific evaluation of the status of fish 

populations, forms the backbone of sustainable fisheries management, offering critical 

insights into fish stock health and guiding management decisions. 

Tropical fish stocks face unique challenges that distinguish them from their 

temperate counterparts. The high diversity of species, variability in life history traits, and 

often limited data availability pose significant hurdles to effective stock assessment. Besides 

this, tropical fisheries are highly dynamic and complex, characterized by the use of crafts 

and gear targeting multitude of species. This diversity makes stock assessment particularly 

challenging. Traditional stock assessment methods, developed primarily for temperate 

fisheries, may not fully capture the dynamics of tropical ecosystems. Therefore, it is crucial 

to adapt and develop methodologies that account for the specificities of tropical fisheries, 

enabling accurate assessments that inform sustainable management practices. R, a 

powerful statistical programming language, has emerged as a crucial tool in fisheries 

science, providing a versatile and comprehensive environment for data analysis, 

visualization, and modeling. R’s extensive package ecosystem, particularly those tailored to 

fisheries science, such as TropFishR, offers a robust framework for implementing advanced 

stock assessment techniques.  

This book is designed to guide fisheries scientists and practitioners through the 

process of using R for stock assessment of tropical fishes, equipping them with the skills 

and knowledge needed to conduct detailed and reliable assessments. It provides a step-by-

step approach to stock assessment using R, covering installation and setup of R and 

RStudio, application of length-based methods, and catch-based methods. Each section 

builds on the previous, offering a comprehensive guide from basic setup to advanced 

analytical techniques. 

Installing R and RStudio 

The foundation of this manual is the installation and configuration of the 

necessary software tools. This section provides a detailed guide to installing R, RStudio and 

Rtools, ensuring that users have a functional environment for implementing the stock 

assessment methods described in subsequent sections. RStudio, an integrated development 

environment for R, enhances usability with its user-friendly interface, making it easier to 

write and manage code, visualize data, and debug analyzes. Rtools, a collection of resources 

for building R packages on Windows, is essential for compiling and installing packages that 

extend the capabilities of R. 

Length-based methods 

Length-based methods are crucial for assessing fish stocks, particularly in data-

moderate contexts where detailed age data may be scarce. This section delves into various 
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length-based techniques, providing practical examples and R code to implement each 

method. 

Estimation of VBGF growth parameters using ELEFAN 

The Electronic Length Frequency Analysis (ELEFAN) approach allows for the 

estimation of growth parameters from length frequency data. TropFishR includes both a 

traditional and updated versions of ELEFAN with new optimization techniques. The K-scan 

technique, part of the ELEFAN framework, involves scanning for different values of the 

growth parameters, i.e., L∞, and K that best fit the observed length frequency data, 

providing a foundation for further analysis of population dynamics. The section also deals 

with the application of advanced versions of ELEFAN that use simulated annealing and 

genetic algorithm for deriving the growth parameters and their confidence intervals. 

Estimation of hatching time/gestation period (t0) 

Estimating the hatching time or gestation period (t0) is vital for understanding the 

breeding/ spawning time, spawning periodicity, and recruitment dynamics, which enable 

more precise assessments of stock status. The section provides codes for empirical and 

precise estimation of t0 and its confidence interval using generic R codes not available in 

TropFishR. 

Estimation of maximum age/longevity (tmax) 

Determining the maximum age or longevity tmax of fish species is essential for 

understanding their life history strategies and population dynamics. This parameter helps 

in modeling the natural mortality (M) experience by fish populations and assessing their 

vulnerability to fishing pressures. The section provides codes for empirical and precise 

estimation of tmax and its confidence interval using generic R codes, besides the default 

estimation by the TropFishR. 

Estimation of natural mortality (M) 

Natural mortality (M) is a critical parameter influencing fish population dynamics. 

Accurate estimation of M provides insights into the survival rates of fish and their resilience 

to exploitation, forming a key component of stock assessment models. The section provides 

codes for empirical and precise estimation of M and its confidence interval using generic R 

codes, besides the default estimation method by the TropFishR. 

Catch curve analysis 

The catch curve analysis estimates the total mortality rate (Z) by analyzing the 

exponential decay in the age structured catch as a proxy of the real fish population. This 

section covers the implementation of catch curve analysis in R, including the preparation of 

age composition data, fitting the catch curve, and interpreting the results. The analysis also 

provides crucial information regarding the probability of capture for different length (age) 

groups, which is used to assess gear selectivity and length at capture (LC50). Understanding 

the total mortality rate is crucial for assessing the fishing mortality rate (F), exploitation 

rate (E) endured by the fish stocks, which helps in identifying potential overfishing. This 

section provides detailed guidance on performing length converted catch curve analysis in 

R, including data preparation, model fitting, and interpretation of results. 
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Virtual population analysis (VPA)/cohort analysis (CA) 

The virtual population analysis (VPA)/cohort analysis (CA) involves tracking the 

dynamics of a cohort or group of fish born in the same period. This method helps in 

understanding the growth, survival, and exploitation rates of different length groups 

(cohorts), providing valuable insights into population dynamics. This section provides 

detailed guidance on performing cohort analysis in R, including data preparation, model 

fitting, and interpretation of results. 

Stock simulation 

Stock simulation models are essential for evaluating the potential outcomes of 

different management scenarios. The analysis simulates the effect of a change in fishing 

mortality and gear selectivity on the yield and biomass of the stock. This section introduces 

the Thompson and Bell’s prediction model and Beverton and Holt’s yield per recruit model, 

providing practical examples of how to implement these models in R. 

Length-Weight relationship (LWR) 

Establishing the relationship between length and weight (LWR) of the fish is 

essential to convert the easily available length-based information to biomass during 

biomass modeling and stock simulation. This section provides a detailed guide to modeling 

the LWR, testing the growth of the fish (isometric vs. allometric) and assessing the 

significant difference in the body weight of fish between sexes through implementing 

ANCOVA using the R interface. The section also addresses the advance procedures for 

increasing the accuracy of LWR modeling, such as information theory-based multi-model 

comparison criterion such as Akaike Information Criterion (AICc) to assess the best 

modeling approach for the LWR. 

Length at maturity (LM50) 

Estimating the length at maturity is crucial for understanding the reproductive 

biology of fish species. This section provides a detailed guide to calculating the length at 

maturity in R, including data preparation, model fitting, and interpretation of results. 

Accurate estimation of the length at maturity informs management decisions aimed at 

protecting spawning stock biomass (SSB), which is critically required for ensuring the 

sustainability of fish stocks. 

Length-based spawning potential ratio (LBSPR) 

The length-based spawning potential ratio (LBSPR) is a metric used to assess the 

reproductive potential of a fish stock. LBSPR is a valuable tool for assessing the 

sustainability of fish stocks and identifying potential risks to reproductive capacity. This 

section provides a comprehensive guide to calculating LBSPR in R, including data 

preparation, model fitting, and interpretation of results.  

Length-based Bayesian biomass estimator (LBB) 

The length-based Bayesian biomass estimator (LBB) is an advanced method for 

estimating fish biomass using length frequency data. This section introduces the LBB 

method, providing practical examples of how to implement it in R, including parameter 

estimation, model fitting, and interpretation of results. 
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Catch-based methods 

The catch-based methods are essential for assessing fish stocks under data poor 

conditions when length or age data are limited. This section covers various catch-based 

techniques, providing practical examples and R code to implement each method. 

Effort standardization 

Tropical fisheries are characterized by its multi-gear and multi-species nature, 

leading to mixed species fisheries. Therefore, it is necessary to standardize the effort in 

terms of the major gear used for exploiting any species, especially when multiple gears are 

involved in its exploitation. Effort standardization is a method used to account for 

differences in fishing effort when analyzing catch data. This section provides a 

comprehensive guide to performing effort standardization in R.  

Catch-based MSY (CMSY++) 

The CMSY++ is a catch-based method for estimating maximum sustainable yield 

(MSY) and related reference points using time series of catch and effort data. This section 

provides detailed instructions on implementing catch-based MSY in R when only the catch 

data is available and the Bayesian Schaefer model (BSM) when both the catch and effort 

data are available.  

Stock reduction analysis (sraplus) 

The sraplus is an advanced version of stock reduction analysis (SRA) for assessing 

fish stocks using catch data, but also has the option to incorporate effort data. It uses SRA 

when only catch data is available but has the flexibility to fit the SRA estimates with 

observed CPUE when effort data is supplied. This section introduces the sraplus method, 

providing practical examples of how to implement it in R. SRA Plus is a valuable tool for 

assessing the effects of historical fishing on fish stocks. 

This volume of the book aims to empower fisheries scientists and practitioners 

with the tools and knowledge to conduct effective stock assessments of tropical fish stocks 

using R. The authors are also committed to publishing Volume II of the book, which will 

cover advanced topics such as LIME, Stock Synthesis, SPiCT, JABBA, CatDyn, and Bayesian 

growth modelling. By providing detailed guidance, this book equips users with the skills 

needed to implement advanced stock assessment techniques and make informed 

management decisions. The combination of R’s powerful analytical capabilities and the 

specific methodologies described in this book offers a robust framework for addressing the 

challenges of tropical fisheries management and ensuring the sustainability of these vital 

resources for future generations. Through the practical examples and comprehensive 

instructions provided in this book, users will gain a deep understanding of the principles 

and practices of stock assessment, enabling them to contribute to the sustainable 

management of tropical fish stocks. As the challenges in tropical fisheries continue to 

evolve, the ability to apply rigorous and innovative stock assessment methods will be 

essential for maintaining the health and resilience of these ecosystems. 

 

(Authors) 
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1. Installing R, RStudio and Rtools 

1.1. Installing R for the first time 

The R is a free open-source programming language widely used for organizing, 

analyzing, and visualizing data. It is highly versatile and user-friendly, offering a vast array 

of user-created packages and easy-to-follow instructions and guides for implementation 

(https://cran.r-project.org/web/packages/available_packages_by_name.html). R also 

includes an environment or console that can execute code without RStudio. However, the 

basic R console is quite limited and does not offer as many accessible tools as RStudio. 

Therefore, many users prefer RStudio for data analysis and visualization. 

To install the R for different operating systems (Windows OS/ Mac OS/ Linux OS), visit the 

following site: https://www.rstudio.com/products/rstudio/download/#download or 

https://cran.r-project.org/ or https://cloud.r-project.org/, select the correct R setup file 

depending on the operating system (OS) and then click the ‘Download R’. 

For example, to install the latest version of R for the commonly used Windows OS, visit the 

following site: https://cloud.r-project.org/bin/windows/base/ and click the Download R 

for Windows OS. 

 

Clicking the Download R link will download the executable file for the latest 

version of R (ex: R-4.4.0-win.exe) usually to the download folder of the computer. Once the 

executable file for the latest version of R (e.g., R-4.4.0-win.exe) has finished downloading, 

proceed with the installation. It's recommended to install R as an administrator by right-

clicking on the executable file and selecting ‘Run as administrator’. During the 

installation, simply click ‘Next’ in each dialog box that appears to complete the process. 

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://www.rstudio.com/products/rstudio/download/#download
https://cran.r-project.org/
https://cloud.r-project.org/
https://cloud.r-project.org/bin/windows/base/
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1.2. Installing RStudio for the first time 

RStudio is an essential tool for working with the installed version of R. Although 

the basic R console can be used for data analysis and visualization, RStudio offers a clean, 

point-and-click interface with a variety of accessible tools. It allows for easy coding, 

organized management of data and files, convenient viewing of figures, and quick access to 

the help window. Therefore, many users prefer RStudio for data analysis and visualization.  

To install the RStudio for different operating systems (Windows OS/ Mac OS/ 

Linux OS), visit the following site: 

https://www.rstudio.com/products/rstudio/download/#download, scroll down and click 

the ‘Download RStudio’ under ‘All Installers and Tarballs’ for the required OS. For example, 

to install the latest version of RStudio for the commonly used Windows OS, visit the 

following site: https://www.rstudio.com/products/rstudio/download/#download and click 

the ‘Download RStudio Desktop for Windows’.  

 

https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download
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Clicking ‘Download’ will download and save the executable (.exe) file for the latest version 

of RStudio (e.g., RStudio-2024.04.1-748.exe) to the download folder of the computer. Once 

the download is complete, proceed with the installation. It's recommended to install 

RStudio as an administrator by right-clicking on the executable file and selecting ‘Run as 

administrator’. To complete the installation, simply click ‘Next’ in each dialog box that 

appears. 

  

1.3. Installing Rtools for the first time 

Rtools are required only when installing R packages from the source, particularly those that 

require the compilation of C/C++ or Fortran code, or when building R from the source. 

Ensure to install the appropriate version of Rtools based on the version of R installed on the 

system. The Windows installation packages for different versions of Rtools can be found at 

the following link: https://cran.r-project.org/bin/windows/Rtools/ 

 

Note: Use the following code to manually put the Rtools on the PATH (for RTools 4.0). 

write('PATH="${RTOOLS40_HOME}\\usr\\bin;${PATH}"', file = "~/.Renviron", append 

= TRUE) 

This will create a .Renviron text file in the Documents folder, which if opened using the 

Notepad, will show the following line: 

PATH="${RTOOLS40_HOME}\usr\bin;${PATH}" 

https://cran.r-project.org/bin/windows/Rtools/
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1.4. Updating R 

Do not frequently update the R if it is not absolutely necessary. Updating R 

necessitates updating the dependent R packages, which is a time taking process.  

Check the version of R installed in the system, using the following code 

R.version.string 

Update R automatically 

R can be easily updated with ‘installr’ package on Windows OS. To update R on MacOS, 

the user needs to use ‘updateR’ package. 

install.packages ("installr") 

library(installr) 

updateR() 

  
Click OK Click No 

  
Click Yes Click No 

 

 
It will download and prompt for the 

installation of a new version of R 

Give permission (Yes/OK/Next) during the 

installation of a new version of R 
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Click Yes Click Yes 

  
Click Yes Click Yes 

  
Click Yes Click Yes 

The installation process will check for a newer version of R. If an update is 

available, the process will download the latest R version and run the installer. After 

installation, the process will prompt the user to copy (or move) all packages from the old R 

library to the new one. It will then offer to update the transferred packages, open the new R 

GUI, and finally, close the old R. 

References 

Online resources 

https://jennhuck.github.io/workshops/install_update_R.html#Installing_R 

https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/ 

https://www.wikihow.com/Update-R 

 

 

 

 

https://jennhuck.github.io/workshops/install_update_R.html#Installing_R
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.wikihow.com/Update-R
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2. Length-based Methods 

2.1. Estimation of VBGF growth parameters using ELEFAN 

Introduction 

The Electronic Length Frequency Analysis (ELEFAN) is a computer program 

developed by ICLARM that employs robust methods for analyzing length-frequency data of 

finfish and shellfish. It comprises five programs (ELEFAN 0, 1, 2, 3, and 4), with ELEFAN 1 

specifically used for estimating von Bertalanffy Growth Function (VBGF) parameters 

(Pauly, 1987). ELEFAN is particularly suited for analyzing length-frequency data (LFQ) 

collected from fish stocks, especially in tropical regions where age-based data may be 

unavailable. The fundamental concept behind ELEFAN is that fish populations are made up 

of cohorts, which are groups of fish born around the same time. Due to their high numbers, 

cohorts form peaks (distinct modal size classes) in length-frequency distributions. When 

these cohorts grow over time, their growth is reflected in length-frequency distributions. 

The process begins by collecting fish length data at regular intervals (often monthly) and 

converting it into length-frequency distributions, which involves grouping the fish into 

different size classes. These periodic length-frequency distributions are then fitted with a 

series of growth curves generated using various combinations of L∞ (asymptotic length) and 

K (growth coefficient). The goal is to align as many modal (peak) lengths observed at 

different times as possible to produce the best-fitting growth curve. ELEFAN uses a scoring 

algorithm to calculate an Rn-score, which measures how well the growth curves fit the 

peaks in the length-frequency data. The Rn-score is determined by comparing the ESP 

(Explained Sum of Peaks—the total number of 'peaks' and 'troughs' hit by a growth curve) 

with the ASP (Available Sum of Peaks—the sum of the maximum available 'peaks' 

accumulated by that curve). A higher Rn-score, calculated as 10 (ESP/ASP)/10, indicates a 

better fit. The algorithm tests different growth parameter combinations to find the growth 

curve that maximizes the Rn-score. ELEFAN 1 applies a seasonally oscillating version of the 

von Bertalanffy Growth Function (Somer, 1988) to estimate growth parameters such as L∞ 

and K. 

Generalized VBGF 𝐿𝑡 = 𝐿∞ × (1 − 𝑒𝑥𝑝−𝐾(𝑡−𝑡0)) 

Seasonally oscillating 

version of VBGF 𝐿𝑡 = 𝐿∞ × (1 − 𝑒𝑥𝑝
−𝐾(𝑡−𝑡0)+ (

𝐶𝐾
2𝜋

×sin (2𝜋(𝑡−𝑡𝑠)))+(
𝐶𝐾
2𝜋

×sin (2𝜋(𝑡0−𝑡𝑠)))
) 

Where Lt is the length at age t, L∞ is the asymptotic length, K is the growth 

coefficient, and t0 is the theoretical age at which the fish’s length would be zero. The 

parameter ts (Summer Point = WP - 0.5) represents the start of the sinusoidal growth 

oscillation relative to t=0. The term "Winter Point" (WP = 0.5 + ts) is often used instead of 

ts, and it indicates the time of year (expressed as a fraction of the year) when growth is at its 

slowest (Pauly, 1987; Pauly et al., 1992). ‘C’ represents the amplitude of growth oscillation. 

When C=0, the seasonally oscillating version of the von Bertalanffy Growth Function 

(VBGF) reduces to the generalized VBGF without seasonal variation. When 0<C<1, growth 

oscillates seasonally but never halts entirely. For instance, when C=0.5, growth increases by 

50% in summer and decreases by 50% in winter, but is never completely stopped. When 
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C=1, growth doubles in the summer (ts=WP−0.5) and ceases entirely in winter (WP=0.5+ts

). If C>1, growth oscillates so strongly that it predicts a reduction in length during winter, 

which is highly unlikely in nature. In most cases, C>1 does not imply that fish shrink in 

winter, but rather suggests a prolonged period of no growth, which may occur in cold 

habitats (Pauly, 1987; Pauly et al., 1992). The value of C generally correlates with the 

difference between mean monthly summer and winter temperatures (ΔT). A ΔT of 10°C can 

cause a C value near 1. It has been observed that even a ΔT of 2°C is sufficient to induce 

statistically significant seasonal growth oscillations in tropical fish (Longhurst and Pauly, 

1987). Unlike temperate fish, most tropical fish spawn and recruit continuously throughout 

the year. While this can make it difficult to identify and fit a growth curve to a distinct 

cohort, it is still workable. This is largely because, even though a portion of the population 

spawns year-round, the major spawning and recruitment events occur seasonally, which 

creates the peaks and troughs observed in length-frequency data (Pauly, 1987). 

ELEFAN: R Implementation 

The ELEFAN can be implemented on R interface using ‘TropFishR’ R package. 

The ‘TropFishR’ R package has been developed by Mildenberger et al. (2017). It provides a 

set of tools and functions for assessing the life history characteristics, stock dynamics, 

exploitation characteristics and health status of tropical and sub-tropical fish. The 

TropFishR package follows the FAO manual for tropical fish stock assessment (Sparre and 

Venema, 1998) and enhances data-limited fishery analysis by incorporating traditional and 

updated versions of the ELEFAN method, new optimization techniques, Millar's nonlinear 

selectivity models, and comprehensive methods for analyzing length-frequency data (LFQ). 

It supports stock assessment routines and management reference level derivation using 

yield per recruit modeling. Unlike the FiSAT II, the TropFishR offers greater data handling 

flexibility and automated analysis capabilities.  

2.1.1. Requirements for ELEFAN 

R package (TropFishR) 

Install the ‘TropFishR’ R package using the following code (Do not install again if 

already installed): install.packages("TropFishR", repos = "https://cran.rstudio.com/") 

Load the ‘TropFishR’ package using the following code: library(TropFishR) 

Length-based data 

Length-based data is also required for the analysis which is typically available in 

the following two formats, viz. (1) Data format 1 (Raw data), and (2) Data format 2 (Raised 

data) which need to be imported into R for analysis. Refer ‘Example data file 

download link’ in the last page to download and used the example data. 

2.1.2. Creating a length frequency file (LFQ) on R using Data format 1 

(Raw data) 

Raw data (dates and lengths) that have not been aggregated needs to be formatted 

to create length frequencies (LFQ) for different months and subsequently raised to reflect 

the proportion of monthly landings.  
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Click on the 'Import Dataset' option in the ‘Environment’ tab (top right panel). 

Then select 'From Excel'. Browse for the Excel file (e.g., the 'rawdata' sheet in the 'rawdata' 

Excel file) and import it. 

Environment> Import Dataset> From Excel and then browse the file on disk and import. 

Excel import window Unraised dataset (Raw data) 

  

Note: Use length measurements in centimeters (cm) to ensure uniformity in subsequent 

calculations. 

Load the library TropFishR and create a length frequency (LFQ) file using the following 

codes: 

library(TropFishR) 

rawdata$date<- as.Date(rawdata$date, format = "%d.%m.%Y") 

my_data<- lfqCreate(data = rawdata, Lname = "length", Dname = "date") 

2.1.3. Controlling the length class interval (Bin size) 

Use the following code to set the bin size (length class interval) to 1 cm and plot the output: 

my_data1 <- lfqModify(my_data, bin_size = 1) 

plot(my_data1, Fname = "catch") 
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Use the following code to reset the bin size (length class interval) to 2 cm and plot the 

output. 

my_data2 <- lfqModify(my_data, bin_size = 2) 

plot(my_data2, Fname = "catch")  

 

Note: The length class interval can be adjusted by changing the ‘bin_size’ parameter. The 

optimal length class interval should be determined by evaluating the ‘Rn score’ and ensuring 

that the derived growth parameters align with the biological rationale for the species. According 

to Wang et al. (2020), the optimal bin size (OBS) can be selected using the following rule of 

thumb: 𝑂𝐵𝑆 = 0.23 × 𝐿𝑚𝑎𝑥
0.6 

Once the best length class interval for the data has been identified, save the dataset 

as my_data for use in subsequent analysis. For example, to save the length frequencies with 

1 cm class intervals (e.g., my_data1), use the following code: my_data<- my_data1 

2.1.4. Raising the length frequency data 

The unraised length frequency data can be converted to monthly raised 

frequencies by multiplying it with the raising factors (i.e., monthly landings/sample weight) 

for each month. 

To import the monthly raising factors, click on the 'Import Dataset' option in the 

‘Environment’ tab (top right panel), and then select 'From Excel'. Browse for the Excel file 

(e.g., the RF sheet in the rawdata Excel file) and import it. 

Environment> Import Dataset> from Excel and then browse the file on disk and import. 

Excel Import window Raising factor data (RF sheet) 
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raising_factors<-rep(rawdata$RF, each=length(my_data$midLengths)) 

my_data$catch<- my_data$catch*raising_factors  

Note: Although growth and mortality parameters can be assessed using the unraised monthly 

length frequencies (LFQ file), it is generally preferable to raise the data for subsequent analysis, 

such as virtual population analysis, stock yield, and biomass estimation. 

2.1.5. Creating a length frequency file (LFQ) on R using Data Format 2 

(Raised data) 

Raised data (Dates, length ranges and frequencies) needs to be formatted to create 

length frequencies (LFQ) for different months. For ease of splitting the dataset by month, 

use date formatting with a prefixed capital ‘X’ in the month headers. 

Click on the 'Import Dataset' option in the ‘Environment’ tab (top right panel) and 

select 'From Excel'. Browse for the Excel file (e.g., the ‘lfq’ data sheet in the ‘raiseddata’ 

Excel file) and import it. 

Environment> Import Dataset> from Excel and then browse the file on disk and import. 

Excel import window Raised dataset (lfq) 

Dates, length ranges, and frequencies 

  

Note: Use length measurements in centimeters (cm) to ensure uniformity in subsequent 

calculations. Ensure that no column under any month header is entirely empty, NA, or zero. There 

should be at least one observation (catch number or frequency) for any length class in each month 

within the dataset. If a month has no observed frequency, it should be excluded from the dataset. 

Including months with no observed frequencies will cause errors. 

Load the library TropFishR and create a length frequency file (LFQ) using the 

following codes: 

library(TropFishR) 

dates <- colnames(raiseddata)[-1] 

dates <- strsplit(dates, "X") 

dates <- unlist(lapply(dates, function(x) x[2])) 

dates <- as.Date(dates, "%d.%m.%Y") 
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Specify variables like midLengths, dates and month-wise catches using the following code: 

my_data <- list(dates = dates, midLengths = raiseddata$lengthClass, catch = 

as.matrix(raiseddata[,-1])) 

Convert the above file (e.g., my_data) to a length frequency file (LFQ) using the following 

code: class(my_data) <- "lfq"  

Fill the empty cells (if any) in the newly created lfq file with zeros using the following code: 

my_data$catch[is.na(my_data$catch)] <- 0  

Plot the newly created length frequency file (e.g., my_data) using the following code: 

plot(my_data, Fname = "catch")  

2.1.6. Controlling length class interval (Bin size) 

Use the following code to set the bin size (length class interval) to 1 cm and plot the output: 

my_data1 <- lfqModify(my_data, bin_size = 1) 

plot(my_data1, Fname = "catch")  

Use the following code to set the bin size (length class interval) to 2 cm and plot the output: 

my_data2 <- lfqModify(my_data, bin_size = 2) 

plot(my_data2, Fname = "catch")   

Note: The desired length class interval can be adjusted by changing the ‘bin_size’ parameter. 

The optimal length class interval should be determined by evaluating the ‘Rn score’ and ensuring 

that the derived growth parameters align with the biological rationale for the species. According 

to Wang et al. (2020), the optimal bin size (OBS) can be selected using the following rule of thumb: 

𝑂𝐵𝑆 = 0.23 × 𝐿𝑚𝑎𝑥
0.6 

Once the best length class interval for the data has been identified, save the dataset 

as my_data for use in subsequent analysis. For example, to save the length frequencies with 

1 cm class intervals (e.g., my_data1), use the following code: my_data<- my_data1 

The LFQ file created from data format 1 or 2 can be further processed to estimate 

the Von Bertalanffy’s growth parameters (1957), i.e., L∞ (asymptotic length) and K (growth 

coefficient) using the Electronic Length Frequency Analysis (ELEFAN) routine of 

TropFishR package which provides following four approaches: (1) ELEFAN: response 

surface analysis (RSA), (2) ELEFAN: K-scan, (3) ELEFAN_SA: ELEFAN simulated 

annealing, and (4) ELEFAN_GA: ELEFAN genetic algorithm. 

2.1.7. ELEFAN: Response surface analysis (RSA) 

In this analysis, various combinations of L∞ and K are explored to identify the 

growth parameters that best fit the restructured length-frequency data. The best 

combination is identified using the Rn-score. TropFishR provides two options for response 

surface analysis: (1) the Cross method, which is the default method used in the old FiSAT 

software, and (2) the Optimize method, a computationally expensive yet more sophisticated 

new method available in TropFishR. 
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Preparing L∞ and K ranges for RSA 

Guess L∞ using the following empirical relationship between the asymptotic length 

(L∞) and the maximum observed length (Lmax): 

𝐿∞ = 
𝐿𝑚𝑎𝑥

0.95
 

Provide information about the maximum observed length (Lmax) as follows: 

Lmax<-13.15 

linf_guess <- Lmax / 0.95 

To create a 5% lower and upper range for the guessed L∞, use the following codes: 

linf_guess_range<- linf_guess*(5/100) 

linf_guess_low <- linf_guess- linf_guess_range  

linf_guess_high <-linf_guess+linf_guess_range 

Guess K based on the biological traits of the species, such as growth rate (fast vs. 

slow) or longevity (short-lived vs. long-lived). If the species' longevity (tmax) is known, the 

user can use the following empirical relationship between tmax and K to estimate K: 

𝐾 = 
3

𝑡𝑚𝑎𝑥
 

For example, if a fast-growing shrimp lives up to 1.5 years (tmax), then its K can be estimated 

as follows: K_guess<-3/1.5 

To create a 10% lower and upper range for the guessed K, use the following codes: 

K_guess_range <-K_guess*(10/100)  

K_guess_low <-K_guess-K_guess_range 

K_guess_high <-K_guess+K_guess_range 

Note: The initial guess range for L∞ and K can be further fine tuned by multiplying with required 

range factor (ex: 5/100 for 5% range) after getting the results from the initial run. Initially, use a 

broad range of 10% and then squeeze the range based on output from analysis. 

RSA Cross' method (default method of FiSAT II) 

Automatic approach:  

The system automatically aligns the growth function to intersect (cross) the bin 

(length class) with the maximum positive score. 

fit1 <- ELEFAN(lfq = my_data, method = "cross", cross.max= TRUE, Linf_range = 

seq(linf_guess_low, linf_guess_high, 0.1), K_range = (seq(K_guess_low, K_guess_high, 

0.1)), contour = FALSE, MA = 5, addl.sqrt = TRUE) 

In the code provided above, the user can directly specify the range for an initial guess of L∞ 

and K. For example, the user might set the L∞ range from 13.5 to 14.5 cm and the K range 

from 1.5 to 2.0 yr-1 as follows: 
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fit1 <- ELEFAN(lfq = my_data, method = "cross", cross.max= TRUE, Linf_range = 

seq(13.5, 14.5, 0.1), K_range = (seq(1.5, 2, 0.1)), contour = FALSE, MA = 5, addl.sqrt = 

TRUE) 

Manual approach:  

The user can specify the growth function to intersect a required bin (length class) 

by setting the specific date (e.g., first month) and length (e.g., second mid-length) as 

follows: 

fit1 <- ELEFAN(lfq = my_data, method = "cross", cross.max= FALSE, Linf_range = 

seq(linf_guess_low, linf_guess_high, 0.1), K_range = (seq(K_guess_low, K_guess_high, 

0.1)), cross.date = my_data$dates[1], cross.midLength = 

my_data$midLengths[2], contour = FALSE, MA = 5, addl.sqrt = TRUE) 

In the code provided above, the user can directly specify the range for an initial guess of L∞ 

and K. For example, the user might set the L∞ range from 13.5 to 14.5 cm and the K range 

from 1.5 to 2.0 yr-1 as follows: 

fit1 <- ELEFAN(lfq = my_data, method = "cross", cross.max= FALSE, Linf_range = 

seq(13.5, 14.5, 0.1), K_range = (seq(1.5, 2, 0.1)), cross.date = my_data$dates[1], 

cross.midLength = my_data$midLengths[2], contour = FALSE, MA = 5, addl.sqrt = TRUE) 

 

RSA optimize method (new method of TropFishR) 

It is a sophisticated but computationally expensive approach in TropFishR that 

solves for t_anchor through a maximization process of the reconstructed score. 

fit1 <- ELEFAN(lfq = my_data, method = "optimise", Linf_range = seq(linf_guess_low, 

linf_guess_high, 0.1), K_range = (seq(K_guess_low, K_guess_high, 0.1)), contour = 

FALSE, MA = 5, addl.sqrt = TRUE) 
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In the code provided above, the user can directly specify the range for an initial guess of L∞ 

and K. For example, the user might set the L∞ range from 13.5 to 14.5 cm and the K range 

from 1.5 to 2.0 yr-1 as follows: 

fit1 <- ELEFAN(lfq = my_data, method = "optimise", Linf_range = seq(13.5, 14.5, 0.1), 

K_range = (seq(1.5, 2, 0.1)), contour = FALSE, MA = 5, addl.sqrt = TRUE) 

Understanding the RSA output  

The result shows that L∞ and K at a combination of 14.3-14.5 cm and 1.7-1.8 yr⁻¹ 

yield the highest Rn-score. This output can be used to narrow down the search range for L∞ 

and K, potentially improving the results further. 

Note: Biological characteristics such as Lmax, tmax, and expected growth performance should be 

given due consideration along with the Rn-score when determining the best combination pair for 

L∞ and K. 

2.1.8. ELEFAN: K-scan  

The analysis is similar to the RSA described above, except that in K-Scan, L∞ is 

fixed, and a range of K values is scanned in combination with the fixed L∞ to identify the 

growth parameters that best fit the restructured length-frequency data. The best 

combination is identified using the Rn score. As with RSA, TropFishR provides two options 

for K-Scan analysis: (1) the Cross method, which is the default method used in the old 

FiSAT software, and (2) the Optimize method, a computationally expensive but more 

sophisticated approach available in TropFishR. 

Preparing a fixed L∞ and K range for K-scan 

Guess L∞ using the following empirical relationship between the asymptotic length 

(L∞) and the maximum observed length (Lmax): 

𝐿∞ = 
𝐿𝑚𝑎𝑥

0.95
 

Provide information about the maximum observed length (Lmax) as follows: 

Lmax<-13.15 

linf_guess <- Lmax / 0.95 

To create a 5% lower and upper range for the guessed L∞, use the following codes: 

linf_guess_range<- linf_guess*(5/100) 

linf_guess_low <- linf_guess- linf_guess_range  

linf_guess_high <-linf_guess+linf_guess_range 

Guess K based on the biological traits of the species, such as growth rate (fast vs. slow) or 

longevity (short-lived vs. long-lived). If the species' longevity (tmax) is known, the user can 

use the following empirical relationship between tmax and K to estimate K: 

𝐾 = 
3

𝑡𝑚𝑎𝑥
 

For example, if a fast-growing shrimp lives up to 1.5 years, then its K can be estimated as: 
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K_guess<-3/1.5 

To create a 10% lower and upper range for the guessed K, use the following codes: 

K_guess_range <-K_guess*(10/100)  

K_guess_low <-K_guess-K_guess_range 

K_guess_high <-K_guess+K_guess_range 

Note: The initial guess range for L∞ and K can be further fine tuned by multiplying with required 

range factor (ex: 5/100 for 5% range) after getting the results from the initial run. Initially, use a 

broad range of 10% and then squeeze the range based on output from analysis. 

K-scan cross' method (Default method of FiSAT II) 

Automatic approach:  

The system automatically aligns the growth function to intersect (cross) the bin 

(length class) with the maximum positive score. 

fit1 <- ELEFAN(lfq = my_data, method = "cross", cross.max= TRUE, Linf_fix = 

linf_guess, K_range = (seq(K_guess_low, K_guess_high, 0.1)), contour = FALSE, MA = 5, 

addl.sqrt = TRUE) 

In the above code, the user can directly specify the L∞ and the range for an initial guess of K. 

For example, the user might set L∞ to 14 cm and the K range from 1.5 to 2.0 yr⁻¹ as follows: 

fit1 <- ELEFAN(lfq = my_data, method = "cross", cross.max= TRUE, Linf_fix = 14.0, 

K_range = (seq(1.5, 2, 0.1)), contour = FALSE, MA = 5, addl.sqrt = TRUE) 

Manual approach:  

The user can specify the growth function to intersect a required bin (length class) 

by setting the specific date (e.g., first month) and length (e.g., second mid-length) as 

follows: 

fit1 <- ELEFAN(lfq = my_data, method = "cross", cross.max= FALSE, Linf_fix = 

linf_guess, K_range = (seq(K_guess_low, K_guess_high, 0.1)), cross.date = my_data 

$dates[1], cross.midLength = my_data $midLengths[2], contour = FALSE, MA = 

5, addl.sqrt = TRUE) 

In the above code, the user can directly specify the L∞ and the range for an initial guess of K. 

For example, the user might set L∞ to 14 cm and the K range from 1.5 to 2.0 yr⁻¹ as follows: 

fit1 <- ELEFAN(lfq = my_data, method = "cross", cross.max= FALSE, Linf_fix = 14.0, 

K_range = (seq(1.5, 2, 0.1)), cross.date = my_data $dates[1], cross.midLength = my_data 

$midLengths[2], contour = FALSE, MA = 5, addl.sqrt = TRUE) 

K-scan optimise method (New method of TropFishR) 

It is a sophisticated but computationally expensive approach in TropFishR that 

solves for t_anchor through a maximization process of the reconstructed score. 

fit1 <- ELEFAN(lfq = my_data, method = "optimise", Linf_fix = linf_guess, K_range = 

(seq(K_guess_low, K_guess_high, 0.1)), contour = FALSE, MA = 5, addl.sqrt = TRUE) 
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In the code provided above, the user can directly specify the L∞ and the range for 

an initial guess of K. For example, the user might set L∞ to 14 cm and the K range from 1.5 

to 2.0 yr⁻¹ as follows: 

fit1 <- ELEFAN(lfq = my_data, method = "optimise", Linf_fix = 14.0, K_range = 

(seq(1.5, 2, 0.1)), contour = FALSE, MA = 5, addl.sqrt = TRUE) 

 

Understanding the K-scan output 

The output shows that for the given L∞ and K range, the highest Rn-score is 

attained at a K value of 1.8 yr⁻¹. This output can be used as input to narrow down the search 

range for K to further improve the results. 

Note: Ideally, the output from the response surface analysis (RSA) should be used to refine the K 

value through the K-Scan procedure. However, the K-Scan can also be conducted independently if 

one is confident about the L∞ and only seeks to determine the K. Biological characteristics such as 

Lmax, tmax, and expected growth performance should be carefully considered, along with the Rn-

Score, when determining the best K value. 

2.1.9. ELEFAN_SA: ELEFAN Simulated Annealing 

In addition to the traditional ELEFAN methods mentioned above (RSA and K-

Scan), TropFishR also offers two new optimization procedures for simultaneously deriving 

life history parameters: (1) ELEFAN based on simulated annealing (ELEFAN_SA) and (2) 

ELEFAN based on genetic algorithms (ELEFAN_GA) (Taylor & Mildenberger, 2017). The 

ELEFAN_SA routine requires an educated guess for the initial, lower, and upper values of 

L∞, K, and t-anchor. 

Preparing L∞ and K ranges for ELEFAN_SA 

Guess L∞ using the following empirical relationship between the asymptotic length 

(L∞) and the maximum observed length (Lmax): 

𝐿∞ = 
𝐿𝑚𝑎𝑥

0.95
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Provide information about the maximum observed length (Lmax) as follows: 

Lmax<-13.15 

linf_guess <- Lmax / 0.95 

To create a 5% lower and upper range for the guessed L∞, use the following codes: 

linf_guess_range<- linf_guess*(5/100) 

linf_guess_low <- linf_guess- linf_guess_range  

linf_guess_high <-linf_guess+linf_guess_range 

Guess K based on the biological traits of the species, such as growth rate (fast vs. 

slow) or longevity (short-lived vs. long-lived). If the species' longevity (tmax) is known, the 

user can use the following empirical relationship between tmax and K to estimate K: 

𝐾 = 
3

𝑡𝑚𝑎𝑥
 

For example, if a fast-growing shrimp lives up to 1.5 years (tmax), then its K can be estimated 

as follows: 

K_guess<-3/1.5 

To create a 10% lower and upper range for the guessed K, use the following codes: 

K_guess_range <-K_guess*(10/100)  

K_guess_low <-K_guess-K_guess_range 

K_guess_high <-K_guess+K_guess_range 

Note: The initial guess range for L∞ and K can be further fine tuned by multiplying with required 

range factor (ex: 5/100 for 5% range) after getting the results from the initial run. Initially, use a 

broad range of 10% and then squeeze the range based on output from analysis. 

The code to implement ELEFAN_SA is given below: 

fitSA <- ELEFAN_SA (my_data, seasonalised = FALSE, maxit = NULL, SA_time = 60*1, 

init_par = list(Linf= linf_guess, K= K_guess, t_anchor=0.5, ts=0.5, C=0.5), 

low_par = list(Linf= linf_guess_low, K=K_guess_low, t_anchor=0.0, ts=0.0, 

C=0.0), up_par = list(Linf= linf_guess_high, K= K_guess_high, t_anchor=1.0, 

ts=1.0, C=1.0), MA = 5, addl.sqrt = TRUE) 

In the code provided above, the user can directly specify initial guess for L∞ (e.g., 14 cm) 

and K (e.g., 1.8 yr⁻¹), along with their lower (e.g., L∞ = 13.5 cm and K = 1.5 yr⁻¹) and upper 

(e.g., L∞ = 14.5 cm and K = 2.0 yr⁻¹) bounds as follows: 

fitSA <- ELEFAN_SA (my_data, seasonalised = FALSE, maxit = NULL, SA_time = 60*1, 

init_par = list(Linf=14.0, K=1.8, t_anchor=0.5, ts=0.5, C=0.5), low_par = 

list(Linf=13.5, K=1.5, t_anchor=0.0, ts=0.0, C=0.0), up_par = list(Linf=14.5, 

K=2.0, t_anchor=1.0, ts=1.0, C=1.0), MA = 5, addl.sqrt = TRUE) 

Note: Considering the tropical condition, the seasonal oscillation in growth has been turned off 

(seasonalised = FALSE). If seasonalised = FALSE, then there is no need to provide initial, lower 

limit and upper limit values for the ts and C in the above-mentioned codes (ts=NA, C=NA). The t-
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anchor (represents the starting point of ELEFAN 1 in Fisat II) is the point that anchors the growth 

curve to the X-axis (time or age axis) and also represents the peak spawning period. Its value 

varies from 0 to 1, where 0 represents 1st January; 0.5 represents June; and 0.999 represents 31st 

December (i.e., Month = t-anchor ×12). Initially, use a broader range for L∞ and K, and then 

gradually narrow down the range. While determining the best L∞ and K values, consider biological 

characteristics such as Lmax, tmax, and expected growth performance, in addition to the Rn-score. 

Iteration diagnostic plot 

 

Understanding the ELEFAN_SA diagnostic plot  

Better results will show a greater overlap between the best values (green points) 

and the mean values (blue points), leading to smaller median values (showed by the light 

green area) in the diagnostic plot. 

To plot the VBGF growth parameters, use the following code: plot(fitSA) 
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To get the growth parameters such as L∞, K, recruitment period (t_anchor) and growth 

performance index (phiL), use the following code:  fitSA$par 

To get the goodness-of-fit parameter (Rn-score), use the following code: fitSA$Rn_max  

2.1.10. ELEFAN_GA: ELEFAN Genetic Algorithm 

This new optimization procedure in TropFishR uses ELEFAN based on genetic 

algorithms (ELEFAN_GA) for deriving growth parameters (Taylor & Mildenberger, 2017). 

Unlike ELEFAN_SA, ELEFAN_GA does not require an educated guess for the initial values 

of L∞, K, and t-anchor in the code. Instead, it derives the growth parameters based on an 

educated guess for the lower and upper values of L∞, K, and t-anchor. 

Preparing L∞ and K ranges for ELEFAN_GA 

Guess L∞ using the following empirical relationship between the asymptotic length 

(L∞) and the maximum observed length (Lmax): 

𝐿∞ = 
𝐿𝑚𝑎𝑥

0.95
 

Provide information about the maximum observed length (Lmax) as follows:  

Lmax<-13.15 

linf_guess <- Lmax / 0.95 

To create a 5% lower and upper range for the guessed L∞, use the following codes: 

linf_guess_range<- linf_guess*(5/100) 

linf_guess_low <- linf_guess- linf_guess_range  

linf_guess_high <-linf_guess+linf_guess_range 

Guess K based on the biological traits of the species, such as growth rate (fast vs. 

slow) or longevity (short-lived vs. long-lived). If the species' longevity (tmax) is known, the 

user can use the following empirical relationship between tmax and K to estimate K: 

𝐾 = 
3

𝑡𝑚𝑎𝑥
 

For example, if a fast-growing shrimp lives up to 1.5 years (tmax), then its K can be estimated 

as follows: K_guess<-3/1.5 

To create a 10% lower and upper range for the guessed K, use the following codes: 

K_guess_range <-K_guess*(10/100)  

K_guess_low <-K_guess-K_guess_range 

K_guess_high <-K_guess+K_guess_range 

Note: The initial guess range for L∞ and K can be further fine tuned by multiplying with required 

range factor (ex: 5/100 for 5% range) after getting the results from the initial run. Initially, use a 

broad range of 10% and then squeeze the range based on output from analysis. 

The code to implement ELEFAN_GA is given below: 

fitGA <- ELEFAN_GA (my_data, seasonalised = FALSE, maxiter = 100, low_par = 

list(Linf= linf_guess_low, K= K_guess_low, t_anchor=0.0, ts=0.0, C=0.0), 
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up_par = list(Linf= linf_guess_high, K= K_guess_high, t_anchor=1.0, ts=1.0, 

C=1.0), MA = 5, addl.sqrt = TRUE) 

In the code provided above, the user can directly specify initial guess for the lower (e.g., L∞ 

= 13.5 cm and K = 1.5 yr⁻¹) and upper (e.g., L∞ = 14.5 cm and K = 2.0 yr⁻¹) bounds of L∞ and 

K as follows: 

fitGA <- ELEFAN_GA(my_data, seasonalised = FALSE, maxiter = 100, low_par = 

list(Linf=13.5, K=1.5, t_anchor=0.0, ts=0.0, C=0.0), up_par = list(Linf=14.5, 

K=2.0, t_anchor=1.0, ts=1.0, C=1.0), MA = 5, addl.sqrt = TRUE) 

Note: Considering the tropical condition, the seasonal oscillation in growth has been turned off 

(seasonalised = FALSE). If seasonalised = FALSE, then there is no need to provide initial, lower 

limit and upper limit values for the ts and C in the above codes (ts=NA, C=NA). The t-anchor 

(represents the starting point of ELEFAN 1 in Fisat II) is the point that anchors the growth curve to 

the X-axis (time or age axis) and also represents the peak spawning period. Its value varies from 0 

to 1, where 0 represents 1st January; 0.5 represents June; and 0.999 represents 31st December (i.e., 

Month = t-anchor ×12). Initially, use a broader range for L∞ and K, and then gradually narrow 

down the range. While determining the best L∞ and K values, consider biological characteristics 

such as Lmax, tmax, and expected growth performance, in addition to the Rn-score. 

Iteration diagnostic plot 

 

Understanding the ELEFAN_GA diagnostic plot 

Better results will show a greater overlap between the best values (green points) 

and the mean values (blue points), leading to lower median values (represented by the 

intermittent light green area) in the diagnostic plot. 

To get the growth parameters such as L∞, K, recruitment period (t_anchor) and growth 

performance index (phiL), use the following code: 

fitGA$par 

To get the goodness-of-fit parameter (Rn score), use the following code: 
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fitGA$Rn_max  

To simply plot the growth parameters, use the following code: 

plot(fitGA) 

 

2.1.11. ELEFAN comparison plot 

To compare the genetic algorithm derived parameters with simulated annealing derived 

parameters  

plot(fitGA, draw = FALSE) 

#Plot genetic algorithm derived parameters 

lfqFitCurves(fitGA, par= fitGA$par, draw = TRUE, col=1, flagging.out = FALSE)$fESP 

#Plot simulated annealing derived parameters 

lfqFitCurves(fitSA, par= fitSA$par, draw = TRUE, col=2, flagging.out = FALSE)$fESP 

#Add legends 

legend("top", legend=c("GA", "SA"), lty=2, col=1:2, ncol=2) 
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2.1.12. Estimation of mean and confidence intervals of VBGF growth 

parameters  

The Jackknife (JK) resampling technique allows for the estimation of mean and 

confidence intervals for the VBGF parameters. In this statistical method, the growth 

parameters are recalculated repeatedly using either the ELEFAN_SA or ELEFAN_GA 

approach by resampling the LFQ data from the available months, excluding the length 

frequency data of one month each time. This resampling is repeated for every available 

month in the sample, generating a pool of VBGF parameters that is used to derive the 

confidence intervals. Any of the following two approaches can be used to derive the mean 

and confidence intervals of VBGF growth parameters: 

Through Simulated Annealing (Using ELEFAN_SA) 

The codes given below generate growth parameter values, their mean and 

confidence intervals using simulated annealing. 

JK <- vector("list", length(my_data$dates)) 

for (i in 1:length(my_data$dates)){ 

loop_data <- list(dates = my_data$dates[-i],  

midLengths = my_data$midLengths,  

catch = my_data$catch[,-i]) 

JK_MODEL <- ELEFAN_SA(loop_data, seasonalised = FALSE, maxit = 100, SA_time 

= 60*1, init_par = list(Linf=14.0, K=1.8, t_anchor=0.5, ts=0.5, C=0.5), low_par 

= list(Linf=13.5, K=1.5, t_anchor=0.0, ts=0.0, C=0.0), up_par = list(Linf=14.5, 

K=2.0, t_anchor=1.0, ts=1.0, C=1.0), MA = 5, addl.sqrt = TRUE) 

JK[[i]] <- unlist(c(JK_MODEL$par, list(Rn_max= JK_MODEL$Rn_max)))} 

{JKres <- do.call(cbind, JK) 

JKmeans <- apply(as.matrix(JKres), MARGIN = 1, FUN = mean) 

JKconf <-apply(as.matrix(JKres), MARGIN = 1, FUN = function(x) quantile(x, 

probs=c(0.025,0.975))) 

JKconf <- t(JKconf) 

JKvalues<-cbind(JKmeans, JKconf) 

colnames(JKvalues) <- c("mean","lower","upper")} 

JKvalues 

Through Genetic Algorithm (Using ELEFAN_GA) 

The codes given below generate growth parameter values, their mean and 

confidence intervals using genetic algorithm. 

JK <- vector("list", length(my_data$dates)) 

for (i in 1:length(my_data$dates)){ 

loop_data <- list(dates = my_data$dates[-i],  

midLengths = my_data$midLengths,  
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catch = my_data$catch[,-i]) 

JK_MODEL <- ELEFAN_GA(loop_data, seasonalised = FALSE, maxiter = 100, 

low_par = list(Linf=13.5, K=1.5, t_anchor=0.0, ts=0.0, C=0.0), up_par = 

list(Linf=14.5, K=2.0, t_anchor=1.0, ts=1.0, C=1.0), MA = 5, addl.sqrt = TRUE) 

JK[[i]] <- unlist(c(JK_MODEL $par, list(Rn_max= JK_MODEL $Rn_max)))} 

{JKres <- do.call(cbind, JK) 

JKmeans <- apply(as.matrix(JKres), MARGIN = 1, FUN = mean) 

JKconf <-apply(as.matrix(JKres), MARGIN = 1, FUN = function(x) quantile(x, 

probs=c(0.025,0.975))) 

JKconf <- t(JKconf) 

growth_confidence<-cbind(JKmeans, JKconf) 

colnames(growth_confidence) <- c("Mean"," Lower_95_CI"," Upper_95_CI")} 

growth_confidence 

Output 

 

Note: The Jackknife resampling procedure takes a considerable amount of time to complete. The 

number of iterations (maxit) and annealing time (SA_time) in ELEFAN_SA, as well as the number 

of iterations (maxiter) in ELEFAN_GA, can be increased to improve the accuracy of the analysis; 

however, this will also significantly increase the analysis time. The initial, upper and lower range 

of Linf and K used in JK_MODEL above are just some examples for illustration purpose. Proceed 

with this procedure only after finalizing the VBGF parameters using the simulated annealing 

approach in ELEFAN (ELEFAN_SA) or the genetic algorithm approach in ELEFAN 

(ELEFAN_GA). Use your initial parameters (init_par), lower parameters (low_par), and upper 

parameters (up_par) that were used in ELEFAN_SA or ELEFAN_GA when finalizing the VBGF 

parameters. 

2.2. Estimation of gestation period or hatching time (t0) 

The time when the length of the fish is theoretically zero is denoted as t0. Since fish 

is born with a length (size at birth, L0) and age starts from the time of birth (t=0), the time 

required to reach the size at birth (L0) from a theoretical zero length is usually expressed as 

a negative number (due to its position on the left side of the origin on the X-axis or the time 

axis). It is considered as the time taken by the fish to reach the size at birth (L0) from a 

theoretically zero length and is also used as a proxy for the hatching or gestation period (t0).  
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2.2.1. Requirements for t0 calculation 

Essential parameters 

It is necessary to save the essential growth parameters (L∞ and K) in the LFQ file 

(e.g., my_data) for the calculation of t0. To assign the mean values directly from the Jack 

Knife approach, use the following codes: 

my_data$Linf<-as.numeric (growth_confidence[1]) 

my_data$K<-as.numeric (growth_confidence[2]) 

User can directly assign the derived growth parameters (e.g., L∞ = 13.95 cm and K = 1.71 yr-

1) in the LFQ file using the following codes: 

my_data$Linf<-13.95 

my_data$K<-1.71 

The rearranged VBGF equation for t0 also requires an additional parameter, i.e., the length 

at birth (L0) in ‘cm’ (e.g., for a shrimp, assume the larval size on the day of hatching (0th 

day) is 0.025 cm), which can be assigned using the following code:  

L0<-0.025 

TropFishR does not provide an inbuilt routine for calculating the time when the length of 

the fish is theoretically zero (t0). Nevertheless, t0 can be calculated using the following two 

equations: 

2.2.2. Empirical equation for t0 

It can be estimated using the empirical formula suggested by Pauly (1983), as 

shown below. 

𝑡0 = 10(−0.3922−0.2752∗𝑙𝑜𝑔10(𝐿∞)−1.038∗𝑙𝑜𝑔10(𝐾)) 

Use the following R code to calculate t0, although the result may not be very reasonable: 

tzero <- -10^(-0.3922-(0.2752*log10(my_data$Linf))-(1.038*log10(my_data$K))) 

tzero 

Alternatively, the user can directly assign the derived growth parameters (e.g., L∞ = 13.95 

cm and K = 1.71 yr-1) in the code as follows: 

tzero <- -10^(-0.3922-(0.2752*log10(13.95))-(1.038*log10(1.71))) 

tzero 

2.2.3. Rearranged VBGF equation for t0 

The t0 can be precisely back-calculated using the length at birth (L0) in the 

rearranged VBGF equation (von Bertalanffy, 1938), as outlined below: 

𝑡0 =
1

𝐾
× 𝑙𝑛 [1 − (

𝐿0

𝐿∞

)] 

The length at birth (L0) can be obtained from previously published literature. Define length 

at birth (L0) in ‘cm’ (e.g., for a shrimp, assume the larval size on the day of hatching (0th 

day) is 0.025 cm) using the following code: L0<-0.025 

Calculate t0 using the following code: 
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tzero<-1/my_data$K*log((1-(L0/my_data$Linf))) 

tzero 

Alternatively, the user can directly assign the derived growth parameters (e.g., L∞ = 13.95 

cm and K = 1.71 yr-1) and the L0 (0.025 cm) in the code as follows: 

tzero<-1/1.71*log((1-(0.025/13.95))) 

tzero 

2.2.4. Estimation of mean and confidence intervals of t0 

To get the confidence intervals for t0, a sample of t0 values is estimated using the 

derived growth parameters (L∞ and K) from the Jack Knife resampling procedure 

mentioned above. To save the individual outputs of each growth parameter derived from 

the Jack Knife resampling procedure as a data frame, first use the following code: 

growthparamdata <-as.data.frame(t(JKres)) 

To generate t0 values, along with their mean and confidence intervals, use the following 

codes: 

t_zeros_function = function(x, growthparamdata){ 

Linf = x[1] 

K = x[2] 

return(1/K*log((1-(L0/Linf))))} 

t_zeros<-apply(growthparamdata,1, t_zeros_function) 

t_zeros_mean <- apply(matrix(t_zeros), MARGIN = 2, FUN = mean) 

t_zeros_conf <- apply(matrix(t_zeros), MARGIN = 2, FUN = function(x) quantile(x, 

probs=c(0.025,0.975))) 

print(c(Mean=t_zeros_mean, Lower_95_CI=t_zeros_conf[1,1], 

Upper_95_CI=t_zeros_conf[2,1])) 

Add the t0 values to ‘growthparamdata’ data frame using the following code: 

growthparamdata$t_zero<-t_zeros 

2.3. Estimation of longevity/ maximum age (tmax) 

The longevity is the maximum age (tmax) to which the fish survives in the absence 

of exploitation or fishing mortality (F = 0, so Z = M). In the temperate conditions, it is 

estimated directly from the hard part analysis, as it is easy to age the temperate species that 

exhibit distinct growth rings due to seasonal changes. However, in tropical conditions, it is 

very challenging to directly age the fish using hard part analysis, as tropical species often 

grow continuously due to relatively stable environmental conditions. In tropical species, the 

tmax is often estimated using life history theory as a function of growth coefficient (K) or 

natural mortality rate (M). 
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2.3.1. Requirements for tmax calculation 

Essential parameters 

It is necessary to save the essential growth parameters (L∞ and K) in the LFQ file 

(e.g., my_data) for the calculation of t0. To assign the mean values directly from the Jack 

Knife approach, use the following codes: 

my_data$Linf<-as.numeric (growth_confidence[1]) 

my_data$K<-as.numeric (growth_confidence[2]) 

User can directly assign the derived growth parameters (e.g., L∞ = 13.95 cm and K = 1.71 yr-

1) in the LFQ file using the following codes: 

my_data$Linf<-13.95 

my_data$K<-1.71 

Apart from these above-mentioned parameters, the empirical calculation of tmax requires t0. 

If to has already been estimated using methods mentioned above in ‘2.2. Estimation of 

gestation period or hatching time (t0)’, there is no need to save tzero again. However, 

user can always refer published literature and also independently specify the to value (e.g., -

0.0011 yr) directly as follows:  

tzero=-0.0011 

Similarly, the rearranged VBGF equation-based estimation of tmax requires maximum 

length (Lmax). The user can specify any published or observed value for tmax (e.g., 13.15 cm):  

Lmax= 13.15 

The natural mortality rate (M)-based equation for tmax requires M. The user can specify any 

published or observed value for M (e.g., 2.75 yr-1) as follows:  

M=2.75 

TropFishR provides a default estimate on longevity as an inbuilt output of ELEFAN_SA and 

ELEFAN_GA. The following codes can be used to extract tmax after performing 

ELEFAN_SA or ELEFAN_GA: 

tmax<-fitGA$agemax 

tmax<-fitSA$agemax 

Note: The above code will give the tmax value but round the value to the nearest integer. For the 

precise estimation of tmax use the empirical equation or the rearranged VBGF equation. 

2.3.2. Empirical equation for tmax 

In the absence of direct observation data on the age of the largest individual, tmax 

can be indirectly estimated using the generalized equation suggested by Pauly (1983), as 

shown below: 

𝑡𝑚𝑎𝑥 =
3

𝐾
+ 𝑡0 

Basically, it is the same as the rearranged VBGF equation for tmax, with an assumption that 

fish survive in the wild till attain a Lmax which is 95% of the L∞, i.e., Lmax/L∞ = 0.95. 
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Use the following code to calculate tmax, though the result may not be very precise. 

tmax<- (3/my_data$K)+ tzero 

Alternatively, the parameters (e.g., K = 1.71 yr⁻¹, and t0 = -0.0011 yr) can also be specified 

directly in the code to obtain tmax, as given below: 

tmax<- (3/1.71)-0.0011 

2.3.3. Rearranged VBGF equation for tmax 

The tmax can be precisely back-calculated using the exact Lmax/L∞ ratio in the 

rearranged VBGF equation (von Bertalanffy, 1938), as shown below: 

𝑡𝑚𝑎𝑥 =
−ln (1 −

𝐿𝑚𝑎𝑥
𝐿∞

)

𝐾
+ 𝑡0 

Calculate tmax using the following code: 

tmax<- (-log(1-(Lmax/my_data$Linf))/my_data$K)+ tzero 

Alternatively, these parameters (e.g., Lmax = 13.15 cm, K = 1.71 yr⁻¹, and t0 = -0.0011 yr) can 

also be specified directly in the code to obtain tmax, as given below: 

tmax<- (-log(1-(13.15/13.95))/1.71)-0.0011 

2.3.4. Natural mortality rate (M)-based equation for tmax 

The method used inverse relationship between natural mortality rate (M) and 

longevity (tmax) by assuming a certain probability of fish living to maximum age (tmax) under 

a given level of total mortality. The tmax can be estimated from the survival (p) at tmax 

information and M using the generalized formula of Quinn and Deriso (1999): 

𝑡𝑚𝑎𝑥 =
−𝐿𝑛 (𝑝)

𝑀
 

The value of p is highly subjective and has typically been assumed to be between 1% and 5% 

(Hewitt and Hoenig, 2005). As a rule of thumb, a 1% survival rate (p=0.01) at tmax can be 

assumed, which will produce the following equation: 

𝑡𝑚𝑎𝑥 =
−𝐿𝑛 (𝑝)

𝑀
=

−𝐿𝑛 (0.01)

𝑀
= 

4.61

𝑀
  

Calculate tmax using the following code: tmax<- (4.61/M) 

Alternatively, the natural mortality parameter (e.g., M = 2.75 yr⁻¹) can also be specified 

directly in the code to get tmax, as given below: tmax<- (4.61/2.75) 

2.3.5. Estimation of mean and confidence intervals of tmax 

To generate tmax values, along with their mean and confidence intervals, use the 

following codes: 

t_max_function = function(x, growthparamdata){ 

Linf = x[1] 

K = x[2] 
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tzero = x[6] 

return ((-log(1-(Lmax/Linf))/K)+ tzero)} 

t_maxs<-apply(growthparamdata,1, t_max_function) 

t_maxs_mean <- apply(matrix(t_maxs), MARGIN = 2, FUN = mean) 

t_maxs_conf <- apply(matrix(t_maxs), MARGIN = 2, FUN = function(x) quantile(x, 

probs=c(0.025,0.975))) 

print(c(Mean= t_maxs_mean, Lower_95_CI = t_maxs_conf[1,1], Upper_95_CI = 

t_maxs_conf[2,1])) 

Add the tmax values as a column to ‘growthparamdata’ using the following code: 

growthparamdata$t_max <- t_maxs 

Note: The highlighted portion of the code in ‘return (…..)’ is using the rearranged VBGF 

equation for tmax. The user can replace the portion of the code depending on the choice of method. 

2.4. Compilation, plotting and saving of growth parameters 

2.4.1. Compilation and exporting the mean and confidence intervals of 

growth parameters as CSV 

To summarize the growth parameter data derived so far, use the following code: 

growthparam_means <- apply(as.matrix(growthparamdata), MARGIN = 2, FUN = mean) 

growthparam_conf <- apply(as.matrix(growthparamdata), MARGIN = 2, FUN = 

function(x) quantile(x, probs=c(0.025,0.975))) 

growthparam_confidence<-t(as.data.frame(rbind(Mean=growthparam_means, 

Lower_95_CI =growthparam_conf[1,], Upper_95_CI =growthparam_conf[2,]))) 

growthparam_confidence 

 

To export the mean and confidence intervals of growth parameters as CSV 

write.csv(growthparam_confidence, 

"C:\\Users\\Dell\\Desktop\\growth_parameters_confidence_intervals.csv",  

row.names = TRUE) 

Note: To determine the path where the CSV file will be saved, right-click on any file in the required 

location, select ‘Properties’, and copy the file location under the ‘General’ tab (e.g., 

C:\Users\Dell\Desktop). Replace the bold portion of the code with this copied file location, and 

then add the file name with its extension (e.g., \growth_parameters_confidence_intervals.csv). 

Make sure to use double backslashes (\\) or a single forward slash (/) between each segment of the 
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path and enclose the entire path in quotation marks (“…/…./…./….”) or (“…\\….\\….\\….”). 

2.4.2. Plotting confidence intervals of the growth parameters 

To plot the growth parameters' confidence intervals, split the plotting screen into a 

single row with five columns. This setup will automatically plot all five parameters 

sequentially. To split the column use the following code: par(mfrow = c(1,5)) 

#To create a box plot for L∞, use the following R code: 

boxplot(growthparamdata$Linf, main= expression("L"[infinity]), col='magenta') 

#To create a box plot for K, use the following R code: 

boxplot(growthparamdata$K, main= "K", col='steelblue') 

#To create a box plot for φ’, use the following R code:  

boxplot(growthparamdata$phiL, main= expression(""[phi]), col='skyblue') 

#To create a box plot for t0, use the following R code:  

boxplot(growthparamdata$t_zero, main= expression("t"[0]), col='lightgreen') 

#To create a box plot for tmax, use the following R code:  

boxplot(growthparamdata$t_max, main= expression("t"[max]), col=' orange') 

 

Note: Switch off the plot screen split using the following code: par(mfrow = c(1,1)) 

2.4.3. Saving essential growth parameters to the LFQ file 

It is necessary to assign (save) the important growth parameters derived so far (L∞ 

and K) in the LFQ file (e.g., my_data) for subsequent analysis, such as the length-converted 

catch curve analysis, length-based cohort analysis, and yield per recruit analysis. 

To assign the growth parameters (L∞ and K) derived from the ELEFAN_SA method, use the 

following codes: 

my_data$Linf<-as.numeric (fitSA$par$Linf) 

my_data$K<-as.numeric (fitSA$par$K) 

To assign the growth parameters (L∞ and K) derived from the ELEFAN_GA method, use the 

following codes: 
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my_data$Linf<-as.numeric (fitGA$par$Linf) 

my_data$K<-as.numeric (fitGA$par$K) 

To assign the growth parameters (L∞ and K) from the Jack Knife resampling after 

ELEFAN_SA or ELEFAN_GA, use the following codes: 

my_data$Linf<- as.numeric(growth_param_confidence[1,1]) 

my_data$K<- as.numeric(growth_param_confidence[2,1]) 

Alternatively, the growth parameters (e.g., L∞ = 13.95 cm, and K = 1.71 yr-1) can also be 

assigned directly using the following codes: 

my_data$Linf<-13.95 

my_data$K<-1.71 

 

  

2.5. Estimation of natural mortality rate (M) 

Introduction 

Natural Mortality represents all forms of mortality unrelated to fishing activities 

such as predation, starvation, disease, senescence. The natural mortality rate (M) is one of 

the most influential parameters in fisheries stock assessment and management because it 

directly affects estimates of stock productivity and biological reference points (Hilborn and 

Ovando, 2014). In tropical fisheries, natural mortality rate (M) is one of the most 

challenging parameters to estimate due to the lack of unbiased tagging data or age-

composition data in the absence of fishing (Maunder et al., 2023). Several methods for 

estimating natural mortality have been well reviewed by Kenchington (2014), Then et al. 

(2015) and Maunder et al. (2023). Most of these methods are based on life history theory 

and rely on empirical relationships between L∞, K, and tmax in various combinations, and 

Optional step: If the user needs to close the ongoing session, the work progress can be saved by 

clicking the ' save workspace as' tab in the 'Environment' panel (located on the top right 

side). Give the workspace a name (e.g., 'my_analysis'). In a new session, the user can open the 

'my_analysis' file in RStudio by right-clicking the file and selecting the 'Open with' RStudio 

option. Reload the TropFishR library each time a new session starts, using the code:  

library(TropFishR) 
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few also use additional parameters such as temperature (e.g., Pauly’s method) or age at 

maturity tm50 (e.g., Rikhter-Efanov method) to derive M. A list of commonly used methods 

is given below. 

Methods Equation Reference 

Hoenig Fish equation 𝑀 = 4.31 × 𝑡𝑚𝑎𝑥
−1.01 Hoenig, 1983 

Hoenig Joint equation 𝑀 = 4.22 × 𝑡𝑚𝑎𝑥
−0.982 Hoenig, 1983 

tmax-based method 
𝑀 =

−𝐿𝑛 (𝑝)

𝑡𝑚𝑎𝑥

 
Quinn and Deriso, 1999 

Alverson and Carney 

Method 

 

Zhang and Megrey Method 

𝑀 =
3𝐾

(𝑒𝑥𝑝𝐾×0.38×𝑡𝑚𝑎𝑥) − 1
 

𝑀 =
3𝐾

(𝑒𝑥𝑝𝐾×0.393×𝑡𝑚𝑎𝑥) − 1
 

Alverson and Carney 

Method, 1975 

 

Zhang and Megrey, 2006 

Zhang and Megrey 

Demersal fish method 
𝑀 =

3𝐾

(𝑒𝑥𝑝𝐾×0.440×𝑡𝑚𝑎𝑥) − 1
 

Zhang and Megrey, 2006 

Zhang and Megrey pelagic 

fish method 
𝑀 =

3𝐾

(𝑒𝑥𝑝𝐾×0.302×𝑡𝑚𝑎𝑥) − 1
 

Zhang and Megrey, 2006 

Then tmax-based method 𝑀 = 4.899 × 𝑡𝑚𝑎𝑥
−0.916 Then et al., 2015 

Then growth-based 

method 

𝑀 = 4.118 × 𝐾0.73 × 𝐿∞
−0.33 Then et al., 2015 

Then K-based method 𝑀 = 1.692 × 𝐾 Then et al., 2015 

Jensen K-based 𝑀 = 1.5 × 𝐾 𝑜𝑟 1.6 × 𝐾 Jensen, 1996 

Jensen tm50-based 
𝑀 =

1.65

𝑡𝑚50

 
Jensen, 1996 

Hamel K-based method 𝑀 = 1.753 × 𝐾 Hamel, 2015 

Gunderson revised method 𝑀 = 1.817 × 𝐺𝑆𝐼 Hamel, 2015 

Gunderson and Dygert 

method 

𝑀 = 0.03 + 1.68 × 𝐺𝑆𝐼 Gunderson and Dygert, 

1988 

Gunderson method 𝑀 = 1.79 × 𝐺𝑆𝐼 Gunderson, 1997 

Rikhter-Efanov method 
𝑀 =

1.521

𝑡𝑚50
0.720 − 0.155 

Rikhter and Efanov, 

1976 

Roff method 
𝑀 =

3𝐾

(𝑒𝑥𝑝𝑡𝑚50×𝐾) − 1
 

Roff, 1984 
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Pauly’s method 𝑙𝑜𝑔10(𝑀) = −0.0066 − 0.279 × 𝑙𝑜𝑔10(𝐿∞)   

+ 0.6543 × 𝑙𝑜𝑔10(𝐾)

+ 0.4634 × 𝑙𝑜𝑔10(𝑇) 

Pauly, 1980 

Gislason’s First Estimator 𝑀 = 1.73 × 𝐿−1.61 × 𝐿∞
1.44 × 𝐾 Gislason et al. (2010) 

Gislason’s Second 

Estimator 
𝑀 = 𝐾 ×

𝐿∞

𝐿
 

Charnov et al. (2012) 

Peterson - 

Wroblewski method 

𝑀 = 1.92 × 𝑊𝑑𝑟𝑦
−0.25 Peterson and 

Wroblewski, 1984 

Lorenzen method 𝑀 = 3 𝑊𝑤𝑒𝑡
−0.288 Lorenzen, 1996 

Natural mortality rate (M): R Implementation 

2.5.1. Requirements for the estimation of M 

LFQ file 

A length-frequency data file (LFQ) is required for the analysis (e.g., my_data). 

Refer to the previously mentioned steps in ‘2.1.2 and 2.1.5. Creating a length 

frequency file (LFQ) on R’ section to newly create a LFQ file if not created earlier. 

Essential parameters 

To derive M using any particular method or a combination of methods, it is 

necessary to have all the essential input parameters saved in the LFQ file (e.g., my_data). 

For example, to estimate M using some popular methods, such as Pauly’s method, Hoenig’s 

method, Then’s methods, and Rikhter-Efanov method, input parameters such as L∞, K, tmax, 

tm50 and habitat temperature are required which must be supplied to the LFQ file (e.g., 

my_data) as follows: 

my_data$Linf<-13.95 

my_data$K<-1.71 

my_data$tmax<-1.67 

my_data$tm50<-0.5 

To estimate M, the user can use the following inbuilt code in TropFishR.  

M <- M_empirical(Linf = my_data$Linf, K_l = my_data$K, temp = 28, tmax = 

my_data$tmax, tm50= my_data$tm50, method = c("Pauly_Linf","Hoenig", 

"Then_growth", "Then_tmax", "RikhterEfanov")) 

M 

Alternatively, if the requisite input parameters for the analysis such as L∞, K, tmax, tm50 are 

not saved in the LFQ file (e.g., my_data), they can be directly supplied in the code: 

M <- M_empirical(Linf = 13.95, K_l = 1.71, temp = 28, tmax = 1.67, tm50= 0.50, method 

= c("Pauly_Linf","Hoenig", "Then_growth", "Then_tmax", "RikhterEfanov"))  

M 
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Note: To perform the analysis using a specific method or a combination of methods, ensure that 

the required input parameters are assigned or saved in the LFQ file (my_data) or supplied 

directly. For example, Pauly’s method requires 'temperature,' and the Rikhter-Efanov method 

requires tm50 as additional input parameters. If these parameters are not provided, errors will 

occur during the analysis. Remove any unwanted methods or those lacking the necessary input 

parameters by deleting them from the methods = c("……...") section of the code. The 12 

different methods that can be employed using TropFishR are: "AlversonCarney", "Gislason" (size 

dependent mortality estimates), "GundersonDygert", "Hoenig", "Lorenzen", "Pauly_Linf", 

"Pauly_Winf", "PetersonWroblewski", "RikhterEfanov", "Roff", "Then_growth", or "Then_tmax". 

2.5.2. Estimation of mean and confidence intervals of M 

Since M is calculated as a dependent parameter using the growth parameters L∞, 

K, and tmax, multiple M values can be generated by applying Jack Knife samples of these 

growth parameters. These M values can then be used to calculate the mean and confidence 

intervals for M. The procedures for some of the commonly used methods are given below: 

The mean and confidence intervals of M can be derived from some popular M estimation 

methods, as follows: 

Pauly’s method for M 

To generate M values using the growth parameter–based equation recommended 

by Pauly (1980), along with their mean and confidence intervals, use the following codes: 

First, add temperature data (e.g., 280C) to the previously created growthparamdata 

data frame using the following code:  

growthparamdata$temp<-28 

Pauly_M_function = function(x, growthparamdata) { 

Linf = x[1] 

K_l = x[2] 

temp= x[8] 

return (M_empirical (Linf = Linf, K_l = K_l, temp = temp, method = c("Pauly_Linf")))} 

Pauly_Ms <-apply(growthparamdata,1, Pauly_M_function) 

Pauly_Ms_mean <- apply(matrix(Pauly_Ms), MARGIN = 2, FUN = mean) 

Pauly_Ms_conf <- apply(matrix(Pauly_Ms), MARGIN = 2, FUN = function(x) quantile(x, 

probs=c(0.025,0.975))) 
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print(c(Mean=Pauly_Ms_mean, Lower_95_CI =Pauly_Ms_conf[1], Upper_95_CI = 

Pauly_Ms_conf[2])) 

Then_growth method for M 

To generate M values using the growth parameter–based equation recommended 

by Then et al. (2015), along with their mean and confidence intervals, use the below codes: 

Then_growth_M_function = function(x, growthparamdata) { 

Linf = x[1] 

K_l = x[2] 

return (M_empirical (Linf = Linf, K_l = K_l, method = c("Then_growth")))} 

Then_growth_Ms <-apply(growthparamdata,1, Then_growth_M_function) 

Then_growth_Ms_mean <- apply(matrix(Then_growth_Ms), MARGIN = 2, FUN = mean) 

Then_growth_Ms_conf <- apply(matrix(Then_growth_Ms), MARGIN = 2, FUN = 

function(x) quantile(x, probs=c(0.025,0.975))) 

print(c(Mean=Then_growth_Ms_mean, Lower_95_CI = Then_growth_Ms_conf[1], 

Upper_95_CI = Then_growth_Ms_conf[2])) 

Natural mortality rate (M) can be estimated from the survival at maximum age (tmax) 

information using the generalized formula of Quinn and Deriso (1999): 

𝑀 =
−𝐿𝑛 (𝑝)

𝑡𝑚𝑎𝑥
 

Where p represents the proportion of fish in the stock that survive until they reach the 

maximum age (tmax). The value of p is highly subjective and has typically been assumed to 

be between 1% and 5% (Hewitt and Hoenig, 2005). As a rule of thumb, a 5% survival rate 

(p=0.05) at tmax is commonly used, but it has been found to overestimate M.   

𝑀 =
−𝐿𝑛 (𝑝)

𝑡𝑚𝑎𝑥
=

−𝐿𝑛 (0.05)

𝑡𝑚𝑎𝑥
= 

3

𝑡𝑚𝑎𝑥
  (May not be very appropriate) 

A survival rate of 1.5% (p=0.015) at tmax has been recommended by Hoenig (1983) and 

Hewitt and Hoenig (2005) as a more appropriate value for estimating M. 

𝑀 =
−𝐿𝑛 (𝑝)

𝑡𝑚𝑎𝑥
=

−𝐿𝑛 (0.015)

𝑡𝑚𝑎𝑥
= 

4.2

𝑡𝑚𝑎𝑥
 (More appropriate) 

For simplicity, a survival rate of 1% (p=0.01) at tmax has been recommended by Alagaraja 

(1984) for estimating M. 

𝑀 =
−𝐿𝑛 (𝑝)

𝑡𝑚𝑎𝑥
=

−𝐿𝑛 (0.01)

𝑡𝑚𝑎𝑥
= 

4.61

𝑡𝑚𝑎𝑥
 (Appropriate) 

Alagaraja’s method for M 

To generate M values using the tmax–based equation recommended by Alagaraja 

(1984), along with their mean and confidence intervals, use the following codes: 

M<-log(0.01)/-tmax 

Alagaraja_M_function = function(x, growthparamdata) { 
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tmax = x[7] 

return (log(0.01)/-tmax)} 

Alagaraja_Ms <-apply(growthparamdata,1, Alagaraja_M_function) 

Alagaraja_Ms_mean <- apply(matrix(Alagaraja_Ms), MARGIN = 2, FUN = mean) 

Alagaraja_Ms_conf <- apply(matrix(Alagaraja_Ms), MARGIN = 2, FUN = function(x) 

quantile(x, probs=c(0.025,0.975))) 

print(c(Mean=Alagaraja_Ms_mean, Lower_95_CI = Alagaraja_Ms_conf [1], 

Upper_95_CI = Alagaraja_Ms_conf [2])) 

Then_tmax method for M 

To generate M values using the tmax–based equation recommended by Then et al. 

(2015), along with their mean and confidence intervals, use the following codes: 

Then_tmax_M_function = function(x, growthparamdata) { 

tmax= x[7] 

return (M_empirical (tmax = tmax, method = c("Then_tmax")))} 

Then_tmax_Ms <-apply(growthparamdata,1, Then_tmax_M_function) 

Then_tmax_Ms_mean <- apply(matrix(Then_tmax_Ms), MARGIN = 2, FUN = mean) 

Then_tmax_Ms_conf <- apply(matrix(Then_tmax_Ms), MARGIN = 2, FUN = function(x) 

quantile(x, probs=c(0.025,0.975))) 

print(c(Mean= Then_tmax_Ms_mean, Lower_95_CI = Then_tmax_Ms_conf[1], 

Upper_95_CI = Then_tmax_Ms_conf[2])) 

Hoenig’s method for M 

To generate M values using the tmax–based equation recommended by Hoenig et 

al. (1983), along with their mean and confidence intervals, use the following codes: 

Hoenig_M_function = function(x, growthparamdata) { 

tmax = x[7] 

return (M_empirical (tmax = tmax, method = c("Hoenig")))} 

Hoenig_Ms <-apply(growthparamdata,1, Hoenig_M_function) 

Hoenig_Ms_mean_Joint_Eq <- apply(matrix(Hoenig_Ms[1,]), MARGIN = 2, FUN = 

mean) 

Hoenig_Ms_conf_Joint_Eq <- apply(matrix(Hoenig_Ms[1,]), MARGIN = 2, FUN = 

function(x) quantile(x, probs=c(0.025,0.975))) 

Hoenig_Ms_mean_Fish_Eq <- apply(matrix(Hoenig_Ms[2,]), MARGIN = 2, FUN = mean) 

Hoenig_Ms_conf_Fish_Eq <- apply(matrix(Hoenig_Ms[2,]), MARGIN = 2, FUN = 

function(x) quantile(x, probs=c(0.025,0.975))) 

print(c(Joint_Eq_Mean=Hoenig_Ms_mean_Joint_Eq, Joint_Eq_Lower_95_CI= 

Hoenig_Ms_conf_Joint_Eq [1], Joint_Eq_Lower_95_CI = Hoenig_Ms_conf_Joint_Eq 

[2])) 
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print(c(Fish_Eq_Mean=Hoenig_Ms_mean_Fish_Eq, Fish_Eq_Lower_95_CI = 

Hoenig_Ms_conf_Fish_Eq [1], Fish_Eq_Upper_95_CI = Hoenig_Ms_conf_Fish_Eq [2])) 

2.6. Compilation, plotting and saving of natural mortality rate 

2.6.1. Compilation and exporting the mean and confidence intervals of 

M as CSV 

To save the individual M values from different methods as a data frame, use the following 

code: 

mortalityparamdata <- as.data.frame (cbind(Pauly=Pauly_Ms, Then_growth= 

Then_growth_Ms, Then_tmax=Then_tmax_Ms, Alagaraja=Alagaraja_Ms, 

Hoenig_Joint=Hoenig_Ms[1, ], Hoenig_Fish=Hoenig_Ms[2, ])) 

mortalityparamdata 

To summarize the mean and confidence intervals of M, use the following codes: 

M_means <- apply(as.matrix(mortalityparamdata), MARGIN = 2, FUN = mean) 

M_conf <- apply(as.matrix(mortalityparamdata), MARGIN = 2, FUN = function(x) 

quantile(x, probs=c(0.025,0.975))) 

M_confidence <- t(as.data.frame (rbind (Mean=M_means, Lower_95_CI =M_conf[1,], 

Upper_95_CI =M_conf[2,]))) 

M_confidence 

 

To export the mean and confidence intervals of M as CSV, use the following code: 

write.csv(M_confidence, "C:\\Users\\Dell\\Desktop\\M_confidence_intervals.csv",  

row.names = TRUE) 

Note: To determine the path where the CSV file will be saved, right-click on any file in the required 

location, select ‘Properties’, and copy the file location under the ‘General’ tab (e.g., 

C:\Users\Dell\Desktop). Replace the bold portion of the code with this copied file location, and 

then add the file name with its extension (e.g., \\M_confidence_intervals.csv). Use double 

backslashes (\\) or a single forward slash (/) between each segment of the path and enclose the 

entire path in quotation marks (“…/…./…./….”) or (“…\\….\\….\\….”). 

2.6.2. Plotting confidence intervals of M 

To plot the M confidence intervals, split the plotting screen into two rows, each 

having three split columns to automatically plot the M values derived from six different 

methods sequentially, as follows:  

par(mfrow = c(2,3)) 

#To create a box plot for M from the Pauly’s Method, use the following R code: 
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boxplot(mortalityparamdata $ Pauly, main= expression("Pauly method"), col='magenta') 

#To create a box plot for M from the Then_growth’s method, use the following R code:  

boxplot(mortalityparamdata $ Then_growth, main= expression("Then_growth method"), 

col='steelblue') 

#To create a box plot for M from the Then_tmax’s method, use the following R code:  

boxplot(mortalityparamdata $ Then_tmax, main= expression("Then_tmax method"), 

col='skyblue') 

#To create a box plot for M from the Alagaraja’s method, use the following R code: 

boxplot(mortalityparamdata$Alagaraja, main= expression("Alagaraja method"), 

col='lightgreen') 

#To create a box plot for M from the Hoenig_Joint method, use the following R code: 

boxplot(mortalityparamdata $ Hoenig_Joint, main= expression("Hoenig_joint method"), 

col ='orange') 

#To create a box plot for M from the Hoenig_Fish method, use the following R code: 

boxplot(mortalityparamdata $ Hoenig_Fish, main= expression("Hoenig_fish method"), col 

='yellow') 

 

 

Note: Switch off the plot screen split using the following code: par(mfrow = c(1,1)) 

2.6.3. Saving the selected M to the LFQ file 

It is necessary to assign (save) the M derived from the selected method in the LFQ 

file (e.g., my_data) for subsequent analysis, such as the length-converted catch curve 

analysis, length-based cohort analysis, and yield per recruit analysis. 
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To assign the M derived from the Pauly’s Method, use the following code: 

my_data$M<- as.numeric(M_confidence [1]) 

To assign the M derived from the Then tmax-based Method, use the following code: 

my_data$M<- as.numeric(M_confidence [3]) 

Alternatively, the selected M (e.g., 2.75 yr-1) can also be assigned to the LFQ directly using 

the following code: 

my_data$M<-2.75 

 

  

2.7. Estimation of exploitation parameters using the length converted 

catch curve analysis 

Introduction 

The length converted catch curve analysis is frequently employed in tropical 

fisheries, particularly in data-limited scenarios where age-structured data is unavailable, to 

estimate the total mortality rate (Z) experienced by a fish population over its life cycle. The 

von Bertalanffy Growth Function (VBGF), derived from the analysis of length-frequency 

data, is used to convert lengths to corresponding ages. Although these length-converted age 

groups may represent different cohorts sampled at a single point in time, they are assumed 

in the analysis to represent the entire lifespan of a single cohort, known as a pseudocohort. 

These converted age groups and their associated catches are then used to build an 

exponential decay model for the pseudocohort, which quantifies the total mortality rate (Z). 

It assumes that individuals in every size class (or age group) experience the same Z (Z = F + 

M), which may not be very realistic. Typically, smaller and younger fish in a population 

experience higher natural mortality (M) because of predation and other natural factors but 

Optional step: If the user needs to close the ongoing session, the work progress can be saved by 

clicking the ' save workspace as' tab in the 'Environment' panel (located on the top right 

side). Give the workspace a name (e.g., 'my_analysis'). In a new session, the user can open the 

'my_analysis' file in RStudio by right-clicking the file and selecting the 'Open with' RStudio 

option. Reload the TropFishR library each time a new session starts, using the code: 

library(TropFishR) 
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lower fishing mortality (F) because they are not fully recruited to the fishing grounds and 

often escape capture due to their small size. As the fish grows, M decreases while F 

increases because of recruitment to the fishing grounds and gear selectivity. This inverse 

change in M and F at different life stages likely keeps Z constant across different length 

classes. Therefore, in the absence of length-specific Z values, it is often assumed to be 

constant across length classes (or age groups) (Sparre and Venema, 1998). 

An unbiased catch from a non-selective gear can be considered a representative 

sample of the entire fish population, proportionally reflecting the number of individuals in 

each size class (or age group). The number of fish in the smallest size class (youngest age 

group) is higher, which gradually decreases because of mortality as the fish grow larger. The 

number of fish in any age group (Nt+1) can be calculated from the number of fish in the 

preceding age group (Nt) using the following formula: 

𝑁𝑡+1 = 𝑁𝑡 × 𝑒𝑥𝑝−𝑍𝑡 

Since the catch is proportional to and representative of the total population, the 

rate of decrease in catch numbers by length classes (or age groups) can also reflect the 

actual population decline rate. Therefore, when the catch number is plotted against age (t), 

it produces a curvilinear plot similar to the population decrease curve, with a negative slope 

that declines exponentially at the rate of Z. To linearize the equation, the catch numbers are 

log-transformed, resulting in the following equation: 

𝐿𝑛(𝐶) = 𝑎 −  𝑍 × 𝑡 

In temperate fisheries, where fish are directly aged, the standard age-based 

catch curve of Ricker (1958 & 1975) is used in which the natural logarithm of catch 

numbers in each age group is directly plotted and regressed against age. However, when 

fish are aged indirectly (in tropical fisheries) by converting length to age, it causes a 

"piling-up effect". As older fish grow more slowly than younger fish, the growth in size is 

not linear. Therefore, among larger fish, any length interval (e.g., a 5 cm length class) will 

encompass more age groups than among smaller fish, leading to the accumulation of more 

age groups as fish approach their asymptotic length (L∞). This piling-up effect during the 

length-to-age conversion is compensated by dividing the catch by the time interval (Δt) the 

fish spends growing through the length class (Pauly, 1983). The length-based form of this 

approach is called the length-converted catch curve (Pauly, 1983), which is expressed 

as follows: 

𝐿𝑛
𝐶

∆𝑡
= 𝑎 − 𝑍 × 𝑡 

Where Δt is the time required to grow through the length class (from L1 to L2). It is 

calculated using the following equation: 

∆𝑡 = 𝑡(𝐿2) − 𝑡(𝐿1) =
1

𝐾
× 𝑙𝑛 [

𝐿∞ − 𝐿1

𝐿∞ − 𝐿2
] 

The linearized catch curve equation is then solved to estimate the total mortality 

rate (Z) for the population. The fishing mortality (F) and exploitation rate (E) can be 

derived from Z using the following relationships: 

𝐹 = 𝑍 − 𝑀 𝑎𝑛𝑑 𝐸 =
𝐹

𝑍
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However, since the catch only represents the exploited portion of the population, 

smaller fish in the lower age groups are not proportionately represented in the catch. This 

creates an illusion that these smaller individuals are absent from the population, when in 

fact they have not been caught by the gear because they are not fully recruited. Therefore, 

the catch numbers of smaller fish on the ascending arm (left-hand side of the peak catch 

number) are not used in the catch curve analysis, as they inaccurately represent the 

population. Similarly, the oldest age group, which contains the largest fish, accumulates 

survivors from previous cohorts. This mixed age group is referred to as the plus group and 

is assigned a minimum age, as it becomes difficult to distinguish the fish's age by size once 

they have reached their growth limit. Moreover, the oldest and largest fish may escape gear 

because of their scarce presence. Therefore, the catch numbers in the last length class 

(oldest age group) are also ignored due to their improper representation of the population. 

The peak catch number usually corresponds to the length class (or age group) at and above 

which fish are fully recruited and selected by the gear. The catch numbers of larger fish (or 

older fish) on the descending arm of the catch curve (right-hand side of the peak catch 

number) are used to represent the population for the catch curve analysis. Every point on 

the descending arm of the catch curve experiences a constant Z, and this Z is used to 

reconstruct (extrapolate) the theoretical catch numbers for smaller and younger fish on the 

ascending arm of the catch curve, assuming they had been fully selected by the fishing gear. 

The ratio of the actual recorded catch number (Ct) to the reconstructed catch number from 

the linearized catch equation (Δt × exp (a-Z×t)) is calculated to derive the probability of 

capture (St) for the size classes (age groups). 

𝑆𝑡 =
𝐶𝑡

∆𝑡 × 𝑒𝑥𝑝(𝑎−𝑍×𝑡)
 

The age (t) and the probability of capture (St) values are then regressed using a linearized 

logistic regression to derive the regression coefficients (a and b).  

𝑙𝑛 (
1

𝑆𝑡
− 1) = 𝑎 − 𝑏 × 𝑡 

The above logistic regression equation can be rearranged as: 

𝑆𝑡 =
1

1 + 𝑒𝑥𝑝(𝑎−𝑏×𝑡)
=

𝑒𝑥𝑝−(𝑎−𝑏×𝑡)

1 + 𝑒𝑥𝑝−(𝑎−𝑏×𝑡)
 

Where, t is the independent measurement variable (here, age of the fish), St is the 

dependent categorical variable (here, probability of capture, i.e., proportion of the fish 

caught compared to the total fish encountering the gear at a length); a & b are the intercept 

and slope of the equation, respectively. Since the probability of capture (St) falls in a narrow 

range from 0 to 1, it creates difficulty while fitting the regression. Therefore, to overcome 

the situation, the odds, i.e., St /(1- St), which is the ratio between probability of 

capture/probability of escape, are used for the regression. Finally, taking the natural log of 

the odds makes the variable more appropriate for regression analysis. The coefficients 

derived from the regression are subsequently used to estimate the age at which different 

levels of capture happen using the rearranged form of the above equation as follows: 
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𝑡 =
ln (

1
𝑆𝑡

− 1) − 𝑎

−b
 

For example, to derive the tc25, i.e., the age (t) at which 25% capture (St = 0.25) happens, 

populate the values in the above equation as mentioned below: 

tc25 =
ln (

1
0.25 − 1) − 𝑎

−b
=

ln (
0.75
0.25) − 𝑎

−b
=

ln(3) − 𝑎

−b
 

To derive the tc50, i.e., the age (t) at which 50% capture (St=0.50) happens, populate the 

values in the above equation as mentioned below: 

tc50 =
ln (

1
0.50 − 1) − 𝑎

−b
=

ln (
0.50
0.50) − 𝑎

−b
=

ln(1) − 𝑎

−b
=

−a

−b
 

To derive the tc75, i.e., the age (t) at which 75% capture (St=0.75) happens, populate the 

values in the above equation as mentioned below: 

tc75 =
ln(

1
0.75 − 1) − 𝑎

−b
=

ln (
0.25
0.75) − 𝑎

−b
=

ln(1/3) − 𝑎

−b
 

To derive the tc95, i.e., the age (t) at which 95% capture (St=0.95) happens, populate the 

values in the above equation as mentioned below: 

tc95 =
ln (

1
0.95 − 1) − 𝑎

−b
=

ln (
0.05
0.95)− 𝑎

−b
=

ln(1/19) − 𝑎

−b
 

The age and length at which different levels of capture happen can be summarized as 

follows: 

Description Age (tc) Length (LC) 

The age (tc25) and length 

(LC25) at which 25% of the 

fish encountering the gear 

are caught 

𝑡𝑐25 =
ln(3) − 𝑎

−𝑏
 

𝐿𝐶25

= 𝐿∞ × (1 − 𝑒𝑥𝑝−𝐾(𝑡𝑐25−𝑡0)) 

The age (tc50) and length 

(LC50) at which 50% of the 

fish encountering the gear 

are caught 

𝑡𝑐50 =
−𝑎

−𝑏
 𝐿𝐶50

= 𝐿∞ × (1 − 𝑒𝑥𝑝−𝐾(𝑡𝑐50−𝑡0)) 

 

The age (tc75) and length 

(LC75) at which 75% of the 

fish encountering the gear 

are caught 

𝑡𝑐75 =
ln(

1
3
) − 𝑎

−𝑏
 

𝐿𝐶75

= 𝐿∞ × (1 − 𝑒𝑥𝑝−𝐾(𝑡𝑐75−𝑡0)) 

The age (tc95) and length 

(LC95) at which 95% of the 

fish encountering the gear 

are caught 

𝑡𝑐95 =
ln(

1
19) − 𝑎

−𝑏
 

𝐿𝐶95

= 𝐿∞ × (1 − 𝑒𝑥𝑝−𝐾(𝑡𝑐95−𝑡0)) 
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Note: The regression coefficient ‘b’ obtained from the length converted catch curve method output 

(i.e., linear_mod_sel) in TropFishR is usually expressed as negative b (i.e., -b) and therefore, the 

same can be directly used for the calculation of age at different level of captures. 

Catch curve analysis: R Implementation 

2.7.1. Requirements for the length converted catch curve (CC) analysis  

LFQ file 

A length-frequency data file (LFQ) is required for the analysis (e.g., my_data). Refer to the 

previously mentioned steps in ‘2.1.2 and 2.1.5. Importing and creating a length frequency 

file (LFQ) on R’ section to newly create a LFQ file if not created earlier. 

Essential parameters 

The length converted catch curve (CC) analysis requires growth parameters (L∞, and K) and 

the natural mortality rate (M). If these essential parameters are not already assigned, use 

the following code to add them to the LFQ file (my_data): 

my_data$Linf<-13.95 

my_data $K<-1.71 

my_data$M<-2.75 

2.7.2. Catch curve analysis for a combination of years using multiyear 

mean catch data 

If the aim of the analysis is to understand the average exploitation over multiple 

years, the user can perform a length-converted catch curve analysis by calculating the mean 

catch numbers by length-class for the desired combination of years. Use the following code 

to prepare first a catch vector and then a mean catch vector using the catch vector. 

Preparing a catch vector 

First, vectorize the catch per month to yearly catches using the following codes: 

plus_group <- my_data$midLengths[max(which(my_data$midLengths < my_data 

$Linf))] 

catch_vec <- lfqModify(my_data, vectorise_catch = TRUE, plus_group = plus_group) 

Note: The vectorise_catch function aggregates the monthly catches by length class for each 

year. Depending on the number of years in the LFQ data file, catch vectors are created (e.g., if the 

dataset contains information for 4 years, four yearly catch vectors are generated).  

Preparing a mean catch vector from the catch vector 

To prepare a mean catch vector for the first and second years, use the following code: 

mean_catch_vec<- catch_vec  

mean_catch_vec$catch<-as.matrix(rowMeans(catch_vec$catch[,1:2])) 

To prepare a mean catch vector for the third and fourth years, use the following code: 

mean_catch_vec<- catch_vec  
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mean_catch_vec$catch<-as.matrix(rowMeans(catch_vec$catch[,3:4])) 

To prepare a mean catch vector for the second, third and fourth years, use the 

following code: 

mean_catch_vec<- catch_vec  

mean_catch_vec$catch<-as.matrix(rowMeans(catch_vec$catch[,2:4])) 

To prepare a mean catch vector for the first, second, third and fourth years, use the 

following code: 

mean_catch_vec<- catch_vec  

mean_catch_vec$catch<-as.matrix(rowMeans(catch_vec$catch[,1:4])) 

To prepare a mean catch vector for all available years, use the following code: 

mean_catch_vec<- catch_vec  

mean_catch_vec$catch<-as.matrix(rowMeans(catch_vec$catch)) 

Finally, to perform the length-converted catch curve analysis for a combination of years, 

use the following code: 

CC <- catchCurve(mean_catch_vec, catch_columns = 1,  calc_ogive = TRUE) 

Note: The highlighted numbers inside the ‘catch_vec$catch[,1:4]’ portion of the code can be 

changed to include or exclude year(s) from the analysis. For example, to include only the last two 

years (3rd and 4th year) change the highlighted numbers inside the ‘catch_vec$catch[,3:4]’. 

Similarly, if there are 5 years of data, the last three years (3rd, 4th and 5th year) of data can be 

included for the analysis by changing it to ‘catch_vec$catch[,3:5]’. Creating mean_catch_vec is 

not a compulsory step for performing catch curve analysis and subsequent cohort analysis. These 

analyses can be conducted by specifying the required combination of years (serial numbers of the 

years) in the catch_columns = c(.. , .. , ..) section of the respective codes. When multiple 

combinations of years are used for catch curve analysis without averaging the length class-wise 

mean catch numbers over those years, the exploitation parameters (F, E, and LC50) will be the 

same as those obtained using the length class-wise mean catch numbers over the multiple years. 

However, the population estimates (e.g., yield, biomass, spawning stock biomass, recruitment, and 

stock size) from subsequent cohort analysis will represent cumulative estimates for all those years 

due to the use of cumulative catch numbers. To address this issue, it is recommended to perform 

catch curve analysis using multiyear mean catch data by creating a mean_catch_vec. This 

ensures a seamless experience during subsequent cohort analysis. As all the available years' 

individual catch data are averaged in creating mean_catch_vec, it contains only one length 

class-wise mean catch data for the desired combination of years. Therefore, the catch_columns 

portion of the code should always have the value of 1 (catch_columns = 1) to represent this 

single length class-wise mean catch data for the required combination of years. 

2.7.3. Catch curve analysis for a specific year 

If the aim of the analysis is to understand the actual exploitation for a specific 

year, then the length-converted catch curve analysis can be performed simply by using the 

catch_vec (containing annual aggregated catches of every available year) and specifying the 

required year (serial number of the year) in the catch_columns section of the code. 

Preparing a catch vector 

First, vectorize the catch per month to yearly catches using the following codes: 
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plus_group <- my_data$midLengths[max(which(my_data$midLengths < my_data 

$Linf))] 

catch_vec <- lfqModify(my_data, vectorise_catch = TRUE, plus_group = plus_group) 

Note: The vectorise_catch function aggregates the monthly catches by length class for each 

year. Depending on the number of years in the LFQ data file, catch vectors are created (e.g., if the 

dataset contains information for 4 years, four yearly catch vectors are generated).  

To perform the catch curve analysis for the first year, use the following code: 

CC <- catchCurve(catch_vec, catch_columns = 1,  calc_ogive = TRUE) 

To perform the catch curve analysis for the second year, use the following code: 

CC <- catchCurve(catch_vec, catch_columns = 2,  calc_ogive = TRUE) 

Note: The highlighted numbers inside the ‘catch_columns= 2’ portion of the code can be changed 

to change the year of the analysis. For example, to include 3rd year, change the highlighted numbers 

inside the ‘catch_columns = 3’. Similarly, the 4h year of data can be included for the analysis by 

changing it to ‘catch_columns = 4’. 

 

Note: This will open a new interactive window where the user needs to connect two points to select a 

sample of catch data for fitting the regression model. Select the point immediately following the peak 

on the descending arm of the catch curve as the starting point and then choose a point before the last 

point on the descending arm as the endpoint. It is advisable to ignore the last point, which represents 

very large fish in the last age group, due to their improper representation of the population. 
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2.7.4. Default graphical outputs from the catch curve analysis 

After the selection of the end point, a probability of capture curve will be 

automatically generated with exploitation and selectivity information. 

 

 

2.7.5. Enhanced visualization of the catch curve analysis 

Install and use the ggplot2 R package for better plotting and the dplyr R package for 

better data handling. 

install.packages("ggplot2") #Do not install again if already installed 

install.packages("dplyr") #Do not install again if already installed 

library(ggplot2) 

library(dplyr) 

#To prepare data for plotting from the catch curve analysis, use the following codes:  

model_CC<-CC$linear_mod 

CCdata<-as.data.frame(cbind(CC$t_midL, CC$lnC_dt)) 
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new_predictor <-as.data.frame(CC$t_midL) 

colnames(new_predictor)<-"xvar" 

confid.int <- predict(model_CC, newdata= new_predictor, interval="confidence") 

newCCdata <- cbind(CCdata, confid.int) 

fig<-ggplot(newCCdata, aes(x=V1, y=V2)) + geom_point(color="blue", size = 

5)+theme_classic(base_size = 15)+labs(y="ln(C/dt)", x="Relative age 

(yr)")+geom_line(aes(y = fit), color = "blue", linetype = "solid")+geom_line(aes(y = lwr), 

color = "darkgreen", linetype = "blank") +geom_line(aes(y = upr), color = "darkgreen", 

linetype = "blank") + geom_ribbon(aes(x = CC$t_midL, ymin = lwr, ymax = upr), fill = 

"green", alpha=0.2) 

fig 

#To remove the blue color from the points on the nonselected ascending limb 

max_logcatch_values<- newCCdata %>% filter(V2== max(newCCdata$V2, na.rm = 

TRUE)) 

ascending_limb<- newCCdata %>% filter(V1<=as.numeric(max_logcatch_values[1])) 

fig+ geom_point(data= ascending_limb, aes(x=V1, y=V2), color='white', size=4) 

 

2.7.6. Enhanced visualization of the probability of capture 

Catch curve model prediction 

For better data handling, install and use the dvmisc R package using the 

following codes: 

install.packages("dvmisc") #Do not install again if already installed 

library(dvmisc) 
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#To prepare and plot a data frame from the catch curve analysis, use the following codes: 

model_sel<-CC$linear_mod_sel 

new_predictor <-as.data.frame(seq(min(CC$t_midL), max(CC$t_midL), 0.001)) 

colnames(new_predictor)<-"t_ogive" 

confid.int <- predict(model_sel, newdata= new_predictor, interval="confidence") 

prob_capture<-1-logit_prob(confid.int) 

midLengths<- as.data.frame(as.numeric(my_data$Linf)*(1-exp(as.numeric(-

my_data$K)*new_predictor))) 

colnames(midLengths)<-"midLengths" 

age<- new_predictor 

colnames(age)<-"age" 

newseldata <- as.data.frame(cbind(midLengths, age, prob_capture)) 

Deriving the mean and confidence intervals of age at capture 

#Use the following codes to calculate the means of tLC25, tLC50, tLC75 and tLC95 

tL25<- as.numeric(log(3)-(coef(model_sel)[1]))/coef(model_sel)[2] 

tL50<- as.numeric(-(coef(model_sel)[1]))/coef(model_sel)[2] 

tL75<- as.numeric(log(1/3)-(coef(model_sel)[1]))/coef(model_sel)[2] 

tL95<- as.numeric(log(1/19)-(coef(model_sel)[1]))/coef(model_sel)[2] 

#Use the following codes to calculate the confidence intervals of tLC25, tLC50, tLC75 and 

tLC95 

lower_tLC25<-as.numeric((tail(newseldata %>% filter(lwr<= 0.25), n=1))[2]) 

upper_tLC25<-as.numeric((tail(newseldata %>% filter(upr<= 0.25), n=1))[2]) 

lower_tLC50<-as.numeric((tail(newseldata %>% filter(lwr<= 0.5), n=1))[2]) 

upper_tLC50<-as.numeric((tail(newseldata %>% filter(upr<= 0.5), n=1))[2]) 

lower_tLC75<-as.numeric((tail(newseldata %>% filter(lwr<= 0.75), n=1))[2]) 

upper_tLC75<-as.numeric((tail(newseldata %>% filter(upr<= 0.75), n=1))[2]) 

lower_tLC95<-as.numeric((tail(newseldata %>% filter(lwr<= 0.95), n=1))[2]) 

upper_tLC95<-as.numeric((tail(newseldata %>% filter(upr<= 0.95), n=1))[2]) 

#Prepare a data frame on mean and confidence intervals of age at capture 

tLC_confidence <- data.frame ( 

  Parameter = c("tL25", "tL50", "tL75", "tL95"), 

  Mean = c(tL25, tL50, tL75, tL95), 

  Lower_95_CI = c(lower_tLC25, lower_tLC50, lower_tLC75, lower_tLC95), 

  Upper_95_CI = c(upper_tLC25, upper_tLC50, upper_tLC75, upper_tLC95)) 

tLC_confidence 
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Deriving the mean and confidence intervals of length at capture 

#Use the following codes to calculate the mean of LC25, LC50, LC75 and LC95 

L25<-as.numeric(my_data$Linf)*(1-exp(as.numeric(-my_data $K)*tL25)) 

L50<-as.numeric(my_data$Linf)*(1-exp(as.numeric(-my_data $K)*tL50)) 

L75<- as.numeric(my_data $Linf)*(1-exp(as.numeric(-my_data $K)*tL75)) 

L95<- as.numeric(my_data $Linf)*(1-exp(as.numeric(-my_data $K)*tL95)) 

#Use the following codes to calculate the confidence intervals of LC25, LC50, LC75 and LC95 

lower_LC25<-as.numeric((tail(newseldata %>% filter(lwr<= 0.25), n=1))[1]) 

upper_LC25<-as.numeric((tail(newseldata %>% filter(upr<= 0.25), n=1))[1]) 

lower_LC50<-as.numeric((tail(newseldata %>% filter(lwr<= 0.5), n=1))[1]) 

upper_LC50<-as.numeric((tail(newseldata %>% filter(upr<= 0.5), n=1))[1]) 

lower_LC75<-as.numeric((tail(newseldata %>% filter(lwr<= 0.75), n=1))[1]) 

upper_LC75<-as.numeric((tail(newseldata %>% filter(upr<= 0.75), n=1))[1]) 

lower_LC95<-as.numeric((tail(newseldata %>% filter(lwr<= 0.95), n=1))[1]) 

upper_LC95<-as.numeric((tail(newseldata %>% filter(upr<= 0.95), n=1))[1]) 

#Prepare a data frame on mean and confidence intervals of length at capture 

LC_confidence <- data.frame ( 

  Parameter = c("L25", "L50", "L75", "L95"), 

  Mean = c(L25, L50, L75, L95), 

  Lower_95_CI = c(lower_LC25, lower_LC50, lower_LC75, lower_LC95), 

  Upper_95_CI = c(upper_LC25, upper_LC50, upper_LC75, upper_LC95)) 

LC_confidence 

Plotting age vs. probability of capture 

Install and use the ggplot2 R package for better plotting. 

install.packages("ggplot2") #Do not install again if already installed 

library(ggplot2) 

fig<-ggplot(newseldata, aes(x=age, y=fit)) + theme_classic(base_size = 15) + 

labs(y="Probability of capture", x="Age") + geom_line(aes(y = fit), color = "blue", linetype 

= "solid") + geom_line(aes(y = lwr), color = "darkgreen", linetype = "blank") + 

geom_line(aes(y = upr), color = "darkgreen", linetype = "blank") + geom_ribbon(aes(x = 

age, ymin = lwr, ymax = upr), fill = "green", alpha=0.2) + annotate("point", x = tL50, y = 

0.5, size = 3, colour = "red") + annotate("point", x = tL75, y = 0.75, size = 3, colour = 

"orange") + annotate("point", x = tL95, y = 0.95, size = 3, colour = "blue") + 

annotate("segment", x = 0, y = 0.5, xend = tL50, yend = 0.5, linetype = "dashed") + 

annotate("segment", x = tL50, y = 0, xend = tL50, yend = 0.5, linetype = "dashed") + 

annotate("segment", x = 0, y = 0.75, xend = tL75, yend = 0.75, linetype = "dashed") + 

annotate("segment", x = tL75, y = 0, xend = tL75, yend = 0.75, linetype = "dashed") + 
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annotate("segment", x = 0, y = 0.95, xend = tL95, yend = 0.95, linetype = "dashed") + 

annotate("segment", x = tL95, y = 0, xend = tL95, yend = 0.95, linetype = "dashed") + 

scale_x_continuous(expand = c(0,0), limits = c(0,max(age)), breaks = 

seq(0,max(age),0.2))+ scale_y_continuous(expand = c(0,0),limits = c(0,1.0)) 

fig 

 

Note: Control the bold highlighted breaks step size (e.g., 0.2) to decongest X-axis. If the X-axis gets 

over crowded with small breaks, then increase the break intervals. Ideally 10 nos. of breaks are 

enough. If the X-axis maximum value is 10 yr, then use 1 (10/10) as the ideal break interval. 

Plotting length vs. probability of capture 

Install and use the ‘ggplot2’ R package for better plotting. 

install.packages("ggplot2") #Do not install again if already installed 

library(ggplot2) 

fig<-ggplot(newseldata, aes(x=midLengths, y=fit)) + theme_classic(base_size = 15) + 

labs(y="Probability of capture", x="Length (cm)") + geom_line(aes(y = fit), color = "blue", 

linetype = "solid") + geom_line(aes(y = lwr), color = "darkgreen", linetype = "blank") + 

geom_line(aes(y = upr), color = "darkgreen", linetype = "blank") + geom_ribbon(aes(x = 

midLengths, ymin = lwr, ymax = upr), fill = "green", alpha=0.2) + annotate("point", x = 

L50, y = 0.5, size = 3, colour = "red") + annotate("point", x = L75, y = 0.75, size = 3, colour 

= "orange") + annotate("point", x = L95, y = 0.95, size = 3, colour = "blue") + 

annotate("segment", x = min(midLengths), y = 0.5, xend = L50, yend = 0.5) + 

annotate("segment", x = L50, y = 0, xend = L50, yend = 0.5, linetype = "dashed") + 

annotate("segment", x = min(midLengths), y = 0.75, xend = L75, yend = 0.75) + 

annotate("segment", x = L75, y = 0, xend = L75, yend = 0.75, linetype = "dashed") + 
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annotate("segment", x = min(midLengths), y = 0.95, xend = L95, yend = 0.95) + 

annotate("segment", x = L95, y = 0, xend = L95, yend = 0.95, linetype = "dashed") + 

scale_x_continuous(expand = c(0,0), limits = c(min(midLengths),max(midLengths)), 

breaks = seq(min(midLengths), max(midLengths),1))+ scale_y_continuous(expand = 

c(0,0),limits = c(0,1.0)) 

fig 

 

Note: Control the bold highlighted breaks step size (e.g., 1) to decongest the X-axis. If the X-axis 

gets over crowded with small breaks, then increase the break intervals. Ideally 10 nos. of breaks 

are enough. If X-axis maximum value is 100 cm, then use 10 (100/10) as the ideal break interval. 

2.7.7. Summarizing derived exploitation parameters from the catch 

curve analysis 

To get all the information on exploitation parameters, use the following code:  

CC 

To get the current total mortality rate (Z), use the following code:  

Z_cur <-CC$Z 

Z_cur  

To get the current fishing mortality rate (F), use the following code:  

F_cur <-as.numeric(CC$FM) 

F_cur 

To get the current exploitation rate (Ecur), use the following code: 

E_cur <- as.numeric(CC$FM)/CC$Z 
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E_cur 

To get the current length at capture (LC50), use the following code: 

LC_cur <- CC$L50 

LC_cur 

2.7.8. Plotting the exploitation parameters derived from the catch 

curve analysis 

Install and load truncnorm and dplyr R packages for better data handling. 

install.packages("truncnorm") #Do not install again if already installed 

install.packages("dplyr") #Do not install again if already installed 

library(truncnorm) 

library(dplyr) 

Define standard deviation (SD) from the model standard error (SE) 

SD<-sqrt(CC$reg_int[2]-CC$reg_int[1]+1)*CC$se 

Create a sample of Zs from the model derived mean and SD 

Zs<-rtruncnorm(n= ncol(my_data$catch), a= CC$confidenceInt[1], b= 

CC$confidenceInt[2], mean= CC$Z, sd= SD) 

Zs<-as.data.frame(Zs) 

Zs<-arrange(Zs, Zs) 

Create a sample of Fs from the sample of Zs 

Fs<-Zs$Zs-CC$M 

Fs<-as.data.frame(Fs) 

Create a sample of Es from the sample of Fs and Zs 

Es<-as.data.frame(Fs/Zs) 

To plot the Z, F, and M confidence intervals, split the plotting screen into one row, having 

three split columns to plot the three different parameters sequentially. 

par(mfrow = c(1,3)) 

Box plot for the exploitation parameters 

boxplot(Zs, main= expression("Z"), col='skyblue') 

boxplot(Fs, main= expression("F"), col='steelblue') 

boxplot(Es, main= expression("E"), col='green') 
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 Note: Switch off the plot screen split using the following code: par(mfrow = c(1,1)) 

Z_data<-c(mean= CC$Z, low= CC$confidenceInt[1], high=CC$confidenceInt[2]) 

Z_data 

F_data<-c(Mean= CC$Z-CC$M, Lower_95_CI = CC$confidenceInt[1] -CC$M, 

Upper_95_CI =CC$confidenceInt[2] -CC$M) 

F_data 

E_data<-F_data/Z_data 

E_data 

 

  

Optional step: If the user needs to close the ongoing session, the work progress can be saved by 

clicking the ' save workspace as' tab in the 'Environment' panel (located on the top right 

side). Give the workspace a name (e.g., 'my_analysis'). In a new session, the user can open the 

'my_analysis' file in RStudio by right-clicking the file and selecting the 'Open with' RStudio 

option. Reload the TropFishR library each time a new session starts, using the code: 

library(TropFishR) 
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2.8. Estimation of length-class wise fishing mortality rate, yield 

and biomass using virtual population analysis (VPA)/cohort 

analysis (CA) 

Introduction 

The virtual population analysis (VPA) and cohort analysis (CA) are widely used 

modeling technique in fisheries science to estimate the size and structure of fish 

populations over time. Both the methods reconstruct historical population dynamics by 

analyzing age- or length-structured data. VPA works by iteratively back-calculating the 

number of individuals in a cohort (a group of fish born in the same year) from the catch 

data, accounting for natural and fishing mortality. This method helps to infer population 

abundance, exploitation rates, and biomass at different life stages, which are critical for 

sustainable fisheries management. 

Virtual population analysis (VPA)  

Virtual population analysis (VPA) is a retrospective population modeling 

technique that reconstructs historical population structures across multiple years by 

analyzing mortality due to fishing and natural causes. The concept was first introduced by 

Derzhavin in 1922 and later referred to as the virtual population model by Fry in 1949. This 

model was further refined by several researchers, including Gulland (1965), Pope (1972), 

and Jones (1984). Originally, VPA was developed as an age-structured model to use age-

based catch data, which is commonly available in temperate fisheries. Later, VPA was 

adapted into a length-structured model to overcome data limitations in tropical fisheries, 

where age-based data is difficult to get and length-based information is more prevalent. 

In its most basic form, VPA involves solving the Baranov catch equation in a 

backward direction in time, beginning with the oldest age of each cohort at a time close to 

the present. The Baranov catch equation in its simplest form can be described as follows: 

𝐶𝑡 = 𝑁𝑡 ×
𝐹𝑡

𝑍𝑡
× (1 − 𝑒𝑥𝑝−𝑍𝑡×𝑡) 

VPA uses a rearranged version of the Baranov catch equation to calculate the 

abundance (Nt) of the oldest age in a cohort based on catch data as follows: 

𝑁𝑡 =
𝑍𝑡 × 𝐶𝑡

𝐹𝑡 × (1 − 𝑒𝑥𝑝−𝑍𝑡×𝑡)
 

Using the abundance of the oldest cohort (Nt) and the catch of the next younger 

cohort (Ct-1), the mortality rate of the younger cohort is calculated as follows: 

𝐹𝑡−1 =
𝑍𝑡−1 × 𝐶𝑡−1

𝑁𝑡 × (𝑒𝑥𝑝−𝑍𝑡−1×𝑡 − 1)
 

This procedure is repeated until reaching the youngest age for which catch data is 

available. This approach is often referred to as cohort analysis because each cohort within 

the stock is analyzed and reconstructed separately from the other cohorts present in the 

population at the same time. The key distinction between VPA and cohort analysis lies in 

the method used to calculate fishing mortality for each age class or length group. VPA 

assumes fish are caught continuously throughout the year and employs a more complex 
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iterative process (Newton-Raphson iteration) to solve the Baranov equation. In contrast, 

cohort analysis simplifies this by assuming that all fish are caught on a single day, making 

the calculation less complex (Sparre and Venema, 1998).  

Cohort analysis (CA) 

Age-based cohort analysis  

When age-structured catch data are available, true age classes (cohorts) can be 

easily tracked over time as they age. Similar to VPA, cohort analysis estimates the number 

of fish in each age class (cohort) in previous years by working backward from the most 

recent year. However, unlike VPA, which solves the Baranov equation through a complex 

iterative process, cohort analysis uses Pope’s approximation (Pope, 1972), a simplified 

solution to the VPA. This simplified method assumes that fish in a cohort are harvested 

through ‘pulse fishing’ on a single day, ideally in the middle of the year. As a result, fish in a 

cohort experience only natural mortality (M) until halfway through the year (Δt/2 = ½ = 

0.5 yr). The number of survivors at the end of the half-year period (Ny, t+0.5) can be 

calculated as follows: 

𝑁𝑦,𝑡+0.5 = 𝑁𝑦,𝑡 × 𝑒𝑥𝑝−𝑀×
1
2 

In the middle of the year, all the catch for that year (Cy, t+1) is assumed to be harvested on a 

single day, further reducing the number of survivors (Ny, t+0.5) as follows:  

𝑁𝑦,𝑡+0.5 = 𝑁𝑦,𝑡 × 𝑒𝑥𝑝−𝑀×
1
2 − 𝐶𝑦,𝑡+1 

The remaining survivors then experience only natural mortality (M) for the second half of 

the year (t = 0.5 yr), further reducing their numbers (Ny+1, t+1) as follows:   

𝑁𝑦+1,𝑡+1 = (𝑁𝑦,𝑡 × 𝑒𝑥𝑝−𝑀×
1
2 − 𝐶𝑦,𝑡+1)× 𝑒𝑥𝑝−𝑀×

1
2 

To enable backward projection, the equation above can be rearranged as follows: 

𝑁𝑦,𝑡 = (𝑁𝑦+1,𝑡+1 × 𝑒𝑥𝑝𝑀×
∆𝑡
2 + 𝐶𝑦,𝑡+1)× 𝑒𝑥𝑝𝑀×

∆𝑡
2  

From the number of survivors, the fishing mortality rates (Fy, t, t+1) can be calculated using 

the rearranged Z from exponential decay model equations and M as follows: 

𝐹𝑦,𝑡,𝑡+1 = 𝑙𝑛 [
𝑁𝑦,𝑡

𝑁𝑦+1,𝑡+1
] − 𝑀 

To summarize, the general equation for estimating the number of survivors in the 

previous age group (Nt) from the current age group (Nt+1) using age-based cohort analysis 

can be expressed as follows: 

𝑁𝑡 = (𝑁𝑡+𝛥𝑡 × 𝑒𝑥𝑝𝑀×
∆𝑡
2 + 𝐶𝑡,𝑡+𝛥𝑡) × 𝑒𝑥𝑝𝑀×

∆𝑡
2  

Similarly, the general equation for calculating the fishing mortality rate for age 

groups (Ft, t+Δt) using age-based cohort analysis can be expressed as follows: 

𝐹 𝑡,𝑡+𝛥𝑡 =
1

𝛥𝑡
× 𝑙𝑛 [

𝑁𝑦,𝑡

𝑁𝑡,𝑡+𝛥𝑡
] − 𝑀 

The mean number of survivors in the population is calculated using the following formula: 



Tropical fish stock assessment using R 

 

Page |55 

𝑁̅𝑡,𝑡+𝛥𝑡 = [
𝑁𝑡 − 𝑁𝑡+𝛥𝑡

𝑍
] 

The formula above is used to estimate the mean or average number of individuals in a 

population over a specific time or age interval (Δt), accounting for the exponential decline 

in population due to total mortality. 

Length-based cohort analysis 

The length-based cohort analysis was developed by Jones (1984) and is popularly 

known as Jones length-based cohort analysis. This method relies on length frequency data 

to derive the von Bertalanffy Growth Function (VBGF), which is then used to convert length 

classes into corresponding age groups. Although these length-converted age groups, 

sampled at a single point in time (e.g., one year), may come from different cohorts, they are 

assumed to represent the entire lifespan of a single cohort, known as a pseudocohort. 

Unlike age-structured cohort analysis, this method uses length-classes as proxies for age-

classes of a pseudocohort and estimates the number of fish in each length class historically, 

treating them as if they were age classes of a cohort. The model assumes a steady-state 

population with stable length composition over time. It is less sensitive to terminal fishing 

mortality (F) if F is greater than M, but is highly sensitive to natural mortality (M). 

In this approach, the length classes are converted to age groups t(L) using the inverse Von 

Bertalanffy equation as follows: 

𝑡(𝐿1) =  𝑡0 −
1

𝐾
× 𝑙𝑛 [1 −

𝐿1

𝐿∞
]  and 𝑡(𝐿2) =  𝑡0 −

1

𝐾
× 𝑙𝑛 [1 −

𝐿2

𝐿∞
] 

The time (age) interval is calculated as ∆𝑡 = 𝑡(𝐿2) − 𝑡(𝐿1) =
1

𝐾
× 𝑙𝑛 [

𝐿∞−𝐿1

𝐿∞−𝐿2
] 

Here, the inverse proportion of survivors due to natural mortality (M-factor, also expressed 

as H) until the middle of the age interval, i.e., exp(M*(Δt/2)), is calculated as:  

𝑀 − 𝑓𝑎𝑐𝑡𝑜𝑟(𝐿1 , 𝐿2) = 𝐻(𝐿1 , 𝐿2) = 𝑒𝑥𝑝 [𝑀 ×
∆𝑡

2
] =  𝑒𝑥𝑝 [

𝑀

2
× ∆𝑡]

= 𝑒𝑥𝑝 [
𝑀

2
×

1

𝐾
× 𝑙𝑛 [

𝐿∞ − 𝐿1

𝐿∞ − 𝐿2
]]  = [

𝐿∞ − 𝐿1

𝐿∞ − 𝐿2
]

𝑀
2𝐾

 

In length-based cohort analysis, this inverse proportion of survivors due to natural 

mortality (M-factor or H) can be substituted into the general equation used in age-

based cohort analysis to get the number of survivors in the previous age group, N(L1), 

from the current age group, N(L2).  

𝑁(𝐿1) = [𝑁(𝐿2) × 𝑀 − 𝑓𝑎𝑐𝑡𝑜𝑟(𝐿1 , 𝐿2) + 𝐶(𝐿1 , 𝐿2)] × 𝑀 − 𝑓𝑎𝑐𝑡𝑜𝑟(𝐿1 , 𝐿2) 

Similarly, the general equation for getting the fishing mortality rate for the age 

groups (Ft, t+Δt) from age-based cohort analysis can be changed to calculate F for the length 

class, F(L1,L2)  as follows: 

𝐹(𝐿1 , 𝐿2) =
1

𝛥𝑡
× 𝑙𝑛 [

𝑁(𝐿1)

𝑁(𝐿2)
] − 𝑀 

Alternatively, the general equation for calculating the fishing mortality rate for age groups 

(Ft,t+Δt) in age-based cohort analysis can be modified to determine F for length class, F(L1,L2) 

as follows: 
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𝐸(𝐿1 , 𝐿2) =
𝐶𝑎𝑡𝑐ℎ

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠
=

𝐶(𝐿1 , 𝐿2)

𝑁1 − 𝑁2
=

𝑁1 ×
𝐹(𝐿1 , 𝐿2)
𝑍(𝐿1 , 𝐿2)

× (1 − 𝑒𝑥𝑝−𝑍(𝐿1,𝐿2)×∆𝑡)

𝑁1 − 𝑁1 × 𝑒𝑥𝑝−𝑍(𝐿1,𝐿2)×∆𝑡

=
𝑁1 ×

𝐹(𝐿1 , 𝐿2)
𝑍(𝐿1 , 𝐿2)

× (1 − 𝑒𝑥𝑝−𝑍(𝐿1,𝐿2)×∆𝑡)

𝑁1 × (1 − 𝑒𝑥𝑝−𝑍(𝐿1,𝐿2)×∆𝑡)
=

𝐹(𝐿1, 𝐿2)

𝑍(𝐿1 , 𝐿2)
 

The fishing mortality rate for the length class, F(L1,L2) can be calculated using the following 

formula: 

𝐹(𝐿1 , 𝐿2) = 𝑀 × [

𝐹(𝐿1 , 𝐿2)
𝑍(𝐿1, 𝐿2)

1 −
𝐹(𝐿1 , 𝐿2)
𝑍(𝐿1 , 𝐿2)

] = 𝑀 × [
𝐸(𝐿1 , 𝐿2)

1 − 𝐸(𝐿1 , 𝐿2)
] 

The mean number of survivors N̅(L1,L2) in the population is calculated using the following 

formula: 

𝑁̅(𝐿1, 𝐿2) = [
𝑁(𝐿1) − 𝑁(𝐿2)

𝑍
] 

The above formula is used to estimate the mean or average number of individuals 

in a population over a specific length interval (ΔL), accounting for the exponential nature of 

population decline due to total mortality. The length class-wise catch, C(L1, L2) and mean 

population number, N̅(L1, L2) are multiplied with respective mean body weight for the 

length class, W̅(L1, L2)  to arrive at the yield (Yi) and biomass (Bi) for the individual length 

classes as follows:  

𝑌(𝐿1𝐿2) = 𝐶(𝐿1𝐿2)× 𝑊̅(𝐿1 , 𝐿2)   𝑎𝑛𝑑 𝐵(𝐿1𝐿2) =  𝑁̅(𝐿1, 𝐿2) × 𝑊̅(𝐿1 , 𝐿2) 

The summation of these length class-wise yields and biomasses gives the total yield (Y) and 

biomass (B). 

𝑌 = ∑ 𝑌(𝐿𝑖𝐿𝑖+1)  

𝑖

𝑎𝑛𝑑   𝐵 = ∑ 𝐵(𝐿𝑖𝐿𝑖+1)

𝑖

 

The summation of the length class-wise biomasses on and above the length at capture 

(LC50) is considered as spawning stock biomass (SSB). 

Cohort Analysis: R Implementation 

2.8.1. Requirement for cohort analysis (CA) 

LFQ file 

A length-frequency data file (LFQ) is required for the cohort analysis (e.g., my_data). Refer 

to the previously mentioned steps in ‘2.1.2 and 2.1.5. Creating a length frequency 

file (LFQ) on R’ section to newly create a LFQ file if not created earlier. 

Essential parameters 

Growth and mortality parameters 

The cohort analysis requires growth parameters (L∞ and K) and the natural 

mortality rate (M). If these essential parameters are not already assigned, use the following 

code to add them to the LFQ file (e.g., my_data): 
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my_data$Linf<-13.95 

my_data $K<-1.71 

my_data$M<-2.75 

LWR coefficients 

To derive the LWR coefficients (a, and b) refer to ‘2.12. Length–Weight 

Relationship (LWR)’ section. Assign the coefficients ‘a’, and ‘b’ to the LFQ file (e.g., 

my_data) using the following codes:   

my_data $a <- 0.0064 

my_data $b <- 3.0059 

Maturity parameters 

To derive the length and weight at maturity (LM50 and WM50), refer to ‘2.13. 

Length at Maturity (LM50)’ section. Assign the LM50, WM50 values to the LFQ file (e.g., 

my_data) using the following codes: 

my_data $Lmat <- 8.24 

my_data$wmat <- my_data$a*(my_data$Lmat^my_data$b) 

2.8.2. Cohort analysis for a combination of years using multiyear mean 

catch data 

When population estimates (e.g., yield, biomass, spawning stock biomass, 

recruitment, and stock size) are needed for a specific combination of years, it is essential to 

use the length structured mean catch data (i.e., mean_catch_vector) for those years to get 

accurate estimates of population parameters. To prepare the mean_catch_vector for the 

required combination of years, refer to the ‘Preparing a mean catch vector from the catch 

vector’ section in ‘2.7.2.Catch curve analysis for a combination of years using 

multiyear mean catch data’. For example, to prepare a mean catch vector for all 

available years (e.g., 4 years), use the following codes first to prepare the catch_vector:  

plus_group <- my_data$midLengths[max(which(my_data$midLengths < my_data 

$Linf))] 

catch_vec <- lfqModify(my_data, vectorise_catch = TRUE, plus_group = plus_group) 

Then use the following code for preparing a mean_catch_vector from the 

catch_vector as follows: 

mean_catch_vec<- catch_vec 

mean_catch_vec$catch<-as.matrix(rowMeans(catch_vec$catch[,1:4])) 

Note: The highlighted numbers inside the ‘catch_vec$catch[,1:4]’ portion of the code can be 

changed to include or exclude year(s) from the analysis. For example, to include only the 1st, 2nd 

and 3rd year, change the highlighted numbers inside the ‘catch_vec$catch[,1:3]’. Similarly, the 3rd, 

4th and 5th year of data can be included for the analysis by changing it to ‘catch_vec$catch[,3:5]’. 
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To perform the cohort analysis (CA) for the required combination of years, use the 

following code: 

cohortanalysis <- VPA(param = mean_catch_vec, catch_columns = 1, catch_unit= 

"'000", terminalE = 0.5, analysis_type = "CA", plot= TRUE) 

Note: The analysis type in the above code can be changed to VPA (analysis_type = "VPA") to 

conduct a length-based VPA analysis instead. Since the length structured catch data for all 

available years has been averaged to create the mean_catch_vec, it contains only a single length-

structured catch data for the required combination of years. Therefore, the catch_columns portion 

of the code should always be set to 1 (catch_columns = 1), representing the sole length-structured 

mean catch data for the required years. 

2.8.3. Cohort analysis for a specific year 

When population estimates (e.g., yield, biomass, spawning stock biomass, 

recruitment, and stock size) are needed for a specific year, the cohort analysis for the 

specific year can be done simply by using the catch_vec (containing annual aggregated 

catches of every available year) and specifying the required year (serial number of the year) 

in the catch_columns section of the code. To prepare the catch_vector, refer to the 

‘Preparing a catch vector’ section in ‘2.7.3.Catch curve analysis for a specific year’. 

For example, to prepare a catch vector, use the following codes: 

plus_group <- my_data$midLengths[max(which(my_data$midLengths < my_data 

$Linf))] 

catch_vec <- lfqModify(my_data, vectorise_catch = TRUE, plus_group = plus_group) 

To perform Cohort Analysis (CA) for the first year, use the following code: 

cohortanalysis <- VPA(param = catch_vec, catch_columns = 1, catch_unit= "'000", 

terminalE = 0.5, analysis_type = "CA", plot= TRUE) 

To perform Cohort Analysis (CA) for the fourth year, use the following code: 

cohortanalysis <- VPA(param = catch_vec, catch_columns = 4, catch_unit= "'000", 

terminalE = 0.5, analysis_type = "CA", plot= TRUE) 

Note: The highlighted numbers inside the ‘catch_columns= 4’ portion of the code can be 

changed to change the year of the analysis. For example, to include 2nd year, change the 

highlighted numbers inside the ‘catch_columns = 2’ portion of the code. Similarly, if there are 5 

years of data, the 5th year of data can be included for the analysis by changing it to 

‘catch_columns = 5’. 

2.8.4. Summarizing the population estimates from the length-based 

cohort analysis 

Regardless of the duration of the analysis (whether for a combination of years or a 

specific year), key population estimates can be derived using the following codes after 

performing the Cohort Analysis (CA): 

Install and use the dplyr for better data handling  

install.packages("dplyr") #Do not install again if already installed 
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library(dplyr) 

Yield_CA<-sum(cohortanalysis$yieldTon)/1000000 

Biomass_CA<-sum(cohortanalysis$meanBiomassTon)/1000000 

SSB_data<- data.frame(Length=cohortanalysis$midLengths, 

SSB=cohortanalysis$meanBiomassTon) 

SSB_CA<- (sum(head(filter(SSB_data, Length> (my_data$Lmat-

(my_data$midLengths[2]-my_data$midLengths[1]))))))/1000000 

Recruitment_CA<- (cohortanalysis$ survivors_L1[1])/1000 

Stocksize_CA<-( sum(cohortanalysis$annualMeanNr))/1000 

CA_results<-data.frame(Yield_CA, Biomass_CA, SSB_CA, Recruitment_CA, 

Stocksize_CA)  

CA_results 

Note: The catch_unit = "'000" is used to indicate that the catch numbers are in thousands. 

However, in this example, the actual catch numbers (without dividing by 1,000) have been used 

for the ease of analysis by specifying the catch numbers are in thousands. As a result, the 

recruitment and stock size, being numerical counts, are scaled up by 1000 times. Therefore, the 

recruitment and stock size are needed to be scaled down by 1,000 to adjust for the use of actual 

catch numbers instead of numbers in thousands (catch numbers/1000). Since the coefficients of the 

length-weight relationship (LWR) provided in the example are in 'centimeter to gram' resolution, 

the output for yield and biomass will be in grams. In spite of using the actual catch numbers 

(without dividing by 1,000), the estimates of yield and biomass are expressed in actual grams. 

Therefore, the yield and biomass outputs are required to be divided with 1,000,000 to express 

them in tonnes. 

Alternatively, same results will be obtained by dividing catch numbers with 1000 first and then 

using the same in the cohort analysis by mentioning catch_unit = "'000" in the cohort analysis 

code. However, scaling the catch numbers to thousands (catch numbers/1000) is a little tricky, 

which should be done while preparing the catch vector or mean catch vector.  

For example, to create a catch vector scaled to a thousand catch numbers (catch numbers/1000), 

use the following code: catch_vec$catch<- catch_vec$catch/1000 

And to create a mean catch vector scaled to a thousand catch numbers (catch numbers/1000), 

use the following code: mean_catch_vec$catch<- mean_catch_vec$catch/1000 

The above two codes are not required if the analysis is carried out with actual catch numbers 

by simply adjusting the outputs using the above-mentioned scaling factors. 

To create a data frame of the cohort analysis outputs, use the following codes: 

CA_output<-data.frame(ML=cohortanalysis$classes.num, 

Survivors1=cohortanalysis$survivors_L1/1000, 

Survivors2=cohortanalysis$survivors_L2/1000, 

Catch=cohortanalysis$catch_numbers/1000,   

Natural_loss=cohortanalysis$natLoss/1000, F=cohortanalysis$FM_calc, 

Z=cohortanalysis$Z, Annual_mean_number=cohortanalysis$annualMeanNr/1000, 

Mean_BW_gram=cohortanalysis$meanBodyWeight, 
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Annual_mean_biomass_tonne=cohortanalysis$meanBiomassTon/1000000, 

Yield_tonne=cohortanalysis$yieldTon/1000000) 

CA_output 

2.8.5. Default graphical outputs from the cohort analysis results 

Population number plot 

Use the following code to produce a length class wise population number plot: 

plot(cohortanalysis, yaxis = "numbers", display_last_class = TRUE, xlabel = NA, ylabel1 = 

"Population number", ylabel2 = "Fishing mortality rate", ylim = NA, ylim_FM = NA, 

plot.bars = TRUE, plot.FM = TRUE, plot.legend = TRUE) 

 

Population biomass plot  

Use the following code to produce a length class-wise population biomass plot: 

plot(cohortanalysis, yaxis = "biomass", display_last_class = TRUE, xlabel = NA, ylabel1 = 

"Population biomass (g)", ylabel2 = "Fishing mortality rate", ylim = NA, ylim_FM = NA, 

plot.bars = TRUE, plot.FM = TRUE, plot.legend = TRUE) 
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2.8.6. Enhanced visualization of the cohort analysis results 

Population number plot (2D) 

 

The CA_output data frame produced in the previous step already has the 

population indices (survivors, natural losses, catches) adjusted to actual numbers. To 

express these indices in millions, create a new data frame (e.g., cohort_number_data) by 

dividing these population indices by one million.  

cohort_number_data<- data.frame (Lengths= CA_output$ML, Survivors= 

CA_output$Survivors2/1000000, Natural_losses= CA_output$Natural_loss/1000000, 

Catches= CA_output$Catch/1000000, F= CA_output$F) 

Install and load the reshape2 package to melt and arrange the data for the plot and ggplot2 

for better plotting (Do not install again if already installed). 

install.packages("reshape2") #Do not install again if already installed 

install.packages("ggplot2") #Do not install again if already installed 

library(reshape2) 

library(ggplot2) 

numberdata<- melt(cohort_number_data, id.vars = c("Lengths", "F")) 

Use the following code to change and define the order of the variables in the stacks: 

numberdata$variable <- factor(numberdata$variable, levels=c("Catches","Natural_losses", 

"Survivors"))  

Use the following code to prepare a secondary Y-axis for fishing mortality rate (F): 

scale1<-max(numberdata$value)/max(numberdata$F) 

ggplot(numberdata, aes(x=Lengths, y=value, fill=variable)) + geom_bar(position="stack", 

stat="identity", color = "black") + scale_fill_manual(values=c("yellow", "purple", 
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"darkgreen"))+geom_line(aes(x=Lengths, y=F*scale1), stat="identity", color="red", 

linewidth=1)+ scale_y_continuous(sec.axis=sec_axis(~./scale1, name="Fishing mortality 

rate")) + scale_x_continuous(breaks = CC$midLengths)+ xlab("Mid lengths") + 

ylab("Population numbers (millions)")+ theme_classic(base_size = 12) + 

theme(legend.title = element_blank(), legend.background = 

element_rect(fill='transparent'), legend.position.inside=c(0.87, 0.9)) 

Population biomass plot (2D) 

 

The CA_output data frame produced in the previous step has the population 

indices (survivors, natural losses, catches) already adjusted to actual numbers. Create a new 

data frame (e.g., cohort_biomass_data) by multiplying these population numbers by the 

mean body weight to get the biomass for each index in grams. Then, divide the resulting 

values by one million to express the biomass in tonnes. 

cohort_biomass_data<- data.frame (Lengths= CA_output$ML, Survivors= 

CA_output$Survivors2*CA_output$Mean_BW_gram/1000000, Natural_losses= 

CA_output$Natural_loss*CA_output$Mean_BW_gram/1000000, Catches= 

CA_output$Catch*CA_output$Mean_BW_gram/1000000, F= CA_output$F) 

Load the reshape2 package to melt and arrange the data for the plot 

library(reshape2) 

biomassdata<- melt(cohort_biomass_data, id.vars = c("Lengths", "F")) 

Use the following code to change and define the order of the variables in the stacks: 

biomassdata$variable <- factor(biomassdata$variable, 

levels=c("Catches","Natural_losses", "Survivors"))  

Use the following code to prepare a secondary Y-axis for F: 

scale2<-max(biomassdata$value)/max(biomassdata$F) 
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Load the ggplot2 for better plotting: 

library(ggplot2) 

ggplot(biomassdata, aes(x=Lengths, y=value, fill=variable)) + geom_bar(position="stack", 

stat="identity", color = "black") + scale_fill_manual(values=c("yellow", "purple", 

"darkgreen"))+geom_line(aes(x=Lengths, y=F*scale2), stat="identity", color="red", 

linewidth=1)+ scale_y_continuous(sec.axis=sec_axis(~./scale2, name="Fishing mortality 

rate")) + scale_x_continuous(breaks = CC$midLengths)+ xlab("Mid Lengths") + 

ylab("Population biomass (tonnes)")+ theme_classic(base_size = 12)+ theme(legend.title = 

element_blank(),legend.background = element_rect(fill='transparent'), 

legend.position.inside=c(0.8, 0.9)) 

For 3D visualization, first install and load the following R-packages (Do not install again if 

already installed) 

remotes::install_github('coolbutuseless/devout') 

remotes::install_github('coolbutuseless/devoutrgl') 

remotes::install_github('coolbutuseless/triangular') 

remotes::install_github('coolbutuseless/snowcrash') 

remotes::install_github('coolbutuseless/cryogenic') 

remotes::install_github('coolbutuseless/ggrgl', ref='main') 

library(rgl) 

library(devout) 

library(devoutrgl) 

library(ggrgl) 

library(ggplot2) 

Population number plot (3D) 

suppressWarnings({ 

fig1<- ggplot(numberdata, aes(fill = variable, y = value, x = as.factor(Lengths), z = 1, 

extrude_face_fill = variable)) + geom_bar_z(position = "stack", stat = "identity", width = 

0.3, extrude = TRUE, color = "black", extrude_edge_color = "black") + 

geom_line_3d(aes(x = as.factor(Lengths), y = F * scale1), stat = "identity", group = 1, color 

= "red", linewidth = 1.5) + scale_y_continuous(sec.axis = sec_axis(~ . / scale1, name = 

"Fishing mortality rate")) + xlab("Mid Length (cm)") + ylab("Population number 

(millions)") + theme_ggrgl(base_size = 15) + labs(title = "Length class-wise population 

numbers") + theme( legend.title = element_blank(), legend.position.inside = c(0.85, 0.9) ) 

devoutrgl::rgldev(fov = 30, view3d_args = list(theta = 25, phi = 0, zoom = 0.7), dpi = 100) 

print(fig1) 

# Save as PNG with high resolution 

rgl::rgl.snapshot("high_quality_plot.png", fmt = "png", top = TRUE) 

}) 

# Close the rgl device after plotting 
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rgl::rgl.close() 

 

Population biomass plot (3D) 

suppressWarnings({ 

fig2<- ggplot(biomassdata, aes(fill = variable, y = value, x = as.factor(Lengths), z = 1, 

extrude_face_fill = variable)) + geom_bar_z(position = "stack", stat = "identity", width = 

0.3, extrude = TRUE, color = "black", extrude_edge_color = "black") + 

geom_line_3d(aes(x = as.factor(Lengths), y = F * scale2), stat = "identity", group = 1, color 

= "red", linewidth = 2.5) + scale_y_continuous(sec.axis = sec_axis(~ . / scale2, name = 

"Fishing mortality rate")) + xlab("Mid Length (cm)") + ylab("Population biomass (tonnes)") 

+ theme_ggrgl(base_size = 15) + labs(title = "Length class-wise population biomass 

(tonnes)") + theme(legend.title = element_blank(), legend.position = c(0.85, 0.9)) 

devoutrgl::rgldev(fov = 30, view3d_args = list(theta = 25, phi = 0, zoom = 0.7), dpi = 100) 

print(fig2) 

# Save as PNG with high resolution 

rgl::rgl.snapshot("high_quality_plot.png", fmt = "png", top = TRUE) 

}) 

# Close the rgl device after plotting 

rgl::rgl.close() 
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Switch off the 3D plotting window after the plots are generated using the following code: 

invisible(dev.off()) 

 

  

 

 

Optional step: If the user needs to close the ongoing session, the work progress can be saved by 

clicking the ' save workspace as' tab in the 'Environment' panel (located on the top right 

side). Give the workspace a name (e.g., 'my_analysis'). In a new session, the user can open the 

'my_analysis' file in RStudio by right-clicking the file and selecting the 'Open with' RStudio 

option. Reload the TropFishR library each time a new session starts, using the code: 

library(TropFishR) 
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2.9. Stock Simulation by Thompson and Bell’s model (TB) 

Introduction 

Unlike VPA and CA, which are retrospective models that back-calculate cohort 

yield and biomass, the predictive models are used to simulate and predict the effects of 

changes in fishing mortality rate (F), either alone or in combination with gear selectivity 

(LC50), on stock status. There are two predictive models, also known as dynamic pool 

models or yield-per-recruit models, which are widely used in fisheries resource 

management: (1) the Thompson and Bell model (TB), and (2) the Beverton and Holt yield-

per-recruit model (BHYPR). 

Thompson and Bell’s model (Thompson and Bell, 1934) is a widely used predictive 

tool in fisheries science for analyzing the effects of fishing on fish populations. Initially 

developed as an age-based model for temperate fisheries, it was later adapted into a length-

based model to address data-limited tropical fisheries. This model facilitates the evaluation 

of various fishing strategies, helping to identify optimal levels of fishing mortality and gear 

selectivity that maximize yield while ensuring the sustainability of fish populations. A key 

feature of the Thompson and Bell model is its ability to incorporate bio-economic analysis 

when the value of the catch is provided as input. Additionally, unlike the Beverton and Holt 

model, which estimates yield on a per-recruit basis, the Thompson and Bell model can 

predict yield, biomass, and spawning stock biomass in absolute terms. 

The model essentially uses length-class-specific fishing mortalities derived either 

(1) from VPA/CA or (2) from selectivity information generated through length-converted 

catch curve analysis. These fishing mortalities are then multiplied by an F-multiplier to 

simultaneously increase or decrease mortality rates across all length classes, simulating the 

effect of changes in F on yield and biomass. Adjusting the F-multiplier alters the fishing 

mortality rate (Fi) for each length class (Li) as follows: 

𝐹𝑖 = 𝐹𝑖 × 𝐹 − 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

This alters the total mortality rate (Zi) for each length class (Li) as follows: 

𝑍𝑖 = 𝑀𝑖 + 𝐹𝑖 

The inverse proportion of survivors due to natural mortality (M-factori, also expressed as 

Hi) for each length class (Li) is calculated as follows: 

𝑀 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 𝐻𝑖 = [
𝐿∞ − 𝐿1

𝐿∞ − 𝐿2
]

𝑀
2𝐾

 

This M-factori or Hi is used to calculate the population size for the successive length class 

(Ni+1) as follows: 

𝑁𝑖+1 = 𝑁𝑖 × [

1
𝐻𝑖

−
𝐹𝑖

𝐻𝑖

𝐻𝑖 − −
𝐹𝑖

𝐻𝑖

] 

The mean catch (C̅i) for each length class (Li) is calculated as follows: 

𝐶𝑖 = [𝑁𝑖 − 𝑁𝑖+1] ×
𝐹𝑖

𝑍𝑖
 



Tropical fish stock assessment using R 

 

Page |67 

The mean population size (N̅i) for each length class (Ni) is calculated as follows: 

𝑁̅𝑖 = [
𝑁𝑖 − 𝑁𝑖+1

𝑍
] 

The length class-wise mean catch (C̅i) and mean population number (N̅i) are multiplied by 

the corresponding mean body weight for the length class (W̅i) to calculate the yield (Yi) and 

biomass (Bi) for the length classes. The length class-wise yield (Yi) is then multiplied by the 

price per kg (₹) for the corresponding length class to derive economic yield (EYi) for each 

length-class. 

𝑌𝑖 = ∑𝐶𝑖̅ × 𝑊̅𝑖

𝑖

  𝑎𝑛𝑑    𝐸𝑌𝑖 = ∑𝐶𝑖̅ × 𝑊̅𝑖

𝑖

× ₹    𝑎𝑛𝑑       𝐵𝑖 = ∑𝑁̅𝑖 × 𝑊̅𝑖

𝑖

 

The summation of these length class-wise yields, economic yield and biomasses provides 

the total yield, total economic yield, and total biomass. 

𝑌 = ∑ 𝑌𝑖   

𝑖

𝑎𝑛𝑑     𝐸𝑌 = ∑ 𝐸𝑌𝑖   

𝑖

𝑎𝑛𝑑   𝐵 = ∑𝐵𝑖

𝑖

 

The summation of the length class-wise biomasses for lengths equal to or greater than the 

length at maturity (LM50) is considered the spawning stock biomass (SSB). 

Thompson and Bell’s model (TB): R Implementation 

2.9.1. Requirement for Thompson and Bell’s model (TB) 

LFQ file 

A length-frequency data file (LFQ) is required for the Thompson and Bell analysis 

(e.g., my_data). Refer to the previously mentioned steps in ‘2.1.2 and 2.1.5. creating a 

length frequency file (LFQ) on R’ section to newly create a LFQ file if not created 

earlier. 

Essential parameters 

Growth and mortality parameters 

The Thompson and Bell analysis requires growth parameters (L∞ and K) and the 

natural mortality rate (M). If these essential parameters are not already assigned, use the 

following code to add them to the LFQ file (e.g., my_data): 

my_data$Linf<-13.95 

my_data $K<-1.71 

my_data$M<-2.75 

LWR coefficients 

The Thompson and Bell analysis requires the LWR coefficients (a and b). To derive 

the LWR coefficients, refer to ‘2.12.Length–Weight Relationship (LWR)’ section. 

Assign the coefficients ‘a’, and ‘b’ to the LFQ file (e.g., my_data) using the following codes:   

my_data $a <- 0.0064 

my_data $b <- 3.0059 
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Maturity parameters 

The Thompson and Bell analysis requires the maturity parameters (LM50 and 

WM50). To derive the length and weight at maturity (LM50 and WM50) refer to 

‘2.13.Length at Maturity (LM50)’ section. Assign the LM50, WM50 values to the LFQ file 

(e.g., my_data) using the following codes: 

my_data $Lmat <- 8.24 

my_data$wmat <- my_data$a*(my_data$Lmat^my_data$b) 

Economic value (optional) 

The length class-wise value (price in INR/kg) information for the species is an 

optional requirement for the Thompson and Bell analysis, which is only needed for 

calculating economic yield during stock simulation. First check how many mid-lengths are 

there in the LFQ using the following code: 

my_data$midLengths 

 

There are 18 mid-lengths in this LFQ data frame example (e.g., my_data). Therefore, the 

user needs to assign 18 separate prices in INR/kg, one price for each length class. For 

example, user may assign a lower actual realized price of 80 INR/kg for the smaller 5 cm 

mid-length prawn group which can gradually increase to a higher realized price of 250 

INR/kg for the larger 13.5 cm mid-length prawn group. Please note that the actual price 

information for each length class may vary depending on the market demand of the species. 

Prepare the actual market price vector for the species using the following code: 

my_data $ meanValue<-

c(80,80,80,100,100,100,150,150,150,175,175,175,200,200,200,250,250,250) 

2.9.2. Simulating the effect of changes in FM on the stock status (TB1) 

This approach is used to simulate the effect of changes in fishing mortality rate 

(FM) on stock status. 

Step-1: Assign the fishing mortality rates (FMs)  

The length class-wise fishing mortality rates are required for the TB analysis, 

which can be derived using either of the following two approaches: 

Catch curve analysis derived FMs  

This approach uses the single annual fishing mortality rate (FM) and gear 

selectivity information obtained from a catch curve analysis to derive the length class-wise 

fishing mortality rates (FMs). 

First perform a catch curve analysis for the specified combination of years (e.g., all available 

years using mean_catch_vec) using the following code to get the probability of capture, 

which is then used to derive length class-wise fishing mortality rates (FMs). 

CC <- catchCurve(mean_catch_vec, catch_columns = c(1), calc_ogive = TRUE) 
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Assign the annual fishing mortality rate (FM) for the stock, derived from the catch curve 

analysis, to the my_data.  

my_data$FM<-as.numeric(CC$FM) 

Cohort analysis derived FMs  

This approach uses length class-wise fishing mortality rates (FMs) derived directly 

from cohort analysis.  

First, perform a cohort analysis for the specified combination of years (e.g., all available 

years using the mean_catch_vec) to derive length class-wise fishing mortality rates 

(FMs). 

cohortanalysis <- VPA(param = mean_catch_vec, catch_columns = 1, catch_unit= 

"'000", terminalE = 0.5, analysis_type = "CA", plot= TRUE) 

Assign the length class-wise fishing mortality rates (FMs) generated from the cohort 

analysis to the my_data using the following code: 

my_data$FM<- cohortanalysis$FM_calc 

Note: This is a very crucial step in the analysis. The FMs can be derived either through the cohort 

analysis or a catch curve analysis. The above example shows the procedure for deriving FMs for a 

specific combination of years (e.g., all available years using mean_catch_vec) using the length 

converted catch curve analysis or the cohort analysis. Alternatively, the user can derive FMs for 

any specified year using the catch_vec in the length converted catch curve analysis or the cohort 

analysis by specifying the serial number of the required year in the catch column of the respective 

codes (catch_columns = ). To perform catch curve analysis for the required combination of 

years, refer to the ‘2.7.2.Catch curve analysis for a combination of years using 

multiyear mean catch data’. To perform catch curve analysis for the required year, refer to 

the ‘2.7.3.Catch curve analysis for a specific year ’. To perform cohort analysis for the 

required combination of years, refer to the ‘2.8.2.Cohort analysis for a combination of 

years using multiyear mean catch data’. To perform cohort analysis for the required year, 

refer to the ‘2.8.3.Cohort analysis for a specific year’. 

Step-2: Perform TB1 with a catch curve analysis derived FM under the knife-

edge selection assumption 

Ensure that the my_data contains the single annual FM derived from a catch curve 

analysis. To ensure the function follows the knife-edge selection assumption instead of the 

gear selectivity assumption, use the TB code by providing a knife-edge selection list (s_list 

= knife-edge). 

To prepare a knife-edge selection list using the LC50 from the catch curve analysis, use the 

following code: 

knife_edge <- list(selecType = "knife_edge", L50 = CC$L50) 

To perform the TB1 analysis with knife-edge selection assumption, use the following code: 

TB1 <- predict_mod (my_data, type = "ThompBell", FM_change = seq(0,5,0.01), 

E_change = NA, FM_relative = TRUE, stock_size_1 = as.numeric((cohortanalysis$ 

survivors_L1[1])/1000), curr.E = NA, curr.Lc = NA, s_list = knife_edge, plot = TRUE) 
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Step-3: Perform TB1 with a catch curve analysis derived FMs under the gear 

selection assumption 

Ensure that the my_data contains the single annual FM derived from the catch 

curve analysis. Provide selectivity information (s_list = gear_selection) in the TB code to 

ensure the function follows the gear selectivity assumption instead of the knife-edge 

selection assumption.  

Prepare a gear selection list (gear_selection) using the LC50 and LC75 information derived 

from a catch curve analysis with the following code: 

gear_selection <- list(selecType = "trawl_ogive", L50 = CC$L50, L75 = CC$L75) 

To perform the TB1 analysis with gear selection assumption, use the following code: 

TB1 <- predict_mod (my_data, type = "ThompBell", FM_change = seq(0,5,0.01), 

E_change = NA, FM_relative = TRUE, stock_size_1 = as.numeric((cohortanalysis$ 

survivors_L1[1])/1000), curr.E = NA, curr.Lc = NA, s_list = gear_selection, plot = 

TRUE) 

Step-4: Perform TB1 with the cohort analysis derived FMs under the knife-

edge selection assumption  

Ensure that the my_data includes the length class-specific FMs derived from a 

cohort analysis. To ensure the function follows the knife-edge selection assumption instead 

of the gear selectivity assumption, use the TB code without providing any selectivity 

information (s_list = NA) or by providing a knife-edge selection list (s_list = knife-edge). 

To prepare a knife-edge selection list using the LC50 from the catch curve analysis, use the 

following code: 

knife_edge <- list(selecType = "knife_edge", L50 = CC$L50) 

To perform the TB1 analysis with the cohort analysis derived FMs under the knife-edge 

selection assumption, use the following code: 

TB1 <- predict_mod (my_data, type = "ThompBell", FM_change = seq(0,5,0.01), 

E_change = NA, FM_relative = TRUE, stock_size_1 = as.numeric((cohortanalysis$ 

survivors_L1[1])/1000), curr.E = NA, curr.Lc = NA, s_list = NA, plot = TRUE) 

Alternatively, 

TB1 <- predict_mod (my_data, type = "ThompBell", FM_change = seq(0,5,0.01), 

E_change = NA, FM_relative = TRUE, stock_size_1 = as.numeric((cohortanalysis$ 

survivors_L1[1])/1000), curr.E = NA, curr.Lc = NA, s_list = knife_edge, plot = TRUE) 

Step-5: Perform TB1 with the cohort analysis derived FMs under the gear 

selection assumption 

Ensure that the my_data contains the single annual FM derived from the catch 

curve analysis. Provide selectivity information (s_list = gear_selection) in the TB code to 

ensure the function follows the gear selectivity assumption instead of the knife-edge 

selection assumption. The use of length class-specific FMs from the cohort analysis 

effectively overrides any other selectivity information provided through the ‘s_list = 

gear_selection’ in the TB code. Nevertheless, the ‘s_list = gear_selection’ is essential for the 
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gear selection assumption without which the code follows a knife-edge selection 

assumption. 

Prepare a gear selection list (gear_selection) using the LC50 and LC75 information derived 

from a catch curve analysis with the following code: 

gear_selection <- list(selecType = "trawl_ogive", L50 = CC$L50, L75 = CC$L75) 

To perform the TB1 analysis with the cohort analysis derived FMs under the gear selection 

assumption, use the following code: 

TB1 <- predict_mod (my_data, type = "ThompBell", FM_change = seq(0,5,0.01), 

E_change = NA, FM_relative = TRUE, stock_size_1 = as.numeric((cohortanalysis$ 

survivors_L1[1])/1000), curr.E = NA, curr.Lc = NA, s_list = gear_selection, plot = 

TRUE) 

Note: In the above-mentioned TB1 codes, type represents the Thompson and Bell analysis (type 

= "ThompBell"). For the Beverton and Holt analysis, the user can use type = "ypr", after 

providing the required parameters for the analysis. The FM range, over which the effect of a 

change in the fishing mortality rates (FM) on stock status is evaluated, is supplied in FM_change 

[e.g., FM_change = seq(0, 5, 0.01)]. The FM range could be absolute (FM_relative = 

FALSE) or relative (FM_relative = TRUE) in the Thompson and Bell analysis. In this example, 

the FM changes are in relative format (FM_relative = TRUE), simulating the effect of changes 

in FM (F-multiplier, not the absolute F) from 0 to 5 with a gradual increase of 0.01 (step size 0.01 

indicates a sequential FM change of 0, 0.01, 0.02, …, 4.99, and 5.00 times the actual F). If the FM 

changes are in absolute format (FM_relative = FALSE), it will simulate the effect of changes in 

FM (actual F, not the F-multiplier) from 0 to 5 with a gradual increase of 0.01 (step size 0.01 

indicates a sequential FM change (actual F) of 0, 0.01, 0.02, …, 4.99, and 5.00). The user can also 

use an equivalent range of absolute exploitation rates (E_change) instead of the fishing mortality 

rate (FM_change) to simulate the same effect. However, if E_change is used instead of 

FM_change, the range is capped at E = 0.9, as higher values of E correspond to unrealistically 

high fishing mortality rates. The recruitment number is supplied in stock_size_1 in the 

Thompson and Bell analysis. In this example, the number of survivors in the first (smallest) length 

group from the cohort analysis has been used as the recruitment number [e.g., stock_size_1 = 

as.numeric ((cohortanalysis $survivors_L1[1])/1000)]. If no value is provided 

(stock_size_1 = NA), a default recruitment number of 1000 recruits is used for the simulation. 

The current exploitation rate (curr.E) or the current exploitation rate (curr.E) or both can be 

provided to obtain management reference points. However, the user can supply the calculated E 

(i.e., F/Z) [e.g., curr.E = (as.numeric(CC$FM)/CC$Z)] and/or LC50 values [e.g., curr.Lc = 

CC$L50] from the catch curve analysis to assess the current stock status. The default graphical 

output from the simulation can be turned on (plot = TRUE) or off (plot = FALSE). 

2.9.3. Biological reference points from TB1 

Use the following code to get the biological reference points: 

TB1$df_Es 

e.g., when the catch curve analysis derived FM is used with the gear selection assumption 

 



Tropical fish stock assessment using R  

 

Page | 72 

Note: The stock status and the management reference points may differ under these two different 

assumptions. Similarly, the stock status and the management reference points may differ when TB1 

is performed with the catch curve analysis derived FMs compared to the cohort analysis derived 

FMs. The yield (YPR) and biomass (BPR) values obtained from this analysis are not the relative 

yield (yield per recruit, YPR) or biomass per recruit (biomass per recruit, BPR). In fact, these are 

absolute values raised to the entire stock size (YPR × recruits and BPR × recruits), as the 

recruitment number from the cohort analysis [stock_size_1 = as.numeric ((cohortanalysis$ 

survivors_L1[1])/1000)] has been used in the analysis. In the above TB1 code, the stock size of 

the smallest length class from the cohort analysis [stock_size_1 = 

as.numeric((cohortanalysis$ survivors_L1[1]) /1000)] has been used as the recruitment 

number to express the stock estimates in absolute terms. Therefore, the cohort analysis should be 

performed prior to the TB analysis to derive absolute stock estimates. If no recruitment number is 

provided in the code [stock_size_1 = NA], then the analysis derives relative stock estimates (YPR 

and BPR) assuming a default stock size (recruitment) of 1,000 individuals. The yield and biomass 

values have been expressed in grams. Divide these values by 1,000,000 to express them in tonnes. 

To learn more about other management reference points (e.g., F01, Fmax, F04, F05, SPR, etc.), refer to 

2.11.Understanding the stock simulation outputs (fisheries management reference 

points)’. 

2.9.4. Current stock status estimates from TB1 

To get current estimates for yield, biomass, spawning stock biomass, SPR, and 

revenue levels, user need to provide either the current exploitation rate (curr.E=) or the 

current length at capture (curr.Lc=) or both the values in the above mentioned TB1 codes. 

Use the calculated E (i.e., F/Z) [e.g., curr.E= (as.numeric(CC$FM)/CC$Z)] and LC50 values 

[e.g., curr.Lc =CC$L50] from the catch curve analysis in TB1 code as follows: 

To perform the TB1 analysis under the knife-edge selection assumption, use the following 

codes: 

TB1 <- predict_mod (my_data, type = "ThompBell", FM_change = seq(0,5,0.01), E_change 

= NA, FM_relative = TRUE, stock_size_1 = as.numeric((cohortanalysis$ 

survivors_L1[1])/1000), curr.E= (as.numeric(CC$FM)/CC$Z), curr.Lc =CC$L50, 

s_list = knife_edge, plot = TRUE) 

To perform the TB1 analysis under the gear selection assumption, use the following codes: 

TB1 <- predict_mod (my_data, type = "ThompBell", FM_change = seq(0,5,0.01), E_change 

= NA, FM_relative = TRUE, stock_size_1 = as.numeric((cohortanalysis$ 

survivors_L1[1])/1000), curr.E= (as.numeric(CC$FM)/CC$Z), curr.Lc =CC$L50, 

s_list = gear_selection, plot = TRUE) 

After entering the values for the current exploitation rate and the current length at capture 

in the TB1 code, use the following code to retrieve the current values: 

TB1$currents 

e.g., when the catch curve analysis derived FM is used with the gear selection assumption 
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Note: The current stock estimates, such as yield (curr.Y), value (curr.V), biomass (curr.B), and 

spawning stock biomass (curr.SSB), obtained from this analysis are not relative estimates per 

recruit. In fact, these are absolute values raised to the entire stock size, as the recruitment number 

from the cohort analysis [stock_size_1 = as.numeric ((cohortanalysis$ 

survivors_L1[1])/1000)] has been used for the analysis. The yield, biomass and SSB values have 

been expressed in grams. Divide these values by 1,000,000 to express them in tonnes. The revenue 

(economic value of the yield) should also be divided by 1,000,000,000 to convert it to million INR. 

For more information on these and other management reference points, refer to 

2.11.Understanding the stock simulation outputs (fisheries management reference 

points)’ 

2.9.5. Default graphical output from TB1 

The default graphical output from the simulation can be turned on by mentioning plot = 

TRUE in the TB1 code, which will produce the following graph. 

 

2.9.6. Simulate the combined effect of changes in FM and LC50 on stock 

status (TB2) 

This approach is used to simulate the combined effect of simultaneous changes in 

fishing mortality rate (FM) and the length at capture or selectivity (LC50) on the stock 

status. 

Step-1: Define the range of LC (length at capture) 

Define the range of LC (length at capture) over which the effect is evaluated. 

LC_min<- min(my_data$midLengths) 

LC_max<- max(my_data$midLengths) 

Note: The LC range provided in this example spans from the minimum to the maximum observed 

length. Users have the flexibility to specify any other length range. 
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Step-2: Assign the fishing mortality rates (FMs)  

The length class-wise fishing mortality rates are required for the TB analysis, 

which can be derived using either of the following two approaches: 

Catch curve analysis derived FM  

This approach uses the single annual fishing mortality rate (FM) and gear 

selectivity information obtained from a catch curve analysis to derive the length class-wise 

fishing mortality rates (FMs). First perform a catch curve analysis for the specified 

combination of years (e.g., all available years using mean_catch_vec) using the following 

code to get the probability of capture, which is then used to derive the length class-wise 

fishing mortality rates (FMs). 

CC <- catchCurve(mean_catch_vec, catch_columns = 1, calc_ogive = TRUE) 

Assign the annual fishing mortality rate (FM) for the stock, derived from the catch curve 

analysis, to the my_data.  

my_data$FM<-as.numeric(CC$FM) 

Cohort analysis derived FMs  

This approach uses the length class-wise fishing mortality rates (FMs) derived 

directly from a cohort analysis.  

First, perform a cohort analysis for the specified combination of years (e.g., all 

available years using the mean_catch_vec) to derive the length class-wise fishing 

mortality rates (FMs). 

cohortanalysis <- VPA(param = mean_catch_vec, catch_columns = 1, catch_unit= 

"'000", terminalE = 0.5, analysis_type = "CA", plot= TRUE) 

Assign the length class-wise fishing mortality rates (FMs) generated from the cohort 

analysis to the my_data using the following code: 

my_data$FM<- cohortanalysis$FM_calc 

Note: This is a very crucial step in the analysis. The FMs can be derived either through the cohort 

analysis or a catch curve analysis. The above example shows the procedure for deriving FMs for a 

specific combination of years (e.g., all available years using mean_catch_vec) using the length 

converted catch curve analysis or the cohort analysis. Alternatively, the user can derive FMs for 

any specified year using the catch_vec in the length converted catch curve analysis or the cohort 

analysis by specifying the serial number of the required year in the catch column of the respective 

codes (catch_columns = ). To perform catch curve analysis for the required combination of 

years, refer to the ‘2.7.2.Catch curve analysis for a combination of years using 

multiyear mean catch data’. To perform catch curve analysis for the required year, refer to 

the ‘2.7.3.Catch curve analysis for a specific year ’. To perform cohort analysis for the 

required combination of years, refer to the ‘2.8.2.Cohort analysis for a combination of 

years using multiyear mean catch data’. To perform cohort analysis for the required year, 

refer to the ‘2.8.3.Cohort analysis for a specific year’. 
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Step-3: Perform TB1 with catch curve analysis derived FMs under the knife-

edge selection assumption 

Ensure that the my_data contains the single annual FM derived from a catch curve 

analysis. To ensure the function follows the knife-edge selection assumption instead of the 

gear selectivity assumption, use the TB code by providing a knife-edge selection list (s_list 

= knife-edge). 

To prepare a knife-edge selection list using the LC50 from a catch curve analysis, use the 

following code: 

knife_edge <- list(selecType = "knife_edge", L50 = CC$L50) 

To perform the TB2 analysis with a catch curve analysis derived FM under the knife-edge 

selection assumption, use the following code: 

TB2 <- predict_mod(my_data, type = "ThompBell", FM_change = seq(0,20,0.5), 

E_change = NA, FM_relative=FALSE, Lc_change = seq(LC_min, LC_max, 0.5), 

stock_size_1 = as.numeric((cohortanalysis$ survivors_L1[1])/1000), curr.E = NA, curr.Lc 

= NA, s_list = knife_edge, plot = TRUE) 

Step-4: Perform TB2 with a catch curve analysis derived FM under the gear 

selection assumption 

Ensure that the my_data contains the single annual FM derived from the catch 

curve analysis. Provide selectivity information (s_list = gear_selection) in the TB code to 

ensure the function follows the gear selectivity assumption instead of the knife-edge 

selection assumption. Prepare a gear selection list (gear_selection) using the LC50 and LC75 

information derived from a catch curve analysis with the following code: 

gear_selection <- list(selecType = "trawl_ogive", L50 = CC$L50, L75 = CC$L75) 

To perform the TB2 analysis with a catch curve analysis derived FM under the gear 

selection assumption, use the following code: 

TB2 <- predict_mod(my_data, type = "ThompBell", FM_change = seq(0,20,0.5), 

E_change = NA, FM_relative=FALSE, Lc_change = seq(LC_min, LC_max, 0.5), 

stock_size_1 = as.numeric((cohortanalysis$ survivors_L1[1])/1000), curr.E = NA, curr.Lc 

= NA, s_list = gear_selection, plot = TRUE) 

Step-5: Perform TB2 with the cohort analysis derived FMs under the knife-

edge selection assumption  

Ensure that the my_data includes the length class-specific FMs derived from a 

cohort analysis. To ensure the function follows the knife-edge selection assumption instead 

of the gear selectivity assumption, use the TB code without providing any selectivity 

information (s_list = NA) or by providing a knife-edge selection list (s_list = knife-edge). 

To prepare a knife-edge selection list using the LC50 from a catch curve analysis, use the 

following code: 

knife_edge <- list(selecType = "knife_edge", L50 = CC$L50) 

To perform the TB2 analysis with the cohort analysis derived FMs under the knife-edge 

selection assumption, use the following code: 
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TB2 <- predict_mod(my_data, type = "ThompBell", FM_change = seq(0,20,0.5), 

E_change = NA, FM_relative=FALSE, Lc_change = seq(LC_min, LC_max, 0.5), 

stock_size_1 = as.numeric((cohortanalysis$ survivors_L1[1])/1000), curr.E = NA, curr.Lc 

= NA, s_list = NA, plot = TRUE) 

Alternatively, 

TB2 <- predict_mod(my_data, type = "ThompBell", FM_change = seq(0,20,0.5), 

E_change = NA, FM_relative=FALSE, Lc_change = seq(LC_min, LC_max, 0.5), 

stock_size_1 = as.numeric((cohortanalysis$ survivors_L1[1])/1000), curr.E = NA, curr.Lc 

= NA, s_list = knife_edge, plot = TRUE) 

Step-6: Perform TB2 with the cohort analysis derived FMs under the gear 

selection assumption 

Ensure that the my_data contains the single annual FM derived from the catch 

curve analysis. Provide selectivity information (s_list = gear_selection) in the TB code to 

ensure the function follows the gear selectivity assumption instead of the knife-edge 

selection assumption. Using the length class-specific FMs from the cohort analysis 

effectively overrides any other selectivity information provided through the ‘s_list = 

gear_selection’ in the TB code. Nevertheless, the ‘s_list = gear_selection’ is essential for the 

gear selection assumption, without which the code follows a knife-edge selection 

assumption. 

Prepare a gear selection list (gear_selection) using the LC50 and LC75 information derived 

from a catch curve analysis with the following code: 

gear_selection <- list(selecType = "trawl_ogive", L50 = CC$L50, L75 = CC$L75) 

To perform the TB2 analysis with cohort analysis derived FMs under the gear selection 

assumption, use the following code: 

TB2 <- predict_mod(my_data, type = "ThompBell", FM_change = seq(0,20,0.5), 

E_change = NA, FM_relative=FALSE, Lc_change = seq(LC_min, LC_max, 0.5), 

stock_size_1 = as.numeric((cohortanalysis$ survivors_L1[1])/1000), curr.E = NA, curr.Lc 

= NA, s_list = gear_selection, plot = TRUE) 

Note: In the above TB2 codes, type represents the Thompson and Bell analysis (type = 

"ThompBell"). For the Beverton and Holt analysis, the user can use type = "ypr", after 

providing the required parameters for the analysis. The FM range, over which the effect of a 

change in the fishing mortality rates (FM) on stock status is evaluated, is supplied in FM_change 

[e.g., FM_change = seq(0, 20, 0.5)]. The FM range could be absolute (FM_relative = 

FALSE) or relative (FM_relative = TRUE) in the Thompson and Bell analysis. In this example, 

the FM changes are in absolute format (FM_relative = FALSE), simulating the effect of changes 

in FM (absolute F, not the F-multiplier) from 0 to 20 with a gradual increase of 0.5 (step size 0.5 

shows a sequential FM change of 0, 0.5, 1.0, …, 19.5, and 20.0). If the FM changes are in relative 

format (FM_relative = TRUE), it will simulate the effect of changes in FM (F-multiplier, not the 

absolute F) from 0 to 20 with a gradual increase of 0.5 (step size 0.5 indicates a sequential FM 

change of 0, 0.5, 1.0, …, 19.5, and 20.0 times the actual F). The user can also use an equivalent 

range of absolute exploitation rates (E_change) instead of the fishing mortality rate (FM_change) 

to simulate the same effect. However, if E_change is used instead of FM_change, the range is 

capped at E = 0.9, as higher values of E correspond to unrealistically high fishing mortality rates. 
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In addition to the FM, the used can simulate the effect of change in length at capture (LC) by 

providing a LC range in Lc_change [Lc_change = seq(LC_min, LC_max, 0.5)]. The LC 

range provided in this example ranges from the minimum to the maximum observed length with a 

gradual increase of 0.5 (step size 0.5 indicates a sequential LC change of 5, 5.5, 1.0, …, 13.0, and 

13.5). Users have the flexibility to specify any other length range and step size. The recruitment 

number is supplied in stock_size_1 in the Thompson and Bell analysis. In this example, the 

number of survivors in the first (smallest) length group from the cohort analysis has been used as 

the recruitment number [e.g., stock_size_1 = as.numeric ((cohortanalysis 

$survivors_L1[1])/1000)]. If no value is provided (stock_size_1 = NA), a default 

recruitment number of 1000 recruits is used for the simulation. The current exploitation rate 

(curr.E) or the current exploitation rate (curr.E) or both the values are required to obtain 

management reference points. However, the user can supply the calculated E (i.e., F/Z) [e.g., 

curr.E = (as.numeric(CC$FM)/CC$Z)] and LC50 values [e.g., curr.Lc = CC$L50] from the 

catch curve analysis to assess the current stock status. The default graphical output from the 

simulation can be turned on (plot = TRUE) or off (plot = FALSE). 

2.9.7. Biological reference points from TB2 

Use the following code to derive the biological reference points from TB2 analysis: 

TB2$df_Es 

When a catch curve analysis derived FM is used with the gear selection assumption 

 

Note: The output demonstrates the effect of changes in length at capture (LC50) or age at capture 

(tc50) on biological management reference points (e.g., fishing mortality rates: F01, Fmax and F05 or 

exploitation rates: E01, Emax and E05). For more information on these and other management 

reference points, refer to Understanding the stock simulation outputs (Management 

Reference Points). 

2.9.8. Current stock status estimates from TB2 

To get current estimates for yield, biomass, spawning stock biomass, SPR, and 

revenue levels, the user needs to provide either only the current exploitation rate (curr.E=) 

or both the current exploitation rate (curr.E=) and the current length at capture 

(curr.Lc=) in the above mentioned TB code. Use the calculated E (i.e., F/Z) [e.g., curr.E = 

(as.numeric(CC$FM)/CC$Z)] and LC50 values [e.g., curr.Lc = CC$L50] from the catch 

curve analysis in TB code as follows: 
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To perform the TB2 analysis under the knife-edge selection assumption, use the following 

codes: 

TB2 <- predict_mod(my_data, type = "ThompBell", FM_change = seq(0,20,0.5), E_change 

= NA, FM_relative=FALSE, Lc_change = seq(LC_min, LC_max, 0.5), stock_size_1 = 

as.numeric((cohortanalysis$ survivors_L1[1])/1000), curr.E= 

(as.numeric(CC$FM)/CC$Z), curr.Lc =CC$L50, s_list = knife_edge, plot = 

TRUE) 

To perform the TB2 analysis under the gear selection assumption, use the following codes: 

TB2 <- predict_mod(my_data, type = "ThompBell", FM_change = seq(0,20,0.5), E_change 

= NA, FM_relative=FALSE, Lc_change = seq(LC_min, LC_max, 0.5), stock_size_1 = 

as.numeric((cohortanalysis$ survivors_L1[1])/1000), curr.E= 

(as.numeric(CC$FM)/CC$Z), curr.Lc =CC$L50, s_list = gear_selection, plot = 

TRUE) 

After entering the values for the current exploitation rate and the current length at capture 

in the TB1 code, use the following code to retrieve the current values: 

TB2$currents 

 

2.9.9. Default graphical output from TB2 

The default graphical output from the simulation can be turned on by mentioning 

plot = TRUE in the TB2 code, which will produce the following graph. 
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Note: The current stock estimates, such as yield (curr.Y), value (curr.V), biomass (curr.B), and 

spawning stock biomass (curr.SSB), obtained from this analysis are not relative estimates per 

recruit. In fact, these are absolute values raised to the entire stock size, as the recruitment number 

from the cohort analysis [stock_size_1 = as.numeric((cohortanalysis$ 

survivors_L1[1])/1000)] has been used for the analysis. The yield, biomass and SSB values have 

been expressed in grams. Divide these values by 1,000,000 to express them in tonnes. The revenue 

(economic value of the yield) should also be divided by 1,000,000,000 to convert it to million INR. 

For more information on these and other management reference points, refer to 

2.11.Understanding the stock simulation outputs (fisheries management reference 

points)’. 

2.9.10. Enhanced visualization of Thompson and Bell prediction model 

Plotting the effect of a change in FM on stock status (TB1 graph) 

The previously mentioned TB1 code when used with plot option set as true 

(plot=true) produces a default graphical output which may not produce a complete 

visualization of all the outputs, especially when revenue outputs (economic value of the 

yield) are plotted on a secondary Y-axis. It happens mainly because of the non-availability 

of adequate space on the right side margin. As a default, R uses a margin setup of 

par(mar=c(5, 4, 4, 2)), which is 5, 4, 4 and 2 lines spaces for the bottom, left, top and right 

side margins, respectively. To accommodate adequate space for the right side margin for 

plotting the extra Y-axis, use the required TB1 code after setting the margin space using the 

following code: 

par(mar=c(5, 4, 4, 7)) 

TB1 <- predict_mod (my_data, type = "ThompBell", FM_change = seq(0,5,0.01), E_change 

= NA, FM_relative = TRUE, stock_size_1 = as.numeric((cohortanalysis$ 

survivors_L1[1])/1000), curr.E= (as.numeric(CC$FM)/CC$Z), curr.Lc =CC$L50, s_list = 

gear_selection, plot = TRUE)  

Default graphical output with 

par(mar=c(5, 4, 4, 2)) 

Better graphical output with 

par(mar=c(5, 4, 4, 7)) 

  

After plotting is over, set the default margin of R using the following code:  

par(mar=c(5, 4, 4, 2)) 
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Including the required SPR threshold as precautionary management 

reference point in TB1 graph 

The default graphical output of the TB1 depicts the 40% SPR level (F04) as the 

default minimum threshold level for the SPR. The actual required threshold level of SPR 

depends on the regenerative/reproductive capacity (resilience) of the species. In order to 

use any other required minimum SPR threshold level, the TB1 output can be manually 

plotted using the following steps. 

Step-1: After completing the TB1 analysis, create a data frame by multiplying the yield, 

biomass, and SSB values generated from TB1 by 0.000001 to express them in tonnes, and 

multiplying the revenue (values) by 0.000000001 to express it in million INR. 

TB1_output<-data.frame(F=TB1$FM_change, E=TB1$E_change, 

Catch=TB1$totC*0.000001, Yield=TB1$totY*0.000001, 

Revenue=TB1$totV*0.000000001, Biomass=TB1$meanB*0.000001, 

SSB=TB1$meanSSB*0.000001, SPR=TB1$SPR) 

Step-2: Prepare a secondary Y-axis for plotting the revenue using the following code: 

scale<-max(TB1_output$Yield)/ max(TB1_output$Revenue) 

Step-3: Plot the TB1 outputs (2D plot) using the following code: 

library(ggplot2) 

fig1<- ggplot(TB1_output) + geom_line(aes(x=F, y=Yield), stat="identity", color="blue", 

linewidth=1)+ geom_line(aes(x=F, y=Biomass), stat="identity", color="red", linewidth=1)+ 

geom_line(aes(x=F, y=SSB), stat="identity", color="darkorange", 

linewidth=1)+geom_line(aes(x=F, y= Revenue*scale), stat="identity", color="darkgreen", 

linewidth=1) + scale_x_continuous(expand = c(0,0), breaks = 

seq(0,max(TB1_output$F),0.5)) + scale_y_continuous(expand = c(0,0), 

sec.axis=sec_axis(~./scale, name="Revenue (million INR)"))+ xlab("F-multiplier") + 

ylab("Yield, Biomass and SSB (tonnes)")+ theme_classic(base_size = 12) 

Step-4: Add management reference points using the following code: 

fig2<- fig1+geom_point(aes(x=TB1$df_Es$Fmax, y=TB1$df_Es$YPR_Fmax*0.000001), 

size=2, shape = 25, fill="blue")+geom_point(aes(x=TB1$df_Es$F01, 

y=TB1$df_Es$YPR_F01*0.000001), size=3, shape = 23, 

fill="blue")+geom_point(aes(x=TB1$df_Es$F05, y=TB1$df_Es$BPR_F05*0.000001), 

size=3, shape = 21, fill="red") 

Step-4: Add the required SSB level as a management reference point using the following 

code: 

First, extract the reference values of F and SSB based on the required SPR percentage (e.g., 

25%) to plot the SSB reference point. 

library(dplyr) 

my_SSB_percentage<-tail (filter (TB1_output, SPR>0.25), n=1) 

Note: The Thompson and Bell analysis (TB1) by default produces an SPR (Spawning Potential 

Ratio, SSB0/SSB) of 40% (i.e., F0.4). The code provided above plots the SPR at the 25% level. 
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However, the user can adjust the SPR threshold by changing the condition (e.g., SPR > 0.30 for a 

30% SPR level, or SPR > 0.35 for a 35% SPR level) in place of the SPR > 0.25 example in the 

above code (Step-4). 

fig3<-fig2+geom_point (aes(x=my_SSB_percentage$F, y=my_SSB_percentage$SSB), 

size=3, shape = 21, fill="darkorange") 

Step-5: Add the maximum revenue level as a management reference point using the 

following code: 

Revenue_max<-filter (TB1_output, Revenue==max(Revenue)) 

fig4<-fig3+geom_point (aes(x= Revenue_max$F, y= Revenue_max$Revenue*scale), 

size=3, shape = 21, fill=" darkgreen") 

Step-6: Add management reference lines using the following code: 

fig5<-fig4+geom_segment(aes(x=0, y= TB1$df_Es$YPR_Fmax*0.000001), xend= 

TB1$df_Es$Fmax, yend= TB1$df_Es$YPR_Fmax*0.000001, linetype="dashed") + 

geom_segment(aes(x= TB1$df_Es$Fmax, y=0.0), xend= TB1$df_Es$Fmax, yend= 

TB1$df_Es$YPR_Fmax*0.000001, linetype="dashed") + geom_segment(aes(x=0, y= 

TB1$df_Es$YPR_F01*0.000001), xend= TB1$df_Es$F01, yend= 

TB1$df_Es$YPR_F01*0.000001, linetype="dashed") + geom_segment(aes(x= 

TB1$df_Es$F01, y=0.0), xend= TB1$df_Es$F01, yend= TB1$df_Es$YPR_F01*0.000001, 

linetype="dashed") + geom_segment(aes(x=0, y= TB1$df_Es$BPR_F05*0.000001), 

xend= TB1$df_Es$F05, yend= TB1$df_Es$BPR_F05*0.000001, linetype="dashed") + 

geom_segment(aes(x= TB1$df_Es$F05, y=0.0), xend= TB1$df_Es$F05, yend= 

TB1$df_Es$BPR_F05*0.000001, linetype="dashed") + geom_segment(aes(x=0, y= 

my_SSB_percentage$SSB), xend= my_SSB_percentage$F, yend= 

my_SSB_percentage$SSB, linetype="dashed") + geom_segment(aes(x= 

my_SSB_percentage$F, y=0.0), xend= my_SSB_percentage$F, yend= 

my_SSB_percentage$SSB, linetype="dashed")+ geom_segment(aes(x=0, y= 

Revenue_max$Revenue*scale), xend= Revenue_max$F, yend= 

Revenue_max$Revenue*scale, linetype="dashed") + geom_segment(aes(x= 

Revenue_max$F, y=0.0), xend= Revenue_max$F, yend= Revenue_max$Revenue*scale, 

linetype="dashed") 

Step-7: Add management reference labels using the following code: 

fig6<-fig5+geom_text(aes(x=TB1$df_Es$Fmax, y=TB1$df_Es$YPR_Fmax*0.000001), 

label="Fmax", size=4, hjust=-0.1, vjust=1.2) + geom_text (aes(x=TB1$df_Es$F01, 

y=TB1$df_Es$YPR_F01*0.000001), label="F01", size=4, hjust=-0.1, vjust=1.2) + 

geom_text(aes(x=TB1$df_Es$F05, y=TB1$df_Es$BPR_F05*0.000001), label="F05", 

size=4, hjust=-0.1, vjust=1.2) + geom_text(aes(x=my_SSB_percentage$F, 

y=my_SSB_percentage$SSB), label="F025", size=4, hjust=-0.1, vjust=1.2) + 

geom_text(aes(x=Revenue_max$F, y=Revenue_max$Revenue*scale), label="Fmey", 

size=4, hjust=-0.1, vjust=1.2) 

Note: Change the label (e.g., label="F025") in the above code (Step-7) based on the defined SPR 

threshold level. For example, for a 30% SPR level, use label="F030"; for a 35% SPR level, use 

label="F035".  
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Plotting the effect of change in FM and LC on stock status (TB2 graph) 

The previously mentioned TB2 code, when used with plot option set as true (plot=true) 

produces a default graphical output which depicts only the yield isopleth. 

TB2 <- predict_mod(my_data, type = "ThompBell", FM_change = seq(0,20,0.5), 

FM_relative=FALSE, Lc_change = seq(LC_min, LC_max, 0.5), stock_size_1 = 

as.numeric((cohortanalysis$ survivors_L1[1])/1000), curr.E= 

(as.numeric(CC$FM)/CC$Z), curr.Lc =CC$L50, s_list = gear_selection, plot = TRUE) 

 



Tropical fish stock assessment using R 

 

Page |83 

Once the TB2 outputs are generated, the yield isopleths can also be plotted using the 

following code: 

plot(TB2, xaxis1 = "FM", yaxis_iso = "Lc", yaxis1 = "Y_R", mark = TRUE, identify = 

FALSE) 

Once the TB2 outputs are generated, the biomass isopleths can be ploted using the 

following code: 

plot(TB2, xaxis1 = "FM", yaxis_iso = "Lc", yaxis1 = "B_R", mark = TRUE, identify = 

FALSE) 

 

Note: Identity can be set on (identity=TRUE) in the above codes to find out the values of LC and 

FM for any point on the graph just by clicking on it. 

Enhanced Yield Isopleth visualization from TB2 (2D plot) 

Step-1: Prepare a new matrix (Yield_change) for the change in the yield in response to the 

change in FM and LC from the Thompson and Bell prediction model (TB2). To convert the 

yield in ‘gram’ to “tonnes” multiply with 0.000001. 

Yield_change<- as.matrix((TB2$mat_FM_Lc_com.Y)* 0.000001) 

Step-2: Arrange the data for plotting using the following code: 

library(reshape2) 

Yield_isopleth_data <-melt(Yield_change, id.vars=c("Var1", "Var2"), 

measure.vars="value") 

names(Yield_isopleth_data)<-c("F", "LC", "Yield") 

Step-3: Plot the 2D plot using the following code: 

library(plotly) 
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fig<- plot_ly(Yield_isopleth_data, x=~ Yield_isopleth_data$F, y=~ 

Yield_isopleth_data$LC, z=~ Yield_isopleth_data$Yield) %>% add_trace(type="contour", 

contours = list(showlabels = TRUE, labelfont = list(size = 12, color = "white")), colorscale 

= "Jet", colorbar=list(title= list(text="Yield (tonnes)", font=list(size="14", family="Times 

New Roman"))))%>% layout(xaxis=list(title= list(text= "F", font=list(size="14", 

family="Times New Roman"))), yaxis=list(title= list(text= "LC (cm)", font=list(size="14", 

family="Times New Roman")))) 

Step-4: Add current reference lines using the following code: 

vline <- function(x = 0, color = "red") { 

list(type = "line", y0 = 0, y1 = 1, yref = "paper", x0 = x, x1 = x, line = list(color = "yellow", 

dash="dash")) 

} 

hline <- function(y = 0, color = "blue") { 

list(type = "line", x0 = 0, x1 = 1, xref = "paper", y0 = y, y1 = y, line = list(color = "yellow", 

dash="dash")) 

}  

#Show the catch curve analysis derived FM and LC on the plot using the following code: 

fig%>%layout(shapes = list(vline(as.numeric(CC$FM)), hline(CC$L50))) 

 

Note: The colour gradient can be customized by changing the colorscale = "Jet" to other colour scales 

like “Viridis”, “Rainbow”, “RdBu” in place of “Jet”. 

Enhanced Yield Isopleth visualization from TB2 (3D plot) 

Step-1: Prepare a new matrix (Yield_change) for the change in the yield in response to the 

change in FM and LC from the Thompson and Bell prediction model (TB2). To convert the 

yield in ‘gram’ to “tonnes” multiply with 0.000001. 



Tropical fish stock assessment using R 

 

Page |85 

Yield_change<- as.matrix((TB2$mat_FM_Lc_com.Y)* 0.000001) 

Step-2: Plot the 3D plot using the following code: 

library(plotly) 

fig<- plot_ly(z= Yield_change, x = ~ as.numeric(colnames(Yield_change)), y = ~ 

as.numeric(rownames(Yield_change)), type = "surface", opacity = 1.0, colorscale = "Jet", 

colorbar=list(title= list(text= "Yield (tonnes)", font=list(size="14", family="Times New 

Roman"))))%>% layout(scene=list(xaxis=list(autorange = "reversed", nticks = 10, 

tickangle= 0, linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="LC50 

(cm)", font=list(size="14", family="Times New Roman"))), yaxis=list(nticks = 10, 

tickangle= 0, linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="F", 

font=list(size="14", family="Times New Roman"))), zaxis=list(nticks = 10, tickangle= 0, 

linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="Yield (tonnes)", 

font=list(size="14", family="Times New Roman"))))) 

 

 

Note: The colour gradient can be customized by changing the colorscale = "Jet" to other colour scales 

like “Viridis”, “Rainbow”, “RdBu” in place of “Jet”. 

Enhanced Biomass Isopleth Visualization from TB2 (2D plot) 

Step-1: Prepare a new matrix (Biomass_change) for the change in the biomass in response 

to the change in FM and LC from the Thompson and Bell prediction model (TB2). To 

convert the yield in ‘gram’ to “tonnes” multiply with 0.000001. 

Biomass_change<- as.matrix((TB2$mat_FM_Lc_com.B)* 0.000001) 
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Step-2: Arrange the data for plotting using the following code: 

library(reshape2) 

Biomass_isopleth_data <-melt(Biomass_change, id.vars=c("Var1", "Var2"), 

measure.vars="value") 

names(Biomass_isopleth_data)<-c("F", "LC", "Biomass") 

Step-3: Plot the 2D plot using the following code: 

fig<- plot_ly(Biomass_isopleth_data, x=~Biomass_isopleth_data$F, 

y=~Biomass_isopleth_data$LC, z=~Biomass_isopleth_data$Biomass) %>% 

add_trace(type="contour", contours = list(showlabels = TRUE, labelfont = list(size = 12, 

color = "white")), colorscale = "Jet", colorbar=list(title= list(text="Biomass (tonnes)", 

font=list(size="14", family="Times New Roman"))))%>% layout(xaxis=list(title= list(text= 

"F", font=list(size="14", family="Times New Roman"))), yaxis=list(title= list(text= "LC50 

(cm)", font=list(size="14", family="Times New Roman")))) 

Step-4: Add current reference lines using the following code: 

vline <- function(x = 0, color = "red") { 

list(type = "line", y0 = 0, y1 = 1, yref = "paper", x0 = x, x1 = x, line = list(color = "yellow", 

dash="dash")) 

} 

hline <- function(y = 0, color = "blue") { 

list(type = "line", x0 = 0, x1 = 1, xref = "paper", y0 = y, y1 = y, line = list(color = "yellow", 

dash="dash")) 

}  

#Show the catch curve analysis derived FM and LC on the plot using the following code: 

fig%>%layout(shapes = list(vline(as.numeric(CC$FM)), hline(CC$L50))) 
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Note: The colour gradient can be customized by changing the colorscale = "Jet" to other colour scales 

like “Viridis”, “Rainbow”, “RdBu” in place of “Jet”. 

Enhanced Biomass Isopleth Visualization from TB2 (3D plot) 

Step-1: Prepare a new matrix (Biomass_change) for the change in the biomass in response 

to the change in FM and LC from the Thompson and Bell prediction model (TB2). To 

convert the yield in ‘gram’ to “tonnes” multiply with 0.000001. 

Biomass_change<- as.matrix((TB2$mat_FM_Lc_com.B)* 0.000001) 

Step-2: Plot the 3D plot using the following code: 

library(plotly) 

fig<- plot_ly(z= Biomass_change, x = ~ as.numeric(colnames(Biomass_change)), y = ~ 

as.numeric(rownames(Biomass_change)), type = "surface", opacity = 1.0, colorscale = 

"Jet", colorbar=list(title= list(text= "Biomass (tonnes)", font=list(size="14", family="Times 

New Roman"))))%>% layout(scene=list(xaxis=list(autorange = "reversed", nticks = 10, 

tickangle= 0, linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="LC50 

(cm)", font=list(size="14", family="Times New Roman"))), yaxis=list(nticks = 10, 

tickangle= 0, linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="F", 

font=list(size="14", family="Times New Roman"))), zaxis=list(nticks = 10, tickangle= 0, 

linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="Biomass (tonnes)", 

font=list(size="14", family="Times New Roman"))))) 

 

 

Note: The colour gradient can be customized by changing the colorscale = "Jet" to other colour scales 

like “Viridis”, “Rainbow”, “RdBu” in place of “Jet”. 
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2.10. Stock simulation by Beverton and Holt’s yield per recuit model 

(BHYPR) 

Introduction 

The yield per recuit model (Y/R) was originally developed by Beverton and Holt 

(1957) as an age-structured model for temperate fisheries. Later, Beverton and Holt (1964) 

introduced a length-structured version of the model, i.e., relative yield per recuit model 

(Y’/R) to address the data-poor fisheries of the tropical region. The computational aspects 

of the model were thoroughly interpreted by Ricker (1975), and a practical extension was 

later developed by Pauly and Soriano (1986). 

The model assumes that all fish in a cohort are suddenly recruited to the fishing 

grounds at the same time (knife-edge recruitment) when they reach the age-at-recruitment 

(tr, also referred to as tp in the original description of the authors). Until recruitment, fish 

experience only natural mortality (M). After recruitment, at a specific age, the cohort is 

assumed to be suddenly exposed to fishing mortality (F) (knife-edge selection), which 

remains constant for the rest of their lives. This age is called the age-at-first capture (tc, also 

referred to as tp’ in the original description of the authors). Fish exit the fishery at a later 

maximum age, known as the age-at-derecruitment (tmax, also called tλ in the original 

description of the authors). The period from tc to tmax (tmax - tc, or tλ - tp’ in the original 

description of the authors) is referred to as the exploited phase (exploited lifespan), while 

the period from t0 to tc (tc - t0, or tp’ - t0 in the original description of the authors) is known 

as the unexploited phase (unexploited lifespan). Within the unexploited phase, the period 

from tr to tc, i.e., tc – tr (or tp’- tp in the original description of the authors)—is called the pre-

exploited phase. 

In the case of temperate fish, the pre-exploited phase is usually longer, spanning 

several years, whereas in the case of tropical fish, which are often caught soon after 

recruitment, tc is typically equal to tr (i.e., tp = tp’). The period from t0 to tmax (tmax - t0, or tλ - 

t0 in the original description of the authors) is referred to as the entire lifespan of fish. 

 Pre-recruit 

phase 
Post-recruit phase 

 

    Pre-exploited 

phase 
Exploited phase 

 

t0  tr 

(tp) 

 tc                                    

(tp’) 

 tmax 

(tλ) 

Age-based yield per recruit model and biomass per recruit model 

As the fish in a cohort experience only natural mortality (M) between the ages of tr and tc, 

the number of survivors (Ntc) at age tc can be expressed as follows: 

𝑁𝑡𝑐
= 𝑅 × 𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡𝑟) 

After tc, as the fish in a cohort experience fishing mortality (F) along with natural mortality 

(M) (i.e., total mortality Z=F+M), the number of survivors (Nt ) at a later age (t) can be 

expressed as: 
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𝑁𝑡 = 𝑁𝑡𝑐
× 𝑒𝑥𝑝−(𝐹+𝑀)(𝑡−𝑡𝑐) = 𝑁𝑡𝑐 × 𝑒𝑥𝑝−𝑍(𝑡−𝑡𝑐)  

Similarly, the number of fish caught between a very small time interval (t,t+Δt) can be 

calculated using Baranov’s catch equation as follows: 

𝐶𝑡,𝑡+∆𝑡 = 𝑁𝑡 ×
𝐹

𝑍
× (1 − 𝑒𝑥𝑝𝑍×∆𝑡) 

However, when the time interval (Δt) is very small (e.g., Δt=t/100, or t/1000), the 

Baranov’s catch equation can be simplified as follows: 

𝐶𝑡,𝑡+∆𝑡 = 𝑁𝑡 × 𝐹 × ∆𝑡 = 𝑁𝑡𝑐
× 𝑒𝑥𝑝−𝑍(𝑡−𝑡𝑐) × 𝐹 × ∆𝑡 

The corresponding yield can be calculated by multiplying the number of fish caught by the 

mean body weight (wt), which is assumed to remain constant over the small time interval. 

The corresponding yield is calculated as follows: 

𝑌𝑡,𝑡+∆𝑡 = 𝐶𝑡,𝑡+∆𝑡 × 𝑤𝑡 = 𝑁𝑡𝑐
× 𝑒𝑥𝑝−𝑍(𝑡−𝑡𝑐) × 𝐹 × ∆𝑡 × 𝑤𝑡  

In the above equation, the mean weight (wt) of the age group can be calculated using the 

weight-form of the von Bertalanffy growth equation (VBGF), assuming isometric growth 

(b=3), as follows: 

𝑤𝑡 = 𝑊∞ × (1 − 𝑒𝑥𝑝−𝐾(𝑡−𝑡0))
3
 

The above equation can be further expanded as follows: 

𝑤𝑡 = 𝑊∞ × (1 − 3 × 𝑒𝑥𝑝−𝐾(𝑡−𝑡0) + 3 × 𝑒𝑥𝑝−2𝐾(𝑡−𝑡0)−𝑒𝑥𝑝−3𝐾(𝑡−𝑡0)) 

Substituting wt  into the above equation will produce the following equation: 

𝑌𝑡,𝑡+∆𝑡 = 𝑁𝑡𝑐
× 𝑒𝑥𝑝−𝑍(𝑡−𝑡𝑐) × 𝐹 × ∆𝑡 × 𝑤𝑡

= 𝑁𝑡𝑐
× 𝑒𝑥𝑝−𝑍(𝑡−𝑡𝑐) × 𝐹 × ∆𝑡 × 𝑊∞

× (1 − 3 × 𝑒𝑥𝑝−𝐾(𝑡−𝑡0) + 3 × 𝑒𝑥𝑝−2𝐾(𝑡−𝑡0)−𝑒𝑥𝑝−3𝐾(𝑡−𝑡0)) 

To find the total yield over the exploited lifespan of the fish (from tc to tmax, the age at which 

fish are derecruited from the fishery), the yield-per-age over the exploited lifespan 

(exploitation phase from tc to the maximum age tmax) can be integrated as follows: 

𝑌 = 𝑁𝑡𝑐
× 𝐹 × 𝑊∞ × ∫ 𝑒𝑥𝑝−𝑍(𝑡−𝑡𝑐) × (1 − 3 × 𝑒𝑥𝑝−𝐾(𝑡−𝑡0) + 3 × 𝑒𝑥𝑝−2𝐾(𝑡−𝑡0)−𝑒𝑥𝑝−3𝐾(𝑡−𝑡0)) × 𝑑𝑡

𝑡𝑚𝑎𝑥

𝑡𝑐

 

Solving the integral will produce the following equation: 

𝑌 = 𝑁𝑡𝑐
× 𝐹 × 𝑊∞ × [

1 − 𝑒𝑥𝑝−𝑍(𝑡𝑚𝑎𝑥−𝑡𝑐)

𝑍
−

3 × 𝑒𝑥𝑝−𝐾(𝑡𝑐−𝑡0) × (1 − 𝑒𝑥𝑝−(𝑍+𝐾)(𝑡𝑚𝑎𝑥−𝑡𝑐))

𝑍 + 𝐾

+
3 × 𝑒𝑥𝑝−2𝐾(𝑡𝑐−𝑡0) × (1 − 𝑒𝑥𝑝−(𝑍+2𝐾)(𝑡𝑚𝑎𝑥−𝑡𝑐))

𝑍 + 2𝐾

−
𝑒𝑥𝑝−3𝐾(𝑡𝑐−𝑡0) × (1 − 𝑒𝑥𝑝−(𝑍+3𝐾)(𝑡𝑚𝑎𝑥−𝑡𝑐))

𝑍 + 3𝐾
] 

The value of the derecruitment term containing tmax−tc in the above equation can be 

considered close to unity by assuming tmax=∞, especially when Z is high (Ricker, 1975; Pauly 

and Soriano, 1986), and can be ignored. This further simplifies the above equation as 

follows: 

𝑌 = 𝑁𝑡𝑐
× 𝐹 × 𝑊∞ × [

1

𝑍
−

3 × 𝑒𝑥𝑝−𝐾(𝑡𝑐−𝑡0)

𝑍 + 𝐾
+

3 × 𝑒𝑥𝑝−2𝐾(𝑡𝑐−𝑡0)

𝑍 + 2𝐾
−

𝑒𝑥𝑝−3𝐾(𝑡𝑐−𝑡0)

𝑍 + 3𝐾
] 

Now, substituting the Ntc with the R in the above equation allows it to be rewritten as: 
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𝑌 = 𝑅 × 𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡𝑟) × 𝐹 × 𝑊∞ × [
1

𝑍
−

3 × 𝑒𝑥𝑝−𝐾(𝑡𝑐−𝑡0)

𝑍 + 𝐾
+

3 × 𝑒𝑥𝑝−2𝐾(𝑡𝑐−𝑡0)

𝑍 + 2𝐾
−

𝑒𝑥𝑝−3𝐾(𝑡𝑐−𝑡0)

𝑍 + 3𝐾
] 

Finally, the yield per recruit for the exploited lifespan of the fish can be derived as: 

𝑌

𝑅
= 𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡𝑟) × 𝐹 × 𝑊∞ × [

1

𝑍
−

3 × 𝑒𝑥𝑝−𝐾(𝑡𝑐−𝑡0)

𝑍 + 𝐾
+

3 × 𝑒𝑥𝑝−2𝐾(𝑡𝑐−𝑡0)

𝑍 + 2𝐾
−

𝑒𝑥𝑝−3𝐾(𝑡𝑐−𝑡0)

𝑍 + 3𝐾
] 

The model can be further shortened by using the S for the term exp-K(tc-t0) as follows: 

𝑌

𝑅
= 𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡𝑟) × 𝐹 × 𝑊∞ × [

1

𝑍
−

3 × 𝑆

𝑍 + 𝐾
+

3 × 𝑆2

𝑍 + 2𝐾
−

𝑆3

𝑍 + 3𝐾
] 

The biomass per recruit (B/R) can be derived from the yield per recruit (Y/R) by removing 

the fishing mortality from the equation: 

𝐵

𝑅
= 𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡𝑟) × 𝑊∞ × [

1

𝑍
−

3 × 𝑆

𝑍 + 𝐾
+

3 × 𝑆2

𝑍 + 2𝐾
−

𝑆3

𝑍 + 3𝐾
] 

Length-based yield per recruit model and biomass per recruit model 

The age terms in the above mentioned Y/R can be converted to the length-terms to develop 

the length-based yield per recruit model and biomass per recruit model. 

The VBGF equation can be rearranged to solve the term S, i.e., exp-K(tc-t0) as follows: 

𝐿𝑐 = 𝐿∞ × (1 − 𝑒𝑥𝑝−𝐾(𝑡𝑐−𝑡0)) which can be solved to 1 −
𝐿𝑐

𝐿∞

= 𝑒𝑥𝑝−𝐾(𝑡𝑐−𝑡0) 

Using the length-based form of the term exp-K(tc-t0), the age-based Y/R can be rewritten as: 

𝑌

𝑅
= 𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡𝑟) × 𝐹 × 𝑊∞ × [

1

𝑍
−

3 × (1 −
𝐿𝑐

𝐿∞
)

𝑍 + 𝐾
+

3 × (1 −
𝐿𝑐

𝐿∞
)
2

𝑍 + 2𝐾
−

(1 −
𝐿𝑐

𝐿∞
)
3

𝑍 + 3𝐾
] 

Taking 1/Z as a common factor from the terms after W∞, the equation can be rewritten as:  

𝑌

𝑅
= 𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡𝑟) × 𝐹 × 𝑊∞ ×

1

𝑍
× [1 −

3 × (1 −
𝐿𝑐

𝐿∞
)

(1 +
𝐾
𝑍
)

+
3 × (1 −

𝐿𝑐

𝐿∞
)

2

(1 +
2 × 𝐾

𝑍
)

−
(1 −

𝐿𝑐

𝐿∞
)
3

(1 +
3 × 𝐾

𝑍
)
] 

The term exp-M(tc-tr) in the above equation can be expanded as follows: 

𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡𝑟) = 𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡0−𝑡𝑟+𝑡𝑜) = 𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡0)+𝑀(𝑡𝑟−𝑡𝑜) =
𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡0)

𝑒𝑥𝑝−𝑀(𝑡𝑟−𝑡0)
 

The above expanded form of the term exp-M(tc-tr) can be substituted into the Y/R equation as 

follows: 

𝑌

𝑅
=

𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡0)

𝑒𝑥𝑝−𝑀(𝑡𝑟−𝑡0)
× 𝐹 × 𝑊∞ ×

1

𝑍
× [1 −

3 × (1 −
𝐿𝑐

𝐿∞
)

(1 +
𝐾
𝑍
)

+
3 × (1 −

𝐿𝑐

𝐿∞
)
2

(1 +
2 × 𝐾

𝑍
)

−
(1 −

𝐿𝑐

𝐿∞
)
3

(1 +
3 × 𝐾

𝑍
)
] 

The age-based form of the term exp-M(tc-t0) in the above equation can be converted to the 

length-based form using the VBGF as follows: 

𝐿𝑐 = 𝐿∞ × (1 − 𝑒𝑥𝑝−𝐾(𝑡𝑐−𝑡0)) , which can be solved to for tc − t0 as follows 

𝑡𝑐 − 𝑡0 = −
1

K
× ln (1 −

𝐿𝑐

𝐿∞
) = 𝑒𝑥𝑝−𝐾(𝑡𝑐−𝑡0) 
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Multiplying the term exp-M on both the side will produce the following equation: 

𝑒𝑥𝑝−𝑀(𝑡𝑐−𝑡0) =𝑒𝑥𝑝
−𝑀×(−

1
𝐾

)×𝑙𝑛(1−
𝐿𝑐
𝐿∞

)
=(1 −

𝐿𝑐

𝐿∞
)

𝑀
𝐾

 

The length-based form of term exp-M(tc-t0) can be substituted into the Y/R equation as 

follows: 

𝑌

𝑅
=

(1 −
𝐿𝑐

𝐿∞
)

𝑀
𝐾

𝒆𝒙𝒑−𝑴(𝒕𝒓−𝒕𝟎)
× 𝐹 × 𝑾∞ ×

1

𝑍
× [1 −

3 × (1 −
𝐿𝑐

𝐿∞
)

(1 +
𝐾
𝑍
)

+
3 × (1 −

𝐿𝑐

𝐿∞
)
2

(1 +
2 × 𝐾

𝑍
)

−
(1 −

𝐿𝑐

𝐿∞
)

3

(1 +
3 × 𝐾

𝑍
)
] 

Using a similar length-based transformation of the term exp-M(tr-t0), a purely length-based 

form of the above equation can be expressed as: 

𝑌

𝑅
=

(1 −
𝐿𝑐

𝐿∞
)

𝑀
𝐾

(𝟏 −
𝑳𝒓

𝑳∞
)

𝑴
𝑲

× 𝐹 × 𝑾∞ ×
1

𝑍
× [1 −

3 × (1 −
𝐿𝑐

𝐿∞
)

(1 +
𝐾
𝑍

)
+

3 × (1 −
𝐿𝑐

𝐿∞
)
2

(1 +
2 × 𝐾

𝑍
)

−
(1 −

𝐿𝑐

𝐿∞
)
3

(1 +
3 × 𝐾

𝑍
)
] 

The above equation is a length-based form of the Beverton and Holt yield per recruitment 

model. This length-based Y/R was further refined by Beverton and Holt (1964) to develop a 

length-based relative yield per recruit model (Y′/R) for tropical data-limited conditions. 

Now, by multiplying the above equation (Y/R) with the term exp-M(tr-t0) or [1-(Lr/L∞)]M/K, 

and then dividing by W∞, a new equation is produced, which is known as the Beverton and 

Holt relative yield per recruit model (Y′/R). 

𝑌′

𝑅
=

𝑌

𝑅
×

𝒆𝒙𝒑−𝑴(𝒕𝒓−𝒕𝟎)

𝑾∞

=
𝑌

𝑅
×

(𝟏 −
𝑳𝒓

𝑳∞
)

𝑴
𝑲

𝑾∞

 

𝑌′

𝑅
= (1 −

𝐿𝑐

𝐿∞

)

𝑀
𝐾

×
𝐹

𝑍
× [1 −

3 × (1 −
𝐿𝑐

𝐿∞
)

(1 +
𝐾
𝑍
)

+
3 × (1 −

𝐿𝑐

𝐿∞
)

2

(1 +
2 × 𝐾

𝑍
)

−
(1 −

𝐿𝑐

𝐿∞
)

3

(1 +
3 × 𝐾

𝑍
)
] 

The above equation for Y′/R can be rewritten using the term C for Lc/L∞ and E for F/Z. Sometimes, 

K/Z is also expressed as (1−E)/(M/K). Including these terms will change the equation as follows: 

𝑌′

𝑅
= (1 − 𝐶)

𝑀
𝐾 × 𝐸 ×

[
 
 
 
 
 
 

1 −
3 × (1 − 𝐶)

(1 +
1 − 𝐸

𝑀
𝐾

)

+
3 × (1 − 𝐶)2

(1 +
2 × (1 − 𝐸)

𝑀
𝐾

)

−
(1 − 𝐶)3

(1 +
3 × (1 − 𝐸)

𝑀
𝐾

)

]
 
 
 
 
 
 

 

The relative biomass per recruit (B’/R) can also be expressed using similar modifications to the 

biomass per recruit (B/R) model as follows: 

𝐵′

𝑅
=

𝐵

𝑅
×

𝒆𝒙𝒑−𝑴(𝒕𝒓−𝒕𝟎)

𝑾∞

=
𝐵

𝑅
×

(𝟏 −
𝑳𝒓

𝑳∞
)

𝑴
𝑲

𝑾∞

 

The relative biomass per recruit (B′/R) can also be calculated from the relative yield per 

recruit model (Y′/R) by dividing the latter by F, as follows: 

𝐵′

𝑅
=

𝑌′

𝑅
×

1

𝐹
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In the Beverton and Holt’s prediction model (BHYPR) of TropFishR, the effect of the 

relative fishing mortality rate on the yield and biomass per recruit cannot be determined by 

setting the FM_relative to TRUE. The model simulates the population indices (yield and 

biomass) in response to the absolute changes in the fishing mortality rate only. It will 

provide stock estimates (yield and biomass) in terms of yield per recruit (Y/R) and biomass 

per recruit (B/R), rather than absolute values, even if the recruitment number from the 

cohort analysis is provided in the ‘stock_size_1 =’ portion of the code.  

Beverton and Holt’s yield per recuit model: R Implementation 

2.10.1. Requirement for Beverton and Holt’s yield per recruit model 

(BHYPR) 

LFQ file 

A length-frequency data file (LFQ) is required for the Beverton and Holt’s yield per 

recruit (BHYPR) analysis (e.g., my_data). Refer to the previously mentioned steps in ‘2.1.2 

and 2.1.5. Creating a length frequency file (LFQ) on R’ section to create a LFQ file 

if not created earlier. 

Essential parameters 

Growth and mortality parameters 

The Beverton and Holt’s yield per recruit (BHYPR) analysis requires growth 

parameters (L∞ and K) and the natural mortality rate (M). If these essential parameters are 

not already assigned, use the following code to add them to the LFQ file (e.g., my_data): 

my_data$Linf<-13.95 

my_data $K<-1.71 

my_data$M<-2.75 

LWR coefficients 

Beverton and Holt’s yield per recruit (BHYPR) analysis requires LWR coefficients 

(a, and b). To derive the LWR coefficients, refer to ‘2.12.Length–Weight Relationship 

(LWR)’ section. Assign the coefficients ‘a’, and ‘b’ to the LFQ file (e.g., my_data) using the 

following codes:   

my_data $a <- 0.0064 

my_data $b <- 3.0059 

Maturity parameters 

Beverton and Holt’s yield per recruit (BHYPR) analysis requires maturity 

parameters (LM50 and WM50). To derive the length and weight at maturity (LM50 and 

WM50) refer to ‘2.13.Length at Maturity (LM50)’ section. Assign the LM50, WM50 

values to the LFQ file (e.g., my_data) using the following codes: 

my_data $Lmat <- 8.24 

my_data$wmat <- my_data$a*(my_data$Lmat^my_data$b) 
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2.10.2. Simulating the effect of changes in FM on the stock status 

(BHYPR1) 

This approach is used to simulate the effect of changes in fishing mortality rate 

(FM) on the stock status. 

Step-1: Assign the additional parameters for BHYPR1 

The Beverton and Holt yield per recruit (BHYPR) analysis requires two additional 

parameters: (1) the length at recruitment (Lr) which is the mid-length of the first (smallest) 

length class, and (2) the length at first capture (Lc) also known as LC50 (the length at which 

fish have a 50% probability to be caught). The LC50 values from the catch curve analysis are 

often used in the BHYPR analysis.  

First, perform the catch curve analysis to get the LC50 using the following code: 

CC <- catchCurve(mean_catch_vector, catch_columns = c(1), calc_ogive = TRUE) 

Assign the LC50 derived from the catch curve analysis to the LFQ file (e.g., my_data) using 

the following code: 

my_data $Lc <- CC$L50 

Note: This is a very crucial step in the analysis. The LC50 can be derived either for a specific 

combination of years or a specific year. The above example shows the procedure for deriving LC50 

for a specific combination of years (e.g., all available years using mean_catch_vec) using the 

length converted catch curve analysis. Alternatively, the user can derive LC50 for any specified 

year using the catch_vec in the length converted catch curve analysis by specifying the serial 

number of the required year in the catch column of the catch curve code (catch_columns =). To 

perform catch curve analysis for the required combination of years, refer to the ‘2.7.2.Catch 

curve analysis for a combination of years using multiyear mean catch data’. To 

perform catch curve analysis for the required year, refer to the ‘2.7.3.Catch curve analysis for 

a specific year’. 

Assign the length at recruitment (Lr) to the LFQ file (e.g., my_data) using the following 

code: 

my_data $Lr <- as.numeric(min(my_data $midLengths)) 

Step-2: Perform BHYPR1 under the knife-edge selection assumption 

To ensure the function follows the knife-edge selection assumption instead of the 

gear selectivity assumption, use the BHYPR code providing no selectivity information 

(s_list = NA).  

BHYPR1 <- predict_mod (my_data, type = "ypr", FM_change = seq(0,20,0.1), 

E_change = NA, curr.E = NA, curr.Lc = NA, s_list = NA, plot = TRUE) 

Step-3: Perform BHYPR1 under the gear selection assumption 

Provide selectivity information (s_list = selectivity_list) in the BHYPR code to 

ensure the function follows the gear selectivity assumption instead of the knife-edge 

selection assumption. Prepare a gear selection list (gear_selection) using the LC50 and LC75 
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information derived from a catch curve analysis. First, perform the catch curve analysis to 

get the gear selectivity information using the following code: 

CC <- catchCurve(mean_catch_vector, catch_columns = c(1), calc_ogive = TRUE) 

Then, prepare a gear selection list using the following code: 

gear_selection <- list(selecType = "trawl_ogive", L50 = CC$L50, L75 = CC$L75) 

Note: This is a very crucial step in the analysis. The gear selection list can be derived either for a 

specific combination of years or a specific year. The above example shows the procedure for 

deriving gear selection list for a specific combination of years (e.g., all available years using 

mean_catch_vec) using the length converted catch curve analysis. Alternatively, the user can 

derive the gear selection list for any specified year using the catch_vec in the length converted 

catch curve analysis by specifying the serial number of the required year in the catch column of the 

catch curve code (catch_columns = ). To perform catch curve analysis for the required 

combination of years, refer to the ‘2.7.2.Catch curve analysis for a combination of years 

using multiyear mean catch data’. To perform catch curve analysis for the required year, 

refer to the ‘2.7.3.Catch curve analysis for a specific year’. 

To perform the BHYPR1 analysis under the gear selection assumption, use the following 

code: 

BHYPR1 <- predict_mod (my_data, type = "ypr", FM_change = seq(0,20,0.01), 

E_change = NA, curr.E = NA, curr.Lc = NA, s_list = gear_selection, plot = TRUE) 

Note: The stock estimates, i.e., yield per recruit (Y/R), biomass per recruit (B/R), relative yield 

per recruit (Y’/R), relative biomass per recruit (B’/R) and management reference points derived 

under knife-edge selection assumption may differ from those under gear selection assumption. In 

the above BHYPR1 codes, type represents the Beverton and Holt YPR analysis (type = "ypr"). 

For the Thompson and Bell analysis, the user can use type = "ThompBell", after providing the 

required parameters for the analysis. The FM range, over which the effect of a change in the 

fishing mortality rates (FM) on stock status is evaluated, is supplied in FM_change [e.g., 

FM_change = seq(0, 20, 0.5)]. The FM range can not be relative in Beverton and Holt YPR 

analysis and therefore only the absolute (FM_relative = FALSE) is allowed for the simulation. 

In this example, the FM changes are in absolute term (FM_relative = FALSE), simulating the 

effect of changes in FM (absolute F, not the F-multiplier) from 0 to 20 with a gradual increase of 

0.5 (step size 0.5 shows a sequential FM change of 0, 0.5, 1.0, …, 19.5, and 20.0). The user can also 

use an equivalent range of absolute exploitation rates (E_change) instead of the fishing mortality 

rate (FM_change) to simulate the same effect. However, if E_change is used instead of 

FM_change, the range is capped at E = 0.9, as higher values of E correspond to unrealistically 

high fishing mortality rates. The recruitment number, if supplied with stock_size_1, does not 

work in Beverton and Holt YPR analysis and, therefore, the analysis provides stock simulation in a 

relative Y/R and B/R format. The current exploitation rate (curr.E) and the current length at 

capture (curr.Lc) are not required to derive management reference points. However, the user 

must supply both the calculated E (i.e., F/Z) [e.g., curr.E = (as.numeric(CC$FM)/CC$Z)] and 

LC50 values [e.g., curr.Lc = CC$L50] from the catch curve analysis to assess the current stock 

status. The default graphical output from the simulation can be turned on (plot = TRUE) or off 

(plot = FALSE). 
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2.10.3. Biological reference points from BHYPR1 

Use the following code to get the biological reference points from BHYPR1. 

BHYPR1$df_Es 

e.g., when the gear selection assumption is used 

 

Note: The management reference points may differ under these two different assumptions. For 

more information on these and other management reference points, refer to ‘2.11.Understanding 

the stock simulation outputs (fisheries management reference points) ’. 

2.10.4. Current stock status estimates from BHYPR1 

To get current values for stock estimates (i.e., yield per recruit (Y/R), biomass per 

recruit (B/R), relative yield per recruit (Y’/R), and relative biomass per recruit (B’/R)), user 

need to provide both the current exploitation rate (curr.E=) and the current length at 

capture (curr.Lc=) in the above mentioned BHYPR code. Use the calculated E (i.e., F/Z) 

[e.g., curr.E= (as.numeric(CC$FM)/CC$Z)] and LC50 values [e.g., curr.Lc =CC$L50] from 

the catch curve analysis in BHYPR1 code. To perform the BHYPR1 analysis under the knife-

edge selection assumption, use the following codes: 

BHYPR1 <- predict_mod (my_data, type = "ypr", FM_change = seq(0,20,0.1), E_change = 

NA, curr.E= (as.numeric(CC$FM)/CC$Z), curr.Lc =CC$L50, s_list = NA, plot = 

TRUE) 

To perform the BHYPR1 analysis under the gear selection assumption, use the following 

codes: 

BHYPR1 <- predict_mod (my_data, type = "ypr", FM_change = seq(0,20,0.01), curr.E= 

(as.numeric(CC$FM)/CC$Z), curr.Lc =CC$L50, s_list = gear_selection, plot = 

TRUE) 

After entering the values for the current exploitation rate and the current length at capture 

in the BHYPR1 code, use the following code to retrieve the current values:  

BHYPR1$currents 

e.g., when the gear selection assumption is used 

 

Note: The stock estimates, i.e., yield per recruit (Y/R), biomass per recruit (B/R), relative yield per 

recruit (Y’/R) and relative biomass per recruit (B’/R) may differ under these two different 

assumptions. The yield (YPR) and biomass (BPR) values are the values per recruit expressed in 

grams. 

2.10.5. Default graphical output from BHYPR1 

The default graphical output from the simulation can be turned on by mentioning 

plot = TRUE in the BHYPR1 code, which will produce the following graph. 
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2.10.6. Simulating the combined effect of changes in FM and LC50 on 

stock status (BHYPR2) 

It is used to simulate the combined effect of simultaneous changes in fishing 

mortality rate (FM) along with the length at capture (LC50) on the stock status. 

Step-1: Define the LC (length at capture) range 

Define the range of LC (length at capture) over which the effect is evaluated. 

LC_min<- min(my_data$midLengths) 

LC_max<- max(my_data$midLengths) 

Note: for demonstration, the LC range provided in this example spans from the minimum to the 

maximum observed length. The user can define any other length range. 

Step-2: Assign the additional parameters for BHYPR 

The Beverton and Holt yield per recruit (BHYPR) analysis requires two additional 

parameters: (1) the length at recruitment (Lr) which is the mid-length of the first (smallest) 

length class and (2) the length at first capture (Lc) also known as LC50 (the length at which 

fish have a 50% probability to be caught). The LC50 values from the catch curve analysis are 

often used in the BHYPR analysis. First, perform the catch curve analysis to get the LC50 

using the following code: 

CC <- catchCurve(mean_catch_vector, catch_columns = c(1), calc_ogive = TRUE) 

Assign the LC50 derived from the catch curve analysis to the LFQ file (e.g., my_data) using 

the following code: my_data$Lc <- CC$L50 
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Note: This is a very crucial step in the analysis. The LC50 can be derived either for a specific 

combination of years or a specific year. The above example shows the procedure for deriving LC50 

for a specific combination of years (e.g., all available years using mean_catch_vec) using the 

catch curve analysis. Alternatively, the user can derive LC50 for any specified year using the 

catch_vec in the length converted catch curve analysis by specifying the serial number of the 

required year in the catch column of the catch curve code (catch_columns =). To perform 

catch curve analysis for the required combination of years, refer to the ‘2.7.2.Catch curve 

analysis for a combination of years using multiyear mean catch data ’. To perform 

catch curve analysis for the required year, refer to the ‘2.7.3.Catch curve analysis for a 

specific year’. 

Assign the length at recruitment (Lr) to the LFQ file (e.g., my_data) using the 

following code: my_data$Lr <- as.numeric(min(my_data$midLengths)) 

Step-3: Perform BHYPR2 under the knife-edge selection assumption 

This is the default assumption of the BHYPR function. To ensure the function 

follows the knife-edge selection assumption instead of gear selectivity assumption, use the 

BHYPR code providing no selectivity information (s_list = NA). To perform the BHYPR2 

analysis under the knife-edge selection assumption, use the following codes: 

BHYPR2 <- predict_mod(my_data, type = "ypr", FM_change = seq(0,20,0.5), 

E_change = NA, Lc_change = seq(LC_min, LC_max,0.5), curr.E = NA, curr.Lc = NA, 

s_list = NA, plot = TRUE) 

Step-4: Perform BHYPR2 under the gear selectivity assumption 

Provide selectivity information (s_list = gear_selection) in the BHYPR code to 

ensure the function follows the gear selectivity assumption instead of the knife-edge 

selection assumption. Prepare a gear selection list (gear_selection) using the LC50 and 

LC75 information derived from a catch curve analysis. First, perform the catch curve 

analysis to get the gear selectivity information using the following code: 

CC <- catchCurve(mean_catch_vector, catch_columns = c(1), calc_ogive = TRUE) 

Then, prepare a gear selection list using the following code: 

gear_selection <- list(selecType = "trawl_ogive", L50 = CC$L50, L75 = CC$L75) 

Note: This is a very crucial step in the analysis. The gear selection list can be derived either for a 

specific combination of years or a specific year. The above example shows the procedure for 

deriving gear selection list for a specific combination of years (e.g., all available years using 

mean_catch_vec) using the catch curve analysis. Alternatively, the user can derive the gear 

selection list for any specified year using the catch_vec in the catch curve analysis by specifying 

the serial number of the required year in the catch column of the catch curve code 

(catch_columns =). To perform catch curve analysis for the required combination of years, 

refer to the 2.7.2.Catch curve analysis for a combination of years using multiyear 

mean catch data. To perform catch curve analysis for the required year, refer to the 

2.7.3.Catch curve analysis for a specific year. 

To perform the BHYPR2 analysis under the gear selection assumption, use the following 

codes: 
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BHYPR2 <- predict_mod(my_data, type = "ypr", FM_change = seq(0,20,0.5), 

E_change = NA, Lc_change = seq(LC_min, LC_max,0.5), curr.E = NA, curr.Lc = NA, 

s_list = gear_selection, plot = TRUE) 

Note: The stock estimates, i.e., yield per recruit (Y/R), biomass per recruit (B/R), relative yield 

per recruit (Y’/R), relative biomass per recruit (B’/R) and management reference points derived 

under knife-edge selection assumption may differ from those under gear selection assumption. In 

the above BHYPR2 codes, type represents the Beverton and Holt YPR analysis (type = "ypr"). 

For the Thompson and Bell analysis, the user can use type = "ThompBell", after providing the 

required parameters for the analysis. The FM range, over which the effect of a change in the 

fishing mortality rates (FM) on stock status is evaluated, is supplied in FM_change [e.g., 

FM_change = seq(0, 20, 0.5)]. The FM range can not be relative (FM_relative = TRUE) in 

Beverton and Holt YPR analysis and therefore, only the absolute (FM_relative = FALSE) is 

allowed for the simulation. In this example, the FM changes are in absolute format (FM_relative 

= FALSE), simulating the effect of changes in FM (absolute F, not the F-multiplier) from 0 to 20 

with a gradual increase of 0.5 (step size 0.5 shows a sequential FM change of 0, 0.5, 1.0, …, 19.5, 

and 20.0). The user can also use an equivalent range of absolute exploitation rates (E_change) 

instead of the fishing mortality rate (FM_change) to simulate the same effect. However, if 

E_change is used instead of FM_change, the range is capped at E = 0.9, as higher values of E 

correspond to unrealistically high fishing mortality rates. In addition to the FM, the used can 

simulate the effect of a change in length at capture (LC) by providing a LC range in the BHYPR2 

code [Lc_change = seq(LC_min, LC_max, 0.5)]. The LC range provided in this example 

ranges from the minimum to the maximum observed length with a gradual increase of 0.5 (step 

size 0.5 shows a sequential LC change of 5, 5.5, 1.0, …, 13.0, and 13.5). Users have the flexibility to 

specify any other length range and step size. The recruitment number, if supplied with 

stock_size_1, does not work in Beverton and Holt YPR analysis and therefore, the analysis 

provides stock simulation in a relative Y/R and B/R terms. The current exploitation rate (curr.E) 

and the current length at capture (curr.Lc) are not required to derive management reference 

points. However, the user must supply both the calculated E (i.e., F/Z) [e.g., curr.E = 

(as.numeric(CC$FM)/CC$Z)] and LC50 values [e.g., curr.Lc = CC$L50] from the catch 

curve analysis to assess the current stock status. The default graphical output from the simulation 

can be turned on (plot = TRUE) or off (plot = FALSE). 

2.10.7. Biological reference points from BHYPR2 

Use the following code to get the biological reference points from BHYPR2: 

BHYPR2$df_Es 

BHYPR2 with knife-edge selection BHYPR2 with gear selection          
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Note: The output shows the effect of change in length at capture (LC50) or age at capture (t50) on 

biological management reference points (e.g., fishing mortality rates: F01, Fmax and F05 or 

exploitation rates: E01, Emax and E05). For more information on these and other management 

reference points, refer to 2.11.Understanding the stock simulation outputs (fisheries 

management reference points) ’. 

2.10.8. Current stock status estimates from BHYPR2 

To get current values for stock estimates (i.e., yield per recruit (Y/R), biomass per 

recruit (B/R), relative yield per recruit (Y’/R), and relative biomass per recruit (B’/R)), user 

need to provide both the current exploitation rate (curr.E=) and the current length at 

capture (curr.Lc=) in the above mentioned BHYPR2 code. Use the calculated E (i.e., F/Z) 

[e.g., curr.E= (as.numeric(CC$FM)/CC$Z)] and LC50 values [e.g., curr.Lc 

=CC$L50] from the catch curve analysis in BHYPR2 code as follows: 

To perform the BHYPR2 analysis under the knife-edge selection assumption, use the 

following codes:  

BHYPR2 <- predict_mod(my_data, type = "ypr", FM_change = seq(0,20,0.5), E_change = 

NA, Lc_change = seq(LC_min, LC_max,0.5), curr.E = (as.numeric(CC$FM)/CC$Z), 

curr.Lc = CC$L50, s_list = NA, plot = TRUE) 

To perform the BHYPR2 analysis under the gear selection assumption, use the following 

codes: 

BHYPR2 <- predict_mod(my_data, type = "ypr", FM_change = seq(0,20,0.5), E_change = 

NA, Lc_change = seq(LC_min, LC_max,0.5), curr.E = (as.numeric(CC$FM)/CC$Z), 

curr.Lc = CC$L50, s_list = gear_selection, plot = TRUE) 

After entering the values for the current exploitation rate and the current length at capture 

in the BHYPR2 code, use the following code to retrieve the current values: 

BHYPR2$currents 

 

Note: The stock estimates, i.e., yield per recruit (Y/R), biomass per recruit (B/R), relative yield 

per recruit (Y’/R) and relative biomass per recruit (B’/R) may differ under these two different 

assumptions. The yield (YPR) and biomass (BPR) values are the values per recruit expressed in 

grams. 

2.10.9. Default graphical output from BHYPR2 

The default graphical output from the simulation can be turned on by mentioning plot = 

TRUE in the BHYPR2 code, which will produce the following graph. 
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2.10.10. Enhanced visualization of Beverton and Holt’s yield per recuit 

model (BHYPR) 

Plotting the effect of a change in FM on stock status (BHYPR1 graph) 

The previously mentioned BHYPR1 code when used with plot option set as true 

(plot=true) produces the relative Y/R (Y’/R) and the relative B/R (B’/R) trajectory in 

response to change in FM as a default graphical output. The default BHYPR1 graphical 

output may not produce a complete visualization of all the outputs, especially when any 

output is plotted on a secondary Y-axis. It happens mainly due to the non-availability of 

adequate space on the right side margin. As a default, R uses a margin setup of 

par(mar=c(5, 4, 4, 2)), which is 5, 4, 4 and 2 line spaces for the bottom, left, top and 

right side margins, respectively. To accommodate adequate space for the right side margin 

for plotting the extra Y-axis, use the required BHYPR1 code after setting the margin space 

using the following code: par(mar=c(5, 4, 4, 5))  

BHYPR1 <- predict_mod (my_data, type = "ypr", FM_change = seq(0,20,0.1), E_change = 

NA, curr.E= (as.numeric(CC$FM)/CC$Z), curr.Lc =CC$L50, s_list = NA, plot = TRUE) 

Default graphical output with 

par(mar=c(5, 4, 4, 2)) 

Better graphical output with 

par(mar=c(5, 4, 4, 5)) 
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Controlling the BHYPR1 plotting parameters for primary and secondary Y-

axis 

The default graphical output from BHYPR1 plots ‘relative Y/R’ in Y-axis and 

‘relative B/R’ as proportion of the highest level of B’/R (when F=0) in the secondary Y-axis. 

Default BHYPR1 plots relative 

Y/R (Y’/R) and relative B/R 

(B’/R) as proportion in the 

plot, which can be reproduced 

by defining relative Y/R in 

yaxis1 and relative B/R in 

yaxis2. 

par(mar=c(5,4,4,5)) 

plot(BHYPR1, type = "ypr", 

xaxis1 = "FM", yaxis1 = 

"Y_R.rel", yaxis2 = 

"B_R.rel", identify = FALSE)  

 

To plot Y/R instead of relative 

Y/R (Y’/R), define Y/R in 

yaxis1. If yaxis2 is not defined 

or changed, as a default, it will 

plot the relative B/R (B’/R) as 

proportion 

par(mar=c(5,4,4,5)) 

plot(BHYPR1, type = "ypr", 

xaxis1 = "FM", yaxis1 = 

"Y_R", identify = FALSE) 

 

To plot Y/R instead of relative 

Y/R (Y’/R) and B/R as 

percentage instead of relative 

B/R (B’/R) as proportion, 

define Y/R in yaxis1 and B/R 

percent in yaxis2. 

par(mar=c(5,4,4,5)) 

plot(BHYPR1, type = "ypr", 

xaxis1 = "FM", yaxis1 = 

"Y_R", yaxis2 = 

"B_R.percent", identify = 

FALSE) 
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To plot Y/R instead of relative 

Y/R (Y’/R) and B/R instead of 

relative B/R (B’/R) or B/R as 

proportion or percentage, 

define Y/R in yaxis1 and B/R 

in yaxis2. 

par(mar=c(5,4,4,5)) 

plot(BHYPR1, type = "ypr", 

xaxis1 = "FM", yaxis1 = 

"Y_R", yaxis2 = "B_R", 

identify = FALSE) 

 

Note: Unlike the relative Y/R (Y’/R), the relative B/R (B’/R) in TropFishR is expressed as a 

proportion or fraction of the highest level of B’/R (when F=0). Therefore, the B/R when expressed 

as a percentage of the highest level of B/R (when F=0) is same as the B’/R expressed in proportion 

to the highest level of B’/R (when F=0). 

Plotting the effect of a change in FM and LC on stock status (BHYPR2 

outputs) 

The previously mentioned BHYPR2 code when used with plot option set as true 

(plot=true) also produces the relative Y/R (Y’/R) and the relative B/R (B’/R) trajectories 

in response to change in FM and LC (line plot) as a default graphical output. The default 

BHYPR2 graphical output may not produce a complete visualization of all the outputs, 

especially when any output is plotted on a secondary Y-axis. It happens mainly due to the 

non-availability of adequate space on the right side margin of the plot. As a default, R uses a 

margin setup of par(mar=c(5, 4, 4, 2)), which is 5, 4, 4 and 2 line spaces for the bottom, 

left, top and right side margins, respectively. To accommodate adequate space for the right 

side margin for plotting the extra Y-axis, use the required BHYPR2 code after setting the 

margin space using the following code: par(mar=c(5, 4, 4, 5)) 

BHYPR2 <- predict_mod(my_data, type = "ypr", FM_change = seq(0,20,0.5), E_change = 

NA, Lc_change = seq(LC_min, LC_max,0.5), curr.E = (as.numeric(CC$FM)/CC$Z), 

curr.Lc = CC$L50, s_list = gear_selection, plot = TRUE) 

Default graphical output with 

par(mar=c(5, 4, 4, 2)) 

Better graphical output with 

par(mar=c(5, 4, 4, 5)) 
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Controlling the BHYPR2 plotting parameters for primary and secondary Y-

axis 

The default graphical output from BHYPR2 plots ‘relative Y/R’ in Y-axis and 

‘relative B/R’ as proportion or fraction of the highest level of B’/R (when F=0) in the 

secondary Y-axis. The primary Y-axis (yaxis1) and secondary Y-axis (yaxis2) can be 

controlled to plot Y/R and B/R or Y’/R and B’/R. For example, to plot Y/R instead of 

relative Y/R (Y’/R) and B/R instead of relative B/R (B’/R) or B/R as proportion or 

percentage, define Y/R in yaxis1 and B/R in yaxis2. 

par(mar=c(5,4,4,5)) 

plot(BHYPR2, type = "ypr", xaxis1 = "FM", yaxis1 = "Y_R", yaxis2 = "B_R", identify = 

FALSE) 

For more details, refer to ‘Controlling the BHYPR1 plotting parameters for 

primary and secondary Y-axis’ to plot the similar plots with BHYPR2 outputs. 

Plotting and controlling yield and biomass isopleths from BHYPR2 

The previously mentioned BHYPR2 code, when used with plot option set as true 

(plot=true) does not produce the yield or biomass isopleths as a default graphical output. 

The Isopleths for the yield (Y/R), relative yield (Y’/R), biomass (B/R) and relative biomass 

(B’/R) can be produced by changing the chart type to “Isopleth” from the default of “ypr”. 

plot(BHYPR2, type = "Isopleth", xaxis1 = "FM", yaxis1 = "Y_R", yaxis2 = "B_R", 

identify = FALSE) 

However, the code will produce the following error because of the presence of an extra row 

of Y/R, Y/R, B/R and B’/R values for the previously defined current LC. 

 

First, remove the already defined Lc to fix the above error using code: my_data$Lc <-NULL 

Then, redo the BHYPR2 simulation (following either the knife-edge selection assumption or 

the gear selection assumption) turning the plot off (plot = FALSE) to suppress unwanted 

graphs in the absence of predefined LC. 

To redo the BHYPR2 analysis under the knife-edge selection assumption, use the following 

codes:  

BHYPR2 <- predict_mod(my_data, type = "ypr", FM_change = seq(0,20,0.5), E_change = 

NA, Lc_change = seq(LC_min, LC_max,0.5), curr.E = (as.numeric(CC$FM)/CC$Z), 

curr.Lc = CC$L50, s_list = NA, plot = FALSE) 

To redo the BHYPR2 analysis under the gear selection assumption, use the following codes: 

BHYPR2 <- predict_mod(my_data, type = "ypr", FM_change = seq(0,20,0.5), E_change = 

NA, Lc_change = seq(LC_min, LC_max,0.5), curr.E = (as.numeric(CC$FM)/CC$Z), 

curr.Lc = CC$L50, s_list = gear_selection, plot = FALSE) 

Once the BHYPR2 outputs are generated, the relative Y/R (Y’/R) isopleths can be plotted 

using the following code: 
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plot(BHYPR2, type = "Isopleth", xaxis1 = "FM", yaxis1 = "Y_R.rel", mark = TRUE, identify 

= FALSE) 

 

Once the BHYPR2 outputs are generated, the relative B/R (B’/R) isopleths can be 

plotted using the following code: 

plot(BHYPR2, type = "Isopleth", xaxis1 = "FM", yaxis1 = "B_R.rel", mark = TRUE, identify 

= FALSE) 

 

Similarly, once the BHYPR2 outputs are generated, the Y/R isopleths can be plotted using 

the following code: 
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plot(BHYPR2, type = "Isopleth", xaxis1 = "FM", yaxis1 = "Y_R", mark = TRUE, identify = 

FALSE) 

 

Similarly, once the BHYPR2 outputs are generated, the B/R isopleths can be plotted 

using the following code: 

plot(BHYPR2, type = "Isopleth", xaxis1 = "FM", yaxis1 = "B_R", mark = TRUE, identify = 

FALSE) 

 

Note: Identity can be set on (identity=TRUE) in the above codes to find out the values of LC and 
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FM for any point on the graph just by clicking on it. 

Enhanced yield isopleth visualization from BHYPR2 (2D plot) 

Step-1: Prepare a new data frame (BHYPR2_output) for the change in the yield (Y/R) in 

response to the change in FM and LC from the Beverton and Holt’s yield per recuit model 

output (BHYPR2) 

BHYPR2_output<-as.data.frame(do.call(rbind, BHYPR2$list_Lc_runs)) 

Step-2: Arrange the data for plotting using the following codes: 

LC<-rep(BHYPR2$Lc, each=length(BHYPR2$FM_change)) 

names(LC)<-"LC" 

BHYPR2_output <-cbind(LC, BHYPR2_output) 

rownames(BHYPR2_output)<-c(1:length(BHYPR2_output$LC)) 

Step-3: Plot the 2D plot using the following code: 

library(plotly) 

fig<- plot_ly(BH2_output, x=~ BH2_output$FM, y=~ BH2_output$LC, z=~ 

BH2_output$Y_R) %>% add_trace(type="contour", contours = list(showlabels = TRUE, 

labelfont = list(size = 12, color = "white")), colorscale = "Jet", colorbar=list(title= 

list(text="Y/R (grams)", font=list(size="14", family="Times New Roman"))))%>% 

layout(xaxis=list(title= list(text= "F", font=list(size="14", family="Times New Roman"))), 

yaxis=list(title= list(text= "LC (cm)", font=list(size="14", family="Times New Roman")))) 

fig 

Step-4: Add the current reference lines using the following codes: 

vline <- function(x = 0, color = "red") { 

list(type = "line", y0 = 0, y1 = 1, yref = "paper", x0 = x, x1 = x, line = list(color = "yellow")) 

} 

hline <- function(y = 0, color = "blue") { 

list(type = "line", x0 = 0, x1 = 1, xref = "paper", y0 = y, y1 = y, line = list(color = "yellow")) 

}  

#Show the catch curve analysis derived FM and LC on the plot using the following code: 

fig%>%layout(shapes = list(vline(CC$FM), hline(CC$L50))) 



Tropical fish stock assessment using R 

 

Page |107 

 

Note: The colour gradient can be customized by changing the colorscale = "Jet" to other colour 

scales like “Viridis”, “Rainbow”, “RdBu” in place of “Jet”. Use Y/R.rel in the place of Y/R (in Step-3) 

to plot the graph for relative yield per recruit (Y’/R). 

Enhanced yield isopleth visualization from BHYPR2 (3D plot) 

Step-1: Prepare a new data frame (BHYPR2_output) for the change in the yield (Y/R) in 

response to the change in FM and LC from the Beverton and Holt’s yield per recuit model 

output (BHYPR2) using the above mentioned Step-1 and 2. 

Step-2: Prepare a new matrix (Yield_R_change) from the data frame (BHYPR2_output) 

previously prepared from the Beverton and Holt’s yield per recuit model output (BHYPR2) 

for 3D plot. 

Yield_R_change<-matrix(c(BHYPR2_output$Y_R), nrow=length(BHYPR2$FM_change), 

ncol=length(BHYPR2$list_Lc_runs)) 

rownames(Yield_R_change)<-c(BHYPR2$FM_change) 

colnames(Yield_R_change)<-c(BHYPR2$Lc) 

Step-3: Plot the 3D plot using the following code: 

library(plotly) 

fig<- plot_ly(z= Yield_R_change, x = ~ as.numeric(colnames(Yield_R_change)), y = ~ 

as.numeric(rownames(Yield_R_change)), type = "surface", opacity = 1.0, colorscale = 

"Jet", colorbar=list(title= list(text= "Y/R (grams)", font=list(size="14", family="Times 

New Roman"))))%>% layout(scene=list(xaxis=list(autorange = "reversed", nticks = 10, 

tickangle= 0, linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="LC50 

(cm)", font=list(size="14", family="Times New Roman"))), yaxis=list(nticks = 10, 
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tickangle= 0, linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="F", 

font=list(size="14", family="Times New Roman"))), zaxis=list(nticks = 10, tickangle= 0, 

linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="Y/R (grams)", 

font=list(size="14", family="Times New Roman"))))) 

fig 

 

 

Note: The colour gradient can be customized by changing the colorscale = "Jet" to other colour 

scales like “Viridis”, “Rainbow”, “RdBu” in place of “Jet”. Use Y/R.rel in the place of Y/R (in Step-

2 and 3) to plot the graph for relative yield per recruit (Y’/R). 

Enhanced biomass isopleth visualization from BHYPR2 (2D plot) 

Step-1: Prepare a new data frame (BHYPR2_output) for the change in the yield (Y/R) in 

response to the change in FM and LC from the Beverton and Holt’s yield per recuit model 

output (BHYPR2). 

BHYPR2_output<-as.data.frame(do.call(rbind, BHYPR2$list_Lc_runs)) 

Step-2: Arrange the data for plotting using the following codes: 

LC<-rep(BHYPR2$Lc, each=length(BHYPR2$FM_change)) 

names(LC)<-"LC" 

BHYPR2_output <-cbind(LC, BHYPR2_output) 

rownames(BHYPR2_output)<-c(1:length(BHYPR2_output$LC)) 
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Step-3: Plot the 2D plot using the following code: 

library(plotly) 

fig<- plot_ly(BHYPR2_output, x=~ BHYPR2_output$FM, y=~ BHYPR2_output$LC, z=~ 

BHYPR2_output$B_R) %>% add_trace(type="contour", contours = list(showlabels = 

TRUE, labelfont = list(size = 12, color = "white")), colorscale = "Jet", colorbar=list(title= 

list(text="B/R (grams)", font=list(size="14", family="Times New Roman"))))%>% 

layout(xaxis=list(title= list(text= "F", font=list(size="14", family="Times New Roman"))), 

yaxis=list(title= list(text= "LC (cm)", font=list(size="14", family="Times New Roman")))) 

fig  

Step-4: Add the current reference lines using the following codes: 

vline <- function(x = 0, color = "red") { 

list(type = "line", y0 = 0, y1 = 1, yref = "paper", x0 = x, x1 = x, line = list(color = "yellow")) 

} 

hline <- function(y = 0, color = "blue") { 

list(type = "line", x0 = 0, x1 = 1, xref = "paper", y0 = y, y1 = y, line = list(color = "yellow")) 

}  

#Show the catch curve analysis derived FM and LC on the plot using the following code: 

fig%>%layout(shapes = list(vline(CC$FM), hline(CC$L50))) 

 

Note: : The colour gradient can be customized by changing the colorscale = "Jet" to other colour 

scales like “Viridis”, “Rainbow”, “RdBu” in place of “Jet”. Use B/R.rel in the place of B/R (in Step-3) 

to plot the graph for relative yield per recruit (B’/R). 
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Enhanced biomass isopleth visualization from BHYPR2 (3D plot) 

 

 

Note: The colour gradient can be customized by changing the colorscale = "Jet" to other colour 

schemes like “Viridis”, “Rainbow”, “RdBu” in place of “Jet”. Use B/R.rel in the place of B/R (in 

Step-2 and 3) to plot the graph for relative yield per recruit (B’/R). 

Step-1: Prepare a new data frame (BHYPR2_output) for the change in the yield (Y/R) in 

response to the change in FM and LC from the Beverton and Holt’s yield per recuit model 

output (BHYPR2) using the above mentioned Step-1 and 2. 

Step-2: Prepare a new matrix (Yield_R_change) from the data frame (BHYPR2_output) 

previously prepared from the Beverton and Holt’s yield per recuit model output (BHYPR2) 

for 3D plot. 

Biomass_R_change<-matrix(c(BHYPR2_output$B_R), 

nrow=length(BHYPR2$FM_change), ncol=length(BHYPR2$list_Lc_runs)) 

rownames(Biomass_R_change)<-c(BHYPR2$FM_change) 

colnames(Biomass_R_change)<-c(BHYPR2$Lc) 

Step-3: Plot the 3D plot using the following code: 

library(plotly) 
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fig<- plot_ly(z= Biomass_R_change, x = ~ as.numeric(colnames(Biomass_R_change)), y = 

~ as.numeric(rownames(Biomass_R_change)), type = "surface", opacity = 1.0, colorscale 

= "Jet", colorbar=list(title= list(text= "B/R (grams)", font=list(size="14", family="Times 

New Roman"))))%>% layout(scene=list(xaxis=list(autorange = "reversed", nticks = 10, 

tickangle= 0, linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="LC50 

(cm)", font=list(size="14", family="Times New Roman"))), yaxis=list(nticks = 10, 

tickangle= 0, linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="F", 

font=list(size="14", family="Times New Roman"))), zaxis=list(nticks = 10, tickangle= 0, 

linecolor="black", linewidth=2, showline=T, mirror = T, title= list(text="B/R (grams)", 

font=list(size="14", family="Times New Roman"))))) 

fig 

2.11. Understanding the stock simulation outputs (fisheries 

management reference points) 

F01 and E01: The fishing mortality rate (or F-multiplier if FM_relative = TRUE) and the 

corresponding exploitation at which the rate of increase in yield is only 10% of the highest 

rate of increase. It serves as a precautionary reference point to reduce the risk of growth 

overfishing. 

YPR_F0.1: The yield that would be produced if F01 is implemented. 

BPR_F0.1: The biomass that would remain if F01 is implemented. 

SPR_F0.1: The spawning potential ratio, i.e., spawning stock biomass ratio (SSB/SSB0) 

that would remain if F01 is implemented. 

Fmax and Emax: The fishing mortality rate (or F-multiplier if FM_relative = TRUE) and 

the corresponding exploitation rate at which the yield is maximum. It is an optimistic 

reference point that requires careful evaluation, as it may lead to very low biomass and 

overfishing. 

YPR_Fmax: The yield that would be produced if Fmax is implemented. 

BPR_Fmax: The biomass that would remain if Fmax is implemented. 

SPR_Fmax: The spawning potential ratio, i.e., spawning stock biomass ratio (SSB/SSB0) 

that would remain if Fmax is implemented. 

F05 and E05: The fishing mortality rate (or F-multiplier if FM_relative = TRUE) and the 

corresponding exploitation rate at which the biomass is at 50% of the virgin state biomass 

level (B/B0=0.50). It is a conservative reference point that ensures 50% of the biomass 

remains available, reducing the risk of overfishing. 

YPR_F05: The yield that would be produced if F05 is implemented. 

BPR_F05: The biomass that would remain if F05 is implemented. 

SPR_F05: The spawning potential ratio, i.e., spawning stock biomass ratio (SSB/SSB0) 

that would remain if F05 is implemented. 

F04 and E04: The fishing mortality rate (or F-multiplier if FM_relative = TRUE) and the 

corresponding exploitation rate at which the spawning stock biomass (SSB) is at 40% of the 
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virgin SSB level (SSB/SSB0=0.40). It is a precautionary reference point that ensures the 

availability of 40% spawning stock biomass to reduce the chance of recruitment overfishing. 

YPR_F04: The yield that would be produced if F04 is implemented. 

BPR_F04: The biomass that would remain if F04 is implemented. 

SPR_F04: The spawning potential ratio, i.e., spawning stock biomass ratio (SSB/SSB0) 

that would remain if F04 is implemented. 

Understanding the stock simulation outputs (current stock status) 

Curr.LC Current length at capture 

(LC50) 

Curr.tC Current age at capture 

(tC50) 

Curr.E Current exploitation ratio 

(Ecur) 

Curr.F Current fishing mortality 

rate (Fcur) 

Curr.Catch Current catch (Ccur) obtained 

at Fcur  

Curr.Yield Current yield (Ycur) 

obtained at Fcur  

Curr.Revenue Current revenue (Rcur) 

obtained at Fcur  

Curr.Biomass Current biomass (Bcur) 

present at Fcur  

Curr.SSB Current SSB (SSBcur) present 

at Fcur  

SPR Current spawning 

potential ration (SSBcur/ 

SSB0) present at Fcur  
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2.12. Length-Weight Relationship (LWR) 

Introduction 

The length-weight relationship (LWR) is essential for converting length-based 

numerical observations into biomass estimates, which is crucial for biomass modeling and 

stock simulation in the aquatic ecosystem. The relationship between length and weight of 

fish can be expressed in the following two commonly used equation forms (Keys, 1928; 

Clark, 1928; Froese, 2006): 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑑𝑒𝑙, 𝑙𝑜𝑔(𝑊) = 𝑙𝑜𝑔 (𝑎) + 𝑏× 𝑙𝑜𝑔(𝐿) + 𝜀, 𝜀 ≈ 𝑛𝑜𝑟𝑚𝑎𝑙 (0,𝜎2)…… (1) 

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑑𝑒𝑙, 𝑊 = 𝑎 × 𝐿𝑏 + 𝜀, 𝜀 ≈ 𝑛𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2) …………………..….... (2) 

Essentially, the choice of model depends primarily on the variance or residual 

distribution structure of the model. The log-transformed linear model assumes an 

underlying multiplicative log-normal variance (error) distribution on an untransformed 

scale, while the simple nonlinear model assumes an additive normal variance (error) 

distribution on the original (untransformed) scale (Xiao et al., 2011; and De Giosa and 

Czerniejewski, 2016). Since fish grow in all the three dimensions, their weight and variance 

associated with the weight also increases with length (Cawley and Janacek, 2010; and Xiao 

et al., 2011). Therefore, it is biologically reasonable to assume a log-normal multiplicative 

error structure, and therefore the log-transformed linear model (shown in equation 1) is 

frequently used in the LWRs (Ogle, 2015). However, to improve the accuracy of the LWR, it 

is essential to understand the variance/error distribution structure to correctly apply the 

appropriate modeling approach (Xiao et al., 2011; and Dash et al., 2023). The variance 

distribution structure can be found out by fitting the collected length and weight data using 

both the linear and nonlinear modeling approaches and then performing a multi-model 

comparison. For the multi-model comparison, a likelihood-based information theoretic 

criterion such as Akaike Information Criterion (AIC) or Bayesian Information Criterion 

(BIC) can be used (Xiao et al., 2011; De Giosa and Czerniejewski, 2016; and Dash et al., 

2023). A derivative of AIC (the small-sample equivalent of AIC), i.e., AICc is also often 

recommended for model selection when the ratio between the sample size (n) and the 

https://cran.r-project.org/web/packages/TropFishR/vignettes/lfqData.html
https://cran.r-project.org/web/packages/TropFishR/vignettes/tutorial.html
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number of modeling parameters (k), i.e., n/k is less than 40 (Sugiura, 1978; and Hurvich 

and Tsai, 1995). The modeling approach with lower AIC or BIC score is considered being 

better compared to the other competing model(s) and thus explains better support for its 

underlying assumption about variance distribution structure. 

Length-Weight Relationship: R Implementation 

2.12.1. Requirement for Length-Weight Relationship (LWR) 

Installing and loading dependent R-packages 

Install the dependent R-packages (Do not install again if already installed). 

install.packages("nlstools") 

install.packages("propagate") 

install.packages("boot") 

install.packages("caret") 

install.packages("car") 

install.packages("ggplot2") 

Load the dependent R-packages 

library(nlstools) 

library(propagate) 

library(boot) 

library(caret) 

library(car) 

library(ggplot2) 

Length-weight data  

The length-weight data should be available in following format for the analysis.  

Length-Weight 
data (e.g., sample) 

Excel Import window in R 
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Refer ‘Example data file download link’ in the last page to download and use the 

example data. 

2.12.2. Importing length-weight data to R Interface 

The above length-weight data needs to be imported to the R interface. Click the 

Import Dataset of the Environment tab (top right side panel) and then select from Excel. 

Browse the Excel file (ex: ‘rawdata’ sheet of ‘rawdata’ excel file) and then import. 

Environment> Import Dataset> from Excel and then browse the file on disk and import. 

Define the two measurement variables, i.e., x for the independent measurement 

variable (here, length of the fish, preferably in ‘cm’) and ‘y’ for the dependent measurement 

or response variable (here, weight of the fish, preferably in ‘g’). Additionally, ‘sex’ of fish can 

be assigned as a categorical variable (as factor) for ANCOVA to observe the difference in 

weights between the sexes. 

x<- as.vector(LWR_data$length) 

y<- as.vector(LWR_data$weight) 

sex<-as.factor(LWR_data$sex) 

2.12.3. Modeling the relationship between length and weight (Linear 

Model) 

Linear modeling 

Most commonly used approach is to log transform the measurement variables and 

then fit a linear regression assuming a biologically reasonable log-normal multiplicative 

error structure for the residuals. The model can be fitted using the following codes: 

linear_model = lm(log(y) ~ log(x)) 

a_LM = exp(coef(summary(linear_model))[1, 1]) 

b_LM = coef(summary(linear_model))[2, 1] 

sd_LM = sd(log(y) - (log(a_LM) + b_LM * log(x))) 

list(method = "Log-transformed Linear Model", summary = summary(linear_model), a = 

a_LM, b = b_LM, a_confint = exp(confint(linear_model)[1, ]), b_confint = 

confint(linear_model)[2, ]) 

Understanding the output of linear modeling 

The summary(linear_model) code produces a summary of the model (shown 

below). Since the data used in the model are in a log-transformed scale, the first coefficient, 

i.e., intercept (a) produce by the code is in log form (here, -5.1204) which should be 

exponentiated (exp(coef(summary(linear_model))[1, 1])) to express the value in original 

untransformed scale (i.e., 0.00597). Apart from this the summary also produces standard 

error (SE), t-statistics and p-value for each of the model coefficients. The code also 

produces residual standard error (RSE), degrees of freedom (DF), R-squared, F-statistics, 

and p-value for the model. The confint(linear_model) code produces a 95% confidence 

interval of the model parameters (a & b). However, the confidence interval of intercept (a) 

produce by the code is in log form which should be exponentiated 
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(exp(confint(linear_model)[1, ])) to express the value in original untransformed scale. The 

model assumptions can be checked using model diagnosis tools (Refer to 2.12.6.Model 

Diagnosis). The log-transformed linear model is adequate enough to establish the LWR in 

most of the cases. However, to improve the accuracy of the model coefficient, it is better to 

model the relationship using a nonlinear model and then evaluate the variance distribution 

structure of both the models to arrive at best modeling approach. 

 

2.12.4. Modeling the relationship between length and weight 

(Nonlinear Model) 

Nonlinear modeling  

When it is suspected that residuals of the model may follow an additive normal 

variance (error) distribution structure in the original (untransformed) scale, it is advisable 

to conduct a nonlinear modeling approach. The support for the correct variance 

distribution structure can be found out later using an information theoretic criterion like 

AIC or BIC (Xiao et al., 2011; and Dash et al., 2023). The model can be fitted using the 

following codes: 

nonlinear_model = nls(y ~ a* x ^ b, start = list(a = a_LM, b = b_LM), control = 

nls.control(maxiter = 2000, warnOnly = TRUE)) 

a_NLM = coef(summary(nonlinear_model))[1, 1] 

b_NLM = coef(summary(nonlinear_model))[2, 1] 

sd_NLM = sd(y - a_NLM * x ^ b_NLM) 
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list(method = "Nonlinear Model", summary = summary(nonlinear_model), a = a_NLM, b 

= b_NLM, a_confint = confint(nonlinear_model)[1, ], b_confint = 

confint(nonlinear_model)[2, ]) 

Understanding the output of nonlinear modeling 

The summary(nonlinear_model) code produces a summary of the model 

(shown below). Since the data used in the model are in an original untransformed scale, 

both the coefficients (a & b) produced by the code are in the original scale. Apart from this 

the summary also produces standard error (SE), t-statistics and p-value for each of the 

model coefficients. Apart from this the summary also produces residual standard error 

(RSE), and degrees of freedom (DF) for the model. Since it is a nonlinear model, the R-

squared values are not produced by the model because of lack of relevance. The 

confint(nonlinear_model) code produces a 95% confidence interval of the model 

coefficients (a & b) in the original untransformed scale. The model assumptions can be 

checked using model diagnosis tools (Refer to 2.12.6.Model Diagnosis).  

 

2.12.5. Selecting the best modeling approach 

In most of the cases, the log-transformed linear model is adequate enough to 

establish the LWR. However, to improve the accuracy of the model coefficient, it is better to 

model the relationship using a nonlinear model and then evaluate the variance distribution 

structure of both the models to arrive at best modeling approach. The support for the 

correct variance distribution structure can be found out using an information theoretic 

criterion like AIC or BIC (Xiao et al., 2011; and Dash et al., 2023). In the present example, 

the small-sample equivalent of AIC, i.e., AICc, has been used to evaluate the variance 

distribution structure. It has been recommended to use AICc for small sample size 

(especially, when the ratio between sample size (n) and number of modeling parameters 
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(k), i.e., n/k is less than 40) (Sugiura, 1978; and Hurvich and Tsai, 1995). In has also been 

noted that the AICc provides stronger penalty compared to the AIC and BIC for small and 

very small sample size, respectively (Brewer et al., 2016). Based on the AICc following 

criteria is used to select the best modeling approach. 

Criteria for model selection 

if delta_AICc < -2*: The assumption of additive normal error is better supported so proceed 

with nonlinear model results 

if delta_AICc > 2*: The assumption of multiplicative log-normal error is better supported, 

so proceed with linear model results 

if – 2* ≥ delta_AICc ≤ 2*: The two error distributions have similar support and so proceed 

with weighted average mixed model 

*the cutoff value of 2 has been recommended by Burnham and Anderson (2002). Despite 

these rules of thumb, there is considerable ambiguity regarding the treatment (acceptance 

or rejection) of competing models if the delta_AICc falls within the doubtful zone of 4-7. 

According to Dash et al. (2023b), it has been recommended to use a cutoff value of 4.2 for 

model selection. Check with the residual diagnostic plot and residual density plot for visual 

confirmation with the Shapiro-Wilk test of normality of residuals. 

Calculate AICc and their difference (delta_AICc) 

likelihood_lognormal = sum(log(dlnorm(y, log(a_LM * x ^ b_LM), sd_LM))) 

likelihood_normal = sum(log(dnorm(y, a_NLM * x ^ b_NLM, sd_NLM))) 

n = length(x) 

k=length(coefficients(linear_model))+1 

AICc_lognormal = 2 * k - 2 * likelihood_lognormal + 2 * k * (k + 1) / (n - k - 1) 

AICc_normal = 2 * k - 2 * likelihood_normal + 2 * k * (k + 1) / (n - k - 1) 

delta_AICc = AICc_normal - AICc_lognormal 

AICc comparison 

The below-mentioned model comparison codes have been designed to 

automatically select the best modeling approach and the model summary based on the 

above criteria.  If the visual diagnostics like residual diagnostic plots and residual density 

plots of residuals do not provide sufficient visual cues with Shapiro-Wilk test of normality 

for model selection at delta_AICc < - 2, then increase it to delta_AICc < - 4 at both the 

below-highlighted places. 

if (delta_AICc < - 2){ 

writeLines ("Better support for additive normal error assumption. Go for nonlinear power 

regression NLR") 

list(method = "Nonlinear Model", summary = summary(nonlinear_model), a = a_NLM, b 

= b_NLM, a_confint = confint(nonlinear_model)[1, ], b_confint = 

confint(nonlinear_model)[2, ], AICc = AICc_normal, RMSE = 

RMSE(predict(nonlinear_model), y)) 
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  } else if (delta_AICc > 2){ 

writeLines("Better support for multiplicative log-normal error assumption. Go for log-

transformed linear regression LR.") 

list(method = "Log-transformed Linear Model", summary = summary(linear_model), a = 

a_LM, b = b_LM, a_confint = exp(confint(linear_model)[1, ]), b_confint = 

confint(linear_model)[2, ], AICc = AICc_lognormal, RMSE = 

RMSE(exp(predict(linear_model)), y)) 

  } else { 

writeLines ("Equal support for both the multiplicative log-normal error and additive 

normal error assumptions. Go for model averaging MA. Now attempting model averaging 

to get mean and confidence interval of coefficients by boot strapping") 

  library(boot) 

{ 

# Attempting model averaging to get mean and confidence interval of 

coefficients by boot strapping 

boot.est=function(dat, indices) { 

dat.sub=dat[indices, ] 

names(dat.sub) = c("x", "y") 

linear_model_bs = lm(log(y) ~ log(x), dat = dat.sub) 

a_LM_bs = exp(coef(summary(linear_model_bs))[1, 1]) 

b_LM_bs = coef(summary(linear_model_bs))[2, 1] 

sd_LM_bs = sd(log(dat.sub$y) - (log(a_LM_bs) + b_LM_bs * log(dat.sub$x))) 

a_LM_bs.CI = confint(linear_model_bs)[1, ] 

b_LM_bs.CI = confint(linear_model_bs)[2, ] 

nonlinear_model_bs = nls(y ~ a * x ^ b, start = list(a = a_LM_bs, b = b_LM_bs), dat = 

dat.sub, 

control = nls.control(maxiter = 2000, warnOnly = TRUE)) 

a_NLM_bs = coef(summary(nonlinear_model_bs))[1, 1] 

b_NLM_bs = coef(summary(nonlinear_model_bs))[2, 1] 

sd_NLM_bs = sd(dat.sub$y - a_NLM_bs * dat.sub$x ^ b_NLM_bs) 

a_NLM_bs.CI = confint(nonlinear_model_bs)[1, ] 

b_NLM_bs.CI = confint(nonlinear_model_bs)[2, ] 

likelihood_lognormal_bs = sum(log(dlnorm(dat.sub$y, log(a_LM_bs * dat.sub$x ^ 

b_LM_bs), sd_LM_bs))) 

likelihood_normal_bs = sum(log(dnorm(dat.sub$y, a_NLM_bs * dat.sub$x ^ b_NLM_bs, 

sd_NLM_bs))) 

n = length(x) 

k = 3 
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AICc_lognormal_bs = 2 * k - 2 * likelihood_lognormal_bs + 2 * k * (k + 1) / (n - k - 1) 

AICc_normal_bs = 2 * k - 2 * likelihood_normal_bs + 2 * k * (k + 1) / (n - k - 1) 

AICc.min = min(AICc_lognormal_bs, AICc_normal_bs) 

weight_lognormal_bs = exp(-(AICc_lognormal_bs - AICc.min)/2) 

weight_normal_bs = exp(-(AICc_normal_bs - AICc.min)/2) 

lognormal_weightage_bs = weight_lognormal_bs / (weight_lognormal_bs + 

weight_normal_bs) 

normal_weightage_bs = weight_normal_bs / (weight_lognormal_bs + 

weight_normal_bs) 

a_boot = a_LM_bs * lognormal_weightage_bs + a_NLM_bs * normal_weightage_bs 

b_boot  = b_LM_bs * lognormal_weightage_bs + b_NLM_bs * normal_weightage_bs 

return(c(a_boot, b_boot )) 

} 

dat.boot=boot(data = as.data.frame(cbind(x, y)), statistic = boot.est, R = 1000) 

a_confint_boot = boot.ci(dat.boot, index = 1, type = "perc")$perc[4:5] 

b_confint_boot = boot.ci(dat.boot, index = 2, type = "perc")$perc[4:5] 

} 

#Calculating AICc for model averaging 

a_MA =dat.boot$t0[1] 

b_MA=dat.boot$t0[2] 

sd_MA = sd(y- a_MA* x ^ b_MA) 

n = length(x) 

k=3  

likelihood_MA = sum(log(dnorm(y, a_MA * x ^ b_MA, sd_MA))) 

AICc_MA = 2 * k - 2 * likelihood_MA + 2 * k * (k + 1) / (n - k - 1) 

#Calculating RMSE for model averaging  

library(caret) 

RMSE_MA =RMSE(a_MA *x^ b_MA, y) 

list(method = "Model Averaging", a = dat.boot$t0[1], b = dat.boot$t0[2], a_confint = 

a_confint_boot, b_confint = b_confint_boot, AICc = AICc_MA, RMSE = RMSE_MA) 

} 

Note: Depending on the model selection criterion, it will recommend the best modeling approach, 

i.e., log-transformed linear model or nonlinear model and will also produce the results from the 

appropriate model. If there is a tie or model ambiguity, then it will try for model averaging and 

estimation of confidence interval by bootstrapping. It must be noted that all the dependent R-

package should be installed prior to execution of the codes without which error messages will be 

flagged. 
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2.12.6. Model Diagnosis 

Check for the important model assumptions, i.e., homoscedasticity (homogeneity 

of variances or residual distribution) and normal distribution of residuals through residual 

diagnostic plots. 

Residual diagnostic plots for linear model 

Use the following codes to plot residual diagnostic plots for linear model: 

par(mfrow = c(2, 2)) 

plot(linear_model) 

par(mfrow = c(1, 1)) 

 

Residual diagnostic plot for nonlinear model 

Use the following codes to plot residual diagnostic plots for nonlinear model: 

library(nlstools) 

residuals_NLM<-nlsResiduals(nonlinear_model) 

plot(residuals_NLM) 
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Understanding the output of residual diagnostic plot 

Consider the fitted values vs. standardized residuals plot for homoscedasticity of 

variance and Q-Q plot for normality of variance. For homoscedasticity, the residuals should 

be randomly and evenly distributed both above and below the horizontal lines passing at 

zero. Any particular pattern like conical shape shows a gradual increase or decrease of 

variance (heteroscedasticity). Similarly, for the residuals to be normal, they should be 

closely aligned with the diagonal line in the Q-Q plot. Departure from the line shows a lack 

of normal distribution of the residuals. 

Comparative residual density plot for normality of residuals 

Use the following codes to comparative the residual density plots of the competing 

models (linear model vs. nonlinear model) for their normality of residuals: 

standardized_residuals_LM = rstandard(linear_model) 

standardized_residuals_NLM = nlsResiduals(nonlinear_model)$resi2[,2] 

plot(density(standardized_residuals_NLM), lty="dashed", lwd = 2, col="black") 

polygon(density(standardized_residuals_NLM), border=NA, col = rgb(1, 0, 0, alpha = 0.5)) 

lines(density(standardized_residuals_LM), lwd = 1, col = "black") 

polygon(density(standardized_residuals_LM), col = rgb(0, 1, 0, alpha = 0.5))  

legend(x = "topright", title="Residuals", legend=c("Linear Model", "Nonlinear Model"),  fill 

= c("green","red")) 
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Shapiro-Wilk test of normality of residuals 

shapiro.test(standardized_residuals_LM) 

shapiro.test(standardized_residuals_NLM) 

  

Understanding the output of the Shapiro-Wilk test 

The normality test will produce W-score and p-value for the residual. As the null 

hypothesis (H0) of the test is residuals are normally distributed, a p-value of higher than 

0.05 (P > 0.05) shows that residuals are normally distributed. A p-value of less than 0.05 (P 

< 0.05) shows that the residuals are not normally distributed. In the present case for the 

log-transformed linear model, the p-value is 0.1053, which shows that the residuals are 

normally distributed, whereas the residuals from the nonlinear model are not normally 

distributed because of their p-value of 0.0007. Similarly, higher the W-score better is the 

model in terms of normality of residuals. 

2.12.7. Plotting the length-weight relationship 

Both the model-predicted mean values and their corresponding confidence 

intervals (lower and upper bounds) are essential for generating informative plots. These can 

be prepared using the following approaches: 

Model prediction and error propagation for the linear model 

The following code can be used to predict mean values along with their confidence 

intervals through model-based error propagation in a linear regression framework. 

new_x<-data.frame(x=seq(min(x), max(x), (max(x)- min(x))*0.010)) 
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prediction_LM<- predict(linear_model, newdata = new_x, interval="confidence") 

prediction_LM<-as.data.frame(exp(prediction_LM)) 

FIT1<- prediction_LM$fit  

UL1<- prediction_LM$lwr 

LL1<- prediction_LM$upr 

prediction_LM_data<-cbind(new_x, FIT1, LL1, UL1) 

Plotting linear model output 

After deriving the predictions and confidence intervals, visualize the linear model 

output using following code: 

fig1<- ggplot(data=NULL, aes(x, y)) +  geom_line(data=prediction_LM_data, aes(x=x, 

y=FIT1), linetype = "dashed", color="darkgreen")+ geom_line(data=prediction_LM_data, 

aes(x=x, y=LL1), linetype = "blank", color="darkgreen")+ 

geom_line(data=prediction_LM_data, aes(x=x, y=UL1), linetype = "blank", 

color="darkgreen")+ theme_classic(base_size = 15)+xlab("Length (cm)") + ylab("Body 

weight (g)")+ geom_ribbon(data=prediction_LM_data, aes(x = x, y=FIT1, ymin = LL1, 

ymax = UL1), fill = "green", alpha=0.2)+theme(text=element_text(size=16, 

family="serif"))+geom_point(data=LWR_data, aes(x=x, y=y), color="red") 

fig1 

 

Model prediction and error propagation for nonlinear model  

The following code can be used to predict mean values along with their confidence 

intervals through model-based error propagation in a nonlinear regression framework. 
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new_x<-data.frame(x=seq(min(x), max(x), (max(x)- min(x))*0.010)) 

library(propagate) 

prediction_NLM<-predictNLS(nonlinear_model, newdata = new_x, nsim = 10000) 

FIT2<- prediction_NLM$summary$Prop.Mean.1  

UL2<- prediction_NLM$summary$"Prop.97.5%" 

LL2<- prediction_NLM$summary$"Prop.2.5%" 

prediction_NLM_data<-cbind(new_x, FIT2, LL2, UL2) 

Plotting nonlinear model output 

After deriving the predictions and confidence intervals, visualize the nonlinear 

model output using following code: 

fig2<- ggplot(data=NULL, aes(x, y)) +  geom_line(data=prediction_NLM_data, aes(x=x, 

y=FIT2), linetype = "dashed", color="darkgreen")+ 

geom_line(data=prediction_NLM_data, aes(x=x, y=LL2), linetype = "blank", 

color="darkgreen")+ geom_line(data=prediction_NLM_data, aes(x=x, y=UL2), linetype = 

"blank", color="darkgreen")+ theme_classic(base_size = 15)+xlab("Length (cm)") + 

ylab("Body weight (g)")+ geom_ribbon(data=prediction_NLM_data, aes(x = x, y=FIT2, 

ymin = LL2, ymax = UL2), fill = "green", alpha=0.2)+theme(text=element_text(size=16, 

family="serif"))+geom_point(data=LWR_data, aes(x=x, y=y), color="red") 

fig2 
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2.12.8. Test for isometric growth 

Once the LWR is established, it is necessary to understand if the growth of the 

species is isometric or allometric. If the slopes (b) of regression differs significantly from 

the theoretical expectation of 3 (i.e., b ≠ 3), then the growth is allometric. On the other 

hand, if the slopes (b) of regression is not significantly different from the theoretical 

expectation of 3 (i.e., b = 3), then the growth is considered isometric. Several tests are used 

to check if the growth is isometric or allometric. The R implementation of some of these 

tests is mentioned below. 

t-test for isometric growth 

Use the following code to perform a t-test and determine whether the estimated b 

value significantly differs from 3. 

model<-lm(log(y) ~ log(x)) 

ttest <- function(model, coefnum, val){ 

 co <- coef(summary(model)) 

 tstat <- (co[coefnum,1]-val)/co[coefnum,2] 

 2 * pt(abs(tstat), model$df.residual, lower.tail = FALSE) 

} 

ttest(model, 2, 3) 

Understanding the output of t-test 

The above function tests if the 2nd parameter or coefficient (i.e., b) in the 

regression (i.e., model) is similar to the theoretical value of 3, which is necessary to declare 

the growth as isometric. Only the P-value is obtained from the above function. As the null 

hypothesis (H0) expects b=3, a P-value higher than 0.05 (P > 0.05) shows that the growth 

is isometric. A P-value lower than 0.05 (P < 0.05) results in rejection of the null hypothesis 

and acceptance of the alternative hypothesis, which states that b≠3 (the growth is 

allometric. 

Wald test for isometric growth 

Use the following code to perform a Wald test and determine whether the estimated b value 

significantly differs from 3. 

library(car)  

model<-lm(log(y) ~ log(x)) 

linearHypothesis(model, hypothesis.matrix= c(0, 1), rhs=3)  

Understanding the output of Wald test 

The argument hypothesis.matrix is used to define the coefficient that is tested. 

Use zero for the first coefficient (here, the first coefficient is intercept, i.e., a) and one for 

the second coefficient in question (here, the second coefficient is slope, i.e., b). Finally, rhs 

(i.e., right-hand side) defines the theoretical value for which the hypothesis is being tested 

(here, b=3). For the above condition, the null hypothesis (H0) is b=3 and the alternative 
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hypothesis is b≠3. As the null hypothesis (H0) expects b=3, a P-value higher than 0.05 (P > 

0.05) shows that the growth is isometric. A P-value lower than 0.05 (P < 0.05) results in 

rejection of the null hypothesis and acceptance of the alternative hypothesis, which states 

that b≠3 (the growth is allometric. 

 

2.12.9. Test for difference in body weights between the sexes 

Once the LWR is established, it is sometime necessary to understand if the 

increase in the body weight is same or different between males and females. This is done 

using an analysis of the covariance (ANCOVA) test. The Analysis of covariance (ANCOVA) 

is a statistical procedure that is followed to compare multiple regression lines. ANCOVA 

will test if the regression lines significantly differ in terms of slope or intercept. ANCOVA is 

used when there are two measurement variables (here, length and weight of fish) and one 

more nominal or categorical variable (here, sex of the fish) that categorize the entire dataset 

into two or more groups (here, males and females). The procedure for its implementation 

using an R interface is given below. 

Analysis of Covariance (ANCOVA) 

Importing length-weight data to R Interface 

It is an optional step if the analysis is freshly starting as a new R session. If the 

analysis is continuing after establishing the LWRs from the previous steps, then there is no 

need to import the data again. To freshly import length-weight data, refer to 

‘2.12.2.Importing length-weight data to R Interface’. 

Defining the variables 

Define the two measurement variables, i.e., x for the independent measurement 

variable (here, length of the fish, preferably in ‘cm’) and ‘y’ for the dependent measurement 

or response variable (here, weight of the fish, preferably in ‘g’). Additionally, ‘sex’ of fish can 

be assigned as a categorical variable (as factor) for ANCOVA to observe the difference in 

weights between the sexes. 

x<- as.vector(LWR_data$length) 

y<- as.vector(LWR_data$weight) 

sex<-as.factor(LWR_data$sex) 

Building the model for testing the difference in slopes (b) of the regressions 
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library(car) 

b_test_model<-lm(log(y)~log(x)+sex+log(x):sex) 

Anova(b_test_model, type="II") 

 

Understanding the output of the slope test 

Check the interaction effect of length and sex (Here, log(x): sex) for significance. If 

it is significant (P<0.05), then there is a significant difference in the slope of LWRs between 

the categorical variable, i.e., sex (here, between males and females). In the present example, 

the P-value of 0.04015 clearly shows that there is a significant difference in the slope (b) of 

LWRs between males and females. If the interaction is not significant, then the intercept 

should be checked for any significant difference using the following steps. 

Building the model for testing the difference in intercepts (a) of the 

regressions 

library(car) 

a_test_model <-lm(log(y)~log(x)+sex) 

Anova(a_test_model, type="II") 

 

Understanding the output of the intercept test 

Check the categorical variable (here, sex) for significance. If it is significant 

(P<0.05), then there is a significant difference between the intercept (a) of LWRs between 

the categorical variable, i.e., sex (here, between males and females). In the present example, 

the P-value of 4.432 × 10-8 clearly shows that there is a significant difference in the 

intercept (a) of LWRs between males and females. 

Note: if either of the coefficients (either a or b) is significantly different, then the LWRs are 

significantly different. This is an illustration to test the difference of LWRs between the sexes. The 
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same principle can be followed to test the difference in LWRs between maturity stages (juveniles 

vs. adults) or between the species (species 1 vs. species 2) etc. 

 

References 

Journal articles 

Brewer, M.J., Butler, A., Cooksley, S.L., & Freckleton, R. (2016). The relative 

performance of AIC, AICc and BIC in the presence of unobserved heterogeneity. 

Methods in Ecology and Evolution, 7, 679–692. https://doi.org/10.1111/2041-

210X.12541 

Cawley, G.C., & Janacek, G.J. (2010). On allometric equations for predicting body mass 

of dinosaurs. Journal of Zoology, 280, 355–361. https://doi.org/10.1111/j.1469-

7998.2009.00665.x 

Clark, F.N. (1928). The weight-length relationship of the California sardine (Sardina 

caerulea) at San Pedro. Fish Bulletin, No. 12, 59 pp. 

https://escholarship.org/uc/item/5r71r464 

Dash, G., Sen, S., Pradhan, R.K., Ghosh, S., Jose, J., & Jayasankar, J. (2023a). Modeling 

framework for establishing the power law between length and weight of fishes 

and a meta-analysis for validation of LWRs for six commercially important 

marine fishes from the northwestern Bay of Bengal. Fisheries Research, 257, 

106496, 1–13. https://doi.org/10.1016/j.fishres.2022.106496 

Dash, G., Sen, S., Pradhan, R.K., Ghosh, S., & Jose, J. (2023b). Application of 

information theory-based decision support system for high precision modeling 

of the length-weight relationship (LWR) for five marine shrimps from the 

northwestern Bay of Bengal. Regional Studies in Marine Science, 66, 103140, 

1–10. https://doi.org/10.1016/j.rsma.2023.103140 

De Giosa, M., & Czerniejewski, P. (2016). A generalized, nonlinear regression approach 

to the length-weight relationship of European perch (Perca fluviatilis L.) from 

the Polish coast of the southern Baltic Sea. Archives of Polish Fisheries, 24, 

169–175. https://doi.org/10.1515/aopf-2016-0014 

Froese, R. (2006). Cube law, condition factor and weight–length relationships: history, 

meta-analysis and recommendations. Journal of Applied Ichthyology, 22, 241–

253. https://doi.org/10.1111/j.1439-0426.2006.00805.x 

Hurvich, C.M., & Tsai, C.-L. (1995). Model selection for extended quasi-likelihood models 

in small samples. Biometrics, 51, 1077–1084. https://doi.org/10.2307/2533006 

Keys, A.B. (1928). The weight-length relationship in fishes. Proceedings of the National 

Academy of Sciences of the United States of America, 14(12), 922–925. 

https://doi.org/10.1073/pnas.14.12.922 

Sugiura, N. (1978). Further analysts of the data by Akaike’s information criterion and the 

finite corrections. Communications in Statistics - Theory and Methods, 7(1), 

13–26. https://doi.org/10.1080/03610927808827599 

https://doi.org/10.1111/2041-210X.12541
https://doi.org/10.1111/2041-210X.12541
https://doi.org/10.1111/j.1469-7998.2009.00665.x
https://doi.org/10.1111/j.1469-7998.2009.00665.x
https://escholarship.org/uc/item/5r71r464
https://doi.org/10.1016/j.fishres.2022.106496
https://doi.org/10.1016/j.rsma.2023.103140
https://doi.org/10.1515/aopf-2016-0014
https://doi.org/10.1111/j.1439-0426.2006.00805.x
https://doi.org/10.2307/2533006
https://doi.org/10.1073/pnas.14.12.922
https://doi.org/10.1080/03610927808827599


Tropical fish stock assessment using R  

 

Page | 132 

Xiao, X., White, E.P., Hooten, M.B., & Durham, S.L. (2011). On the use of log-

transformation vs. nonlinear regression for analyzing biological power laws. 

Ecology, 92(10), 1887–1894. https://doi.org/10.1890/11-0538.1 

Books 

Burnham, K.P., & Anderson, D.R. (2002). Model selection and multimodel inference: A 

practical information-theoretic approach (2nd ed.). Springer-Verlag, New York, 

USA. https://doi.org/10.1007/b97636 

Ogle, D.H. (2015). Introductory fisheries analysis with R. Chapman and Hall/CRC, Boca 

Raton, USA, p.317. https://doi.org/10.1201/9781315371986 

Online resources 

McDonald, J.H. Analysis of covariance. In: Handbook of Biological Statistics. 

https://www.biostathandbook.com/ancova.html 

Mangiafico, S.S. Analysis of covariance. In: An R Companion for the Handbook of 

Biological Statistics. https://rcompanion.org/rcompanion/e_04.html 

2.13. Length at Maturity 

Introduction 

The simple binomial (logistic) regression can be used to determine the length at 

maturity (LM50), i.e., the length at which 50% of the population attains maturity. This can 

be applied with data that have only two variables, i.e., (1) independent measurement 

variable (here, length of the animal), and (2) dependent nominal variable with two possible 

outcomes (here, maturity condition, i.e., Immature or Mature). Simple logistic regression 

resembles linear regression, except for the fact that the dependent variable is nominal, 

rather than a measurement variable. For instance, when examining the relationship 

between length and weight (LWR), linear regression is used because the dependent variable 

(weight of the animal) is a measurable quantity expressed in units such as grams or 

kilograms, unlike the nominal or categorical dependent variables, which are expressed as 

either immature or mature, male or female, pass or fail, etc. The main aim of the simple 

binomial (logistic) regression is to predict the probability of obtaining a specific value of the 

nominal variable (here, mature individual) based on the measurement variable (here, 

length of the animal). In simple word, the goal of the exercise is to determine the 

probabilities of maturity for the different sizes of the animal. The aim is achieved by fitting 

the following equation with the data: 

ln (
𝑌

1 − 𝑌
) = 𝑎 + 𝑏𝑋 

 

The above equation can be rearranged as: 

𝑌 =
1

1 + 𝑒𝑥𝑝−(𝑎+𝑏∗𝑋)
=

𝑒𝑥𝑝𝑎+𝑏∗𝑋

1 + 𝑒𝑥𝑝𝑎+𝑏∗𝑋
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Where, X is the independent measurement variable (here, length of the fish), Y is 

the dependent categorical variable (here, probability of maturity, i.e., proportion of the 

matured specimens compared to the total specimen at a given length); a & b are the 

intercept and slope of the equation, respectively. Since the probability of maturity (Y) falls 

in a narrow range from 0 to 1, it creates difficulty while fitting the regression. Therefore, to 

overcome the situation, the odds, i.e., Y/(1-Y), which is the ratio between probability of 

mature/probability of immature, are used for the regression. Finally, taking the natural log 

of the odds makes the variable more appropriate for regression analysis. The coefficients 

derived from the regression are subsequently used to estimate the length at which different 

levels of maturity happen using the rearranged form of the above equation as follows: 

𝑋 =
ln (

𝑌
1 − 𝑌) − 𝑎

b
 

For example to derive the X, i.e., the length (LM25) at which 25% maturity happens 

(Y=0.25) populate the values in the above equation as mentioned below: 

𝑋 =
ln (

𝑌
1 − 𝑌) − 𝑎

b
= LM25 =

ln (
0.25

1 − 0.25) − 𝑎

b
=

ln (
0.25
0.75) − 𝑎

b
=

ln (
1
3) − 𝑎

b
 

For example to derive the X, i.e., the length (LM50) at which 50% maturity happens 

(Y=0.50) populate the values in the above equation as mentioned below: 

𝑋 =
ln (

𝑌
1 − 𝑌) − 𝑎

b
= LM50 =

ln (
0.50

1 − 0.50) − 𝑎

b
=

ln (
0.50
0.50) − 𝑎

b
=

ln(1) − 𝑎

b
 

For example to derive the X, i.e., the length (LM75) at which 75% maturity happens (Y=0.75) 

populate the values in the above equation as mentioned below: 

𝑋 =
ln (

𝑌
1 − 𝑌) − 𝑎

b
= LM75 =

ln (
0.75

1 − 0.75) − 𝑎

b
=

ln (
0.75
0.25) − 𝑎

b
=

ln(3) − 𝑎

b
 

For example to derive the X, i.e., the length (LM95) at which 95% maturity happens 

(Y=0.95) populate the values in the above equation as mentioned below: 

𝑋 =
ln (

𝑌
1 − 𝑌

) − 𝑎

b
= LM95 =

ln (
0.95

1 − 0.95
)− 𝑎

b
=

ln (
0.95
0.05

) − 𝑎

b
=

ln(19) − 𝑎

b
 

The length and age at which different levels of maturity happen can be summarised as 

follows: 

The length (LM25) and age 

(tm25) at which 25% of the 

fish in the population 

matures 

𝑳𝑴𝟐𝟓 = [
𝐥𝐧(

𝟏
𝟑) − 𝒂

𝒃
] 𝒕𝒎𝟐𝟓 =

𝐥𝐨𝐠 (𝟏 −
𝑳𝑴𝟐𝟓
𝑳∞

)

−𝐊
 

The length (LM50) and age 

(tm50) at which 50% of the 

fish in the population 

matures 

𝐿𝑀50 = [
−𝑎

𝑏
] 

𝑡𝑚50 =
log (1 −

𝐿𝑀50
𝐿∞

)

−K
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The length (LM75) and age 

(tm75) at which 75% of the 

fish in the population 

matures 

𝐿𝑀75 = [
ln(3) − 𝑎

𝑏
] 

𝑡𝑚75 =
log (1 −

𝐿𝑀75
𝐿∞

)

−K
 

The length (LM95) and age 

(tm95) at which 95% of the 

fish in the population 

matures 

𝐿𝑀95 = [
ln(19) − 𝑎

𝑏
] 

𝑡𝑚95 =
log (1 −

𝐿𝑀95
𝐿∞

)

−K
 

Length at Maturity: R Implementation 

2.13.1. Requirement for Length at Maturity 

Installing and loading dependent R-packages 

Install the dependent R-packages dplyr for better data handling and ggplot2 for better data 

visualization.  

install.packages("dplyr") #Do not install again if already installed 

install.packages("ggplot2") #Do not install again if already installed 

Load the dependent R-packages using the following codes:  

library(dplyr) 

library(ggplot2) 

Length-at-maturity data  

The Length-at-maturity data should be available in the following format for the analysis. 

Refer ‘Example data file download link’ in the last page to download and use the 

example data. 

Environment> Import Dataset> from Excel and then browse the file on disk and import. 

Excel Import Window Lengths and Maturity Stage  

(maturity_data) 
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Note: Use the lengths in ‘cm’ to maintain uniformity during subsequent calculations. IM is the 

‘immature’ and M is the ‘mature’. 

2.13.2. Importing length-at-maturity data to R Interface 

Click the Import Dataset of the Environment tab (top right side panel) and then 

select from Excel. Browse the Excel file (e.g., maturity_data) and then import. 

The maturity stages information are in character form (‘IM’ and ‘M’) which need to be 

converted into factors (0 or 1). Use the following code to factories the maturity stages: 

maturity_data$maturity_stage <-as.factor(maturity_data$ maturity_stage) 

2.13.3. Modeling the relationship between length and maturity stage 

Generalized linear modeling (GLM) 

To fit a simple logistic regression using the generalized linear model (GLM), use the 

following code: 

model<-glm(maturity_stage ~length, data = maturity_data, family = binomial(link = 

"logit")) 

To get the detailed information on model fitting (model coefficients: intercept and slope, p-

value, goodness of fit: Deviance & AIC, use the following code 

summary(model) 

Understanding the output of generalized linear modeling 

 

The summary(model) code produces a summary of the model. The summary code 

gives the model coefficients, i.e., intercept (a) and slope (b). Apart from this, the summary 

also produces standard error (SE), and p-value for model coefficients. Since it is a logistic 
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regression model, it does not produce the R-squared values because of a lack of relevance. 

Alternatively, Akaike Information Criterion (AIC) score is generated, which can evaluate 

model performance for the multi-model comparison. The summary code also produces 

deviance and degrees of freedom of the model. The confint(model) code produces a 95% 

confidence interval of the model parameters (a & b). 

2.13.4. Plotting the length at maturity 

Model prediction and error propagation for logistic regression 

Create a new X-axis variable (independent variable, i.e., lengths) for model 

prediction using the following code. In this example, new lengths ranging from minimum to 

maximum lengths in the example file (e.g., maturity_data) have been created with a gradual 

increment (step size) of 0.001. 

XV<-seq(min(maturity_data$length), max(maturity_data$length), 0.001) 

Predict the Y-axis variable (dependent variable, i.e., maturity probability) and its 

confidence interval (lower and upper limits) using the model parameters. In this example, 

type = ‘link’ has been used to produce the values of maturity (in the Y-axis) for each length 

(in the X-axis) as the log of odds. Alternatively, to produce the values of maturity (in Y-axis) 

for each length (in X-axis) as the probability of maturity, use type = ‘response’. 

YV<-predict(model, list(length=XV), type = "link", se.fit=TRUE) 

As the values of maturity (in Y-axis) for each length (in X-axis) has been extracted 

as the log of odds using type = ‘link’ function, they need to be changed to probabilities using 

below-mentioned plogis code.  Create a new data frame (e.g., propdata) containing mean 

predicted value (i.e., FIT) and its confidence interval (lower, i.e., LL and upper limits, i.e., 

UL). 

FIT<-plogis(YV$fit) 

LL<-plogis(YV$fit-1.96*YV$se.fit) 

UL<-plogis(YV$fit+1.96*YV$se.fit) 

propdata<-data.frame(XV, FIT, LL, UL) 

Deriving means and confidence intervals for length at maturity 

#Use the following codes to calculate means of LM25, LM50, LM75 and LM95 

LM25<- as.numeric((log(1/3)-coef(model)[1])/coef(model)[2]) 

LM50<- as.numeric((log(1)-coef(model)[1])/coef(model)[2]) 

LM75<-as.numeric((log(3)-coef(model)[1])/coef(model)[2]) 

LM95<-as.numeric((log(19)-coef(model)[1])/coef(model)[2]) 

#Use the following codes to calculate confidence intervals of LM25, LM50, LM75 and LM95 

lower_LM25<-as.numeric((tail(propdata %>% filter(UL<= 0.25), n=1))[1])  

upper_LM25<-as.numeric((tail(propdata %>% filter(LL<= 0.25), n=1))[1]) 

lower_LM50<-as.numeric((tail(propdata %>% filter(UL<= 0.5), n=1))[1])  

upper_LM50<-as.numeric((tail(propdata %>% filter(LL<= 0.5), n=1))[1]) 
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lower_LM75<-as.numeric((tail(propdata %>% filter(UL<= 0.75), n=1))[1]) 

upper_LM75<-as.numeric((tail(propdata %>% filter(LL<= 0.75), n=1))[1]) 

lower_LM95<-as.numeric((tail(propdata %>% filter(UL<= 0.95), n=1))[1]) 

upper_LM95<-as.numeric((tail(propdata %>% filter(LL<= 0.95), n=1))[1]) 

#Use the following codes to prepare a data frame on means and confidence intervals of 

lengths at maturities 

LM_confidence <- data.frame ( 

  Parameter = c("LM25", "LM50", "LM75", "LM95"), 

  Mean = c(LM25, LM50, LM75, LM95), 

  Lower_95_CI = c(lower_LM25, lower_LM50, lower_LM75, lower_LM95), 

  Upper_95_CI = c(upper_LM25, upper_LM50, upper_LM75, upper_LM95)) 

LM_confidence 

Deriving means and confidence intervals of age at maturity 

#Define the L∞ and K (ex: L∞ = 13.95 cm and K = 1.71 yr-1) from the previous analysis 

Linf<-13.95 

K<-1.71 

#Back calculate the means and confidence intervals of age at different levels of maturity 

from the above calculated lengths using inverse Von Bertalanfy’s equation 

tLM50<-(log(1-(LM50/Linf)))/-K 

lower_tLM50<-(log(1-(lower_LM50/Linf)))/-K 

upper_tLM50<-(log(1-(upper_LM50/Linf)))/-K 

tLM75<-(log(1-(LM75/Linf)))/-K  

lower_tLM75<-(log(1-(lower_LM75/Linf)))/-K 

upper_tLM75<-(log(1-(upper_LM75/Linf)))/-K 

tLM95<-(log(1-(LM95/Linf)))/-K 

lower_tLM95<-(log(1-(lower_LM95/Linf)))/-K 

upper_tLM95<-(log(1-(upper_LM95/Linf)))/-K 

#Use the following codes to prepare a data frame on means and confidence intervals of ages 

at maturities 

tLM_confidence <- data.frame ( 

  Parameter = c("tLM25", "tLM50", "tLM75", "tLM95"), 

  Mean = c(tLM25, tLM50, tLM75, tLM95), 

  Lower_95_CI = c(lower_tLM25, lower_tLM50, lower_tLM75, lower_tLM95), 

  Upper_95_CI = c(upper_tLM25, upper_tLM50, upper_tLM75, upper_tLM95)) 

tLM_confidence 
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Plotting the length at maturity 

library(ggplot2) 

ggplot(data=NULL, aes(x, y)) + geom_line(data=propdata, aes(x=XV, y=FIT), linetype = 

"solid", color="darkgreen")+ geom_line(data=propdata, aes(x=XV, y=LL), linetype = 

"blank", color="darkgreen")+ geom_line(data=propdata, aes(x=XV, y=UL), linetype = 

"blank", color="darkgreen")+ geom_ribbon(data=propdata, aes(x = XV, y=FIT, ymin = LL, 

ymax = UL), fill = "green", alpha=0.2)+ geom_point(aes(x=LM50, y=0.5), size=3, 

colour="red")+geom_point(aes(x=LM75, y=0.75), size=3, colour="orange") + 

geom_point(aes(x=LM95, y=0.95), size=3, colour="blue")+ 

geom_segment(aes(x=min(XV), y=0.5), xend=LM50, yend=0.5, linetype="dashed") + 

geom_segment(aes(x=LM50, y=0.0), xend=LM50, yend=0.5, linetype="dashed")+ 

geom_segment(aes(x=min(XV), y=0.75), xend=LM75, yend=0.75, linetype="dashed") + 

geom_segment(aes(x=LM75, y=0.0), xend=LM75, yend=0.75, linetype="dashed")+ 

geom_segment(aes(x=min(XV), y=0.95), xend=LM95, yend=0.95, linetype="dashed") + 

geom_segment(aes(x=LM95, y=0.0), xend=LM95, yend=0.95, linetype="dashed")+ 

theme_classic(base_size = 15)+xlab("Length (cm)") + ylab("Maturity 

proportion")+scale_x_continuous(expand = c(0,0), limits = c(min(XV),max(XV)), breaks = 

seq(min(XV), max(XV),((max(XV)- min(XV))/10)))+ scale_y_continuous(expand = 

c(0,0),limits = c(-0.01,1.0)) 
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2.14. Length-Based Spawning Potential Ratio (LBSPR) 

Introduction 

Length-based spawning potential ratio (LB-SPR) has been developed for data-

limited fisheries by Hordyk et al. (2016) for the estimation of SPR as a key management 

reference point. Spawning Potential Ratio (SPR) is a well adopted Biological Reference 

Point (BRP) to inform management decision. The method assumes that the length 

composition data represents the exploited population, which is at an equilibrium and 

steady state.  The initial age-structured SPR model developed by Hordyk et al. (2015a and 

2015b) assumes that selectivity is age-based. The model assumes that younger fish grow 

quickly to reach larger sizes (a "regeneration" of large-sized fish despite high mortality) and 

therefore, large fish are expected to exist in the population even under high fishing 

mortality. This assumption overestimates fishing mortality for a given size structure, as it 

does not fully account for the effects of size-dependent fishing. The age-structured SPR 

model also under-estimates the SPR level of the stock. On the contrary, the length-

structured SPR (LBSPR) model incorporates size-dependent selectivity and accounts for 

Lee's Phenomenon (Lee, 1912), which suggests that larger individuals within an age group 

are disproportionately removed under size-selective fishing. The ‘Lee's Phenomenon’ 

assumes that the faster growing fish in an age group attain the length at which they are 

vulnerable to the fishing gear before the slower growing individuals, and thus are exposed 

to a higher cumulative fishing mortality throughout their lifetime. As a result, when subject 

to fishing mortality, the size-at-age distribution of older age classes is no longer normally 

distributed (truncated), as the larger individuals in each age class are reduced in number 

relative to the smaller individuals in the same age class. Therefore, the model segregates the 

population or stock to several growth-type-groups (GTGs) and tracks the cumulative impact 

of size-dependent selectivity and fishing mortality (Hordyk et al., 2016). The LBSPR model 

underestimates fishing mortality rate for a given length class compared to the age-based 

SPR and also overestimates SPR, especially at lower level of SPR and higher value of M/K 

ratio.  

The model can include variable M at size, though M is assumed to be constant as a 

default setting. The method requires at least one year of length structured data representing 

the vulnerable portion of the population under investigation, and can process a time series 

of length frequency data as well. The method requires limited input data on life history, 

such as asymptotic length (Linf), ratio of natural mortality and growth coefficient (M/K) and 

the parameters of maturity ogive (Lm50& Lm95). One interesting advantage with LBSPR is it 

does not require separate estimation of natural mortality rate (M), which is notoriously 

https://www.biostathandbook.com/simplelogistic.html
https://rcompanion.org/rcompanion/e_06.html
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difficult to estimate for an exploited population, rather uses the ratio of M/K, which is 

readily available for most of the species and believed to vary less across stocks and species 

compared to the M (Prince et al., 2015). The analysis produce estimates on the SPR, relative 

fishing mortality (F/M) and selectivity parameters (SL50 & SL95) as the model outputs of the 

analysis. Various steps involved in the model are given below: 

Modeling the number at length 

The number of individuals (number-per-recruit) at a specific length can be derived 

recursively using the following size distribution equation: 

𝑁𝐿+𝑑𝐿 = 𝑁𝐿 (
𝐿∞ − 𝐿 − 𝑑𝐿

𝐿∞ − 𝐿
)

𝑍𝐿
𝐾

 

Where NL: Number of individuals at length L 

NL+dL: Number of individuals at length, L + dL (where dL is a small increment in length) 

ZL = Total mortality rate at length L, calculated as ML+FL.  

Modeling the size dependent mortality 

Contrary to the conventional belief of a constant total mortality (Z) for all size 

groups, the approach uses size dependent total mortalities (ZL) for the analysis. The Z is 

separated into two components: (1) natural mortality (M), and (2) fishing mortality (F). 

Fish at smaller length (age) is assumed to suffer higher natural mortality (M) which 

gradually decreases as fish grow bigger. The size-dependent natural mortality (ML) is 

calculated as:  

𝑀𝐿 = 𝑀𝐿∞
(
𝐿∞

𝐿
)

𝐶

 

Contrary to this, fish at smaller size faces lower fishing mortality (F), which 

increases with size as the fish become increasingly vulnerable to gear. As both M and F 

constitute total mortality (Z), it is assumed to remain constant for all sizes.  

The size-dependent fishing mortality (FL) is calculated as:  

𝐹𝐿 = 𝐹 × 𝑆𝐿  

Where SL is the selectivity (also mentioned as vulnerability) of the fish at length L. This is 

calculated assuming a logistic selectivity as follows: 

𝑆𝐿 =
1

1 + 𝑒𝑥𝑝
(−ln (19)[

𝐿−𝑆𝐿50
𝑆𝐿95−𝑆𝐿50

])
 

Where SL50 and SL95 are the lengths at which 50% and 95% of the fish are vulnerable to 

fishing gear. 

Finally, the size dependent total mortalities (ZL) is calculated as: 

𝑍𝐿 = 𝑀𝐿 + 𝐹𝐿 

 

Modeling the cumulative number (density) between lengths 
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Assuming dL is small enough so that the mortality rate (ZL) is constant within the 

length class, the cumulative density (DL+dL) between the length L and L + dL is calculated 

as: 

𝐷𝐿+𝑑𝐿 =
1

𝑍𝐿

(𝑁𝐿 − 𝑁𝐿+𝑑𝐿) 

As it is a per-recruit model, the above equation is standardized to sum to one across the 

length classes as follows: 

𝐷𝐿+𝑑𝐿 =

1
𝑍𝐿

(𝑁𝐿 − 𝑁𝐿+𝑑𝐿)

∑
1
𝑍𝐿

(𝑁𝐿 − 𝑁𝐿+𝑑𝐿)𝐿

 

Instead of using specific values of ZL, the ZL/K ratio (depicted as θL) can be used in the 

above equation by dividing K with numerator and denominator as: 

𝐷̃𝐿+𝑑𝐿 =

1
𝑍𝐿

𝐾

(𝑁𝐿 − 𝑁𝐿+𝑑𝐿)

∑
1
𝑍𝐿

𝐾

(𝑁𝐿 − 𝑁𝐿+𝑑𝐿)𝐿

=

1
𝜃𝐿

(𝑁𝐿 − 𝑁𝐿+𝑑𝐿)

∑
1
𝜃𝐿

(𝑁𝐿 − 𝑁𝐿+𝑑𝐿)𝐿

 

Modeling the maturity-at-size  

The maturity-at-size (MatL) is modeled assuming logistic maturity as follows: 

𝑀𝑎𝑡𝐿 =
1

1 + 𝑒𝑥𝑝
(−ln (19)[

𝐿−𝑀𝑎𝑡𝐿50
𝑀𝑎𝑡𝐿95−𝑀𝑎𝑡𝐿50

])
 

Where MatL50 and MatL95 are the lengths at which 50% and 95% of the fish are mature. 

Modeling the fecundity-at-size 

Assuming that egg production is proportional to the size of mature fish, fecundity-

at-size is calculated as: 

𝐹𝑒𝑐𝐿 = 𝑀𝑎𝑡𝐿𝐿
𝛽  

Where β reflects the size fecundity relationship. When β is zero, it depicts the reproductive 

output of mature individuals is constant and independent of size, which is appropriate for 

some sharks and other elasmobranchs. 

Modeling the spawning potential ratio (SPR)  

The spawning potential between the lengths (SPL+dL) is calculated as: 

𝑆𝑃 𝐿+𝑑𝐿 =
1

𝑀𝐿 + 𝐹𝐿
× (𝐷̃𝐿 − 𝐷̃𝐿+𝑑𝐿) × 𝐹𝑒𝑐𝐿 

The total spawning potential is calculated as: 

𝑆𝑃 = ∑
1

𝑀𝐿 + 𝐹𝐿
× (𝐷̃𝐿 − 𝐷̃𝐿+𝑑𝐿) × 𝐹𝑒𝑐𝐿

𝐿
 

Finally, the spawning potential ratio is calculated as the proportion of reproduction in the 

fished state relative to the unfished state as: 
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𝑆𝑃𝑅 =
∑

1
𝑀𝐿 + 𝐹𝐿

× (𝐷̃𝐿 − 𝐷̃𝐿+𝑑𝐿) × 𝐹𝑒𝑐𝐿𝐿

∑
1
𝑀𝐿

× (𝐷̃𝐿 − 𝐷̃𝐿+𝑑𝐿) × 𝐹𝑒𝑐𝐿𝐿

 

Dividing both the numerator and denominator with K and, again, dividing FL/K in the 

numerator with M/M will change the equation as follows: 

𝑆𝑃𝑅 =

∑
1

[
𝑀
𝐾

]
𝐿
+ [

𝐹
𝑀

×
𝑀
𝐾

]
𝐿

× (𝐷̃𝐿 − 𝐷̃𝐿+𝑑𝐿) × 𝐹𝑒𝑐𝐿𝐿

∑
1

[
𝑀
𝐾

]
𝐿

× (𝐷̃𝐿 − 𝐷̃𝐿+𝑑𝐿) × 𝐹𝑒𝑐𝐿𝐿

 

Modeling the in terms of Growth-Type-Group (GTG) 

Contrary to the simplistic assumption of a single growth trajectory for all the 

individuals in the population, a more biologically oriented differential growth assumption 

for the different groups of individuals in a cohort is assumed in the GTG model to 

adequately account for the cumulative effect of size-based fishing mortality on the size 

structure of the stock. To account for variability in individual growth patterns, the stock or 

main cohort is assumed to have several sub-cohorts or growth-type-groups (g) that have a 

different L∞ but a common K parameter. Therefore, all the above mentioned calculations 

such as Number at Length (NL+dL), Size dependent mortalities (ML, FL and ZL), Cumulative 

number (density) between lengths (DL+dL), Maturity-at-size (MatL), Fecundity-at-size (FecL) 

and spawning potential ratio (SPR) can be calculated for the ‘g’ numbers of growth-type-

groups (GTGs). The final SPR equation accounting for the growth variability in GTGs can be 

expressed as: 

𝑆𝑃𝑅 =

∑ ∑
1

[
𝑀
𝐾

]
𝐿,𝑔

+ [
𝐹
𝑀

×
𝑀
𝐾

]
𝐿,𝑔

× (𝐷̃𝐿,𝑔 − 𝐷̃𝐿+𝑑𝐿,𝑔) × 𝐹𝑒𝑐𝐿,𝑔𝐿𝑔

∑ ∑
1

[
𝑀
𝐾

]
𝐿,𝑔

× (𝐷̃𝐿,𝑔 − 𝐷̃𝐿+𝑑𝐿,𝑔) × 𝐹𝑒𝑐𝐿,𝑔𝐿𝑔

 

The above formulations (equations) illustrates that the SPR, F/M, SL50, and SL95 

can be derived using the reasonable estimates of M/K ratio, L∞, and σ2L∞ (or CVL∞), size-at-

maturity and a representative sample of length structure of the catch. The following 

multinomial negative log likelihood function (NLL) is used to fit the model: 

𝑁𝐿𝐿 = argmin
𝐹
𝑀

𝑆𝐿50, 𝑆𝐿95

∑𝑂𝑖

𝑖

𝑙𝑛
𝑃̃𝑖

𝑂̃𝑖

 

Where Oi and Õi are the observed number and proportion in length class i respectively, and 

𝑃̃𝑖 is the model estimate of the probability in length class i. 𝑃̃𝑖 can be calculated by summing 

all the number of individuals (DL+dL) in each length class of the ‘g’ growth-type-groups and 

then multiplying by the estimated selectivity, and standardized to sum to one. The 

spawning potential ratio is calculated from the above mentioned SPR equation using the 

model estimates of F/M and selectivity-at-length parameters, and the input parameters 

M/K, L∞, and σ2L∞ (or CVL∞), and size-at-maturity parameters.  
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LBSPR: R-implementation 

2.14.1. Requirement for LBSPR 

Installing and loading LBSPR R-package 

The LBSPR package can be installed from CRAN and loaded for running analysis 

using the following code: 

install.packages("LBSPR") # for installation of the package 

library(LBSPR) # for loading the package for analysis 

Alternatively, the development version of the package can be downloaded from GitHub 

using the devtools package: 

install.packages("devtools") 

devtools::install_github("AdrianHordyk/LBSPR") 

Supplying LFQ data and essential input parameters 

The essential parameters for the species such as species name, asymptotic length 

(Linf), MK ratio (M/K), parameters of maturity ogive (Lm50 & Lm95) and the unit of length 

(cm) can be supplied by creating an S4 object “MyParameters”.  

Initially, a blank “MyParameters” is created, which contains all the parameter fields 

required for running LB-SPR analysis. 

MyParameters <- new("LB_pars")#create a blank S4 object of class LB_pars for input 

parameters 

Freshly created MyParameters (S4 object) 
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Subsequently, the following series of codes can be used to populate the different parameter 

fields in the S4 object “MyParameters”.  

MyParameters@Species <- "P stylifera"# species name  

MyParameters@Linf <- 175 # Asymptotic length input 

MyParameters@L50 <- 89.6 # length at which 50% individual attain maturity 

MyParameters@L95 <- 137 # length at which 95% individual attain maturity 

MyParameters@MK <- 1.64 # ratio of natural mortality and growth coefficient (M/K) 

MyParameters@L_units <- "mm" # units of input data (LF, Linf, Lm50 and Lm95) 

Note: This example illustrates the supply of essentially required input parameters for the 

analysis. The user can supply any additional parameters depending on the availability. 

Importing annual length frequency data (LFQ) 

Annual length frequency data (LFQ) 

The data sheet is to be preferably prepared in CSV file format (e.g., Pstylifera.csv) 

and has the first column “Length”, which refers to the mid-value of the class interval (mid 

length). The subsequent columns are the frequency (observed number) against each class 

interval and the headers of the column reflect the year of observation (e.g. 2017, 2018, … , 

2021). Refer ‘Example data file download link’ in the last page to download and use 

the example data. 

Pstylifera.csv 
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Note: It must be noted that the maximum length in the LFQ must be larger than the input value of 

the asymptotic length (Linf). In this example, as the Linf used for the species is 175 mm, there has to 

be a bare minimum size group with mid-length of 173 mm, so that the maximum length for the 

mid-length 173 mm with 5 mm class interval (170.5-175.5 mm) will be 175.5 mm, higher than the 

provided Linf of 175 mm. Use of size group with a maximum length of less than 175 mm will 

produce the following error during model fitting. 

 

Solution: Check the mid-length and class interval. If the sum of mid-length + half of the 

class interval is less than the supplied Linf, create the next new mid-length, even if no 

observation are made under this length class.  

The externally created Pstylifera.csv can be imported to R-interface and saved along with 

the previously supplied parameters by creating a new file “MyLengths” using the following 

code: 

MyLengths<-new("LB_lengths", LB_pars=MyParameters, 

file=paste0("C:/Users/DELL/Desktop/LBSPR_demo/Pstylifera.csv"), 

dataType="freq", header=TRUE) 

To determine the path of the CSV file (e.g., Pstylifera.csv) right-click on it, then 

select ‘Properties’ by left clicking on it, and copy the file location under the ‘General’ tab 

(e.g., C:\Users\cmfri\Desktop\LBSPR_demo). Replace the bold portion of the code with 

this copied file location, and then add the file name with its extension (e.g., 

/Pstylifera.csv). Make sure to use double backslashes (\\) or a single forward slash (/) 

between each segment of the path and enclose the entire path in quotation marks like 

(“…/…./…./….”) or (“…\\….\\….\\….”). 
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The user can get more insight into the imported data using the code: 

View(MyLengths) # to see the data in R studio 

 

The data structure (e.g., MyLengths) shows that there are 36 length class 

(LMids, all rows need not be populated) and the number of years of data (NYears) is 5 and 

the years are 2017 to 2021.  

2.14.2. Running the LBSPR analysis 

The “LBSPRfit” function is used for fitting the LBSPR model to the imported LF 

data (e.g. MyLengths) using supplied parameters (e.g., MyParameters). The code for 

running of the model is:  

LBSPR_model<- LBSPRfit(MyParameters, MyLengths, yrs = NA) #to fit the model for all 

the available years 

LBSPR_model<- LBSPRfit(MyParameters, MyLengths, yrs = 5) #to fit the model for any 

specific year (e.g., fifth year by specifying yrs = 5) 

LBSPR text output 

The model estimates can be visualized in the R console using the following code: 

LBSPR_model@Ests #viewing the model output estimates in R console 

The outputs are selectivity parameters (SL50 & SL95), FM ratio (F/M) and SPR for the five 

years. However, when multiple years of data are used, the estimates are presented as 

smoothed figures following the Kalman filter and the Rauch-Tung-Striebel smoother 

function. The raw estimates of each year can be visualized in the R console using the 

following code: 

data.frame(rawSL50=LBSPR_model@SL50, rawSL95= LBSPR_model@SL95, rawFM= 

LBSPR_model@FM, rawSPR= LBSPR_model@SPR) # to see raw estimates 
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Smoothed Estimates Raw Estimates 

  

2.14.3. Plotting LBSPR analysis outputs 

User can plot the imported length frequency data for visualization using “plotSize” function 

and the following code: 

plotSize(MyLengths) # LF data visualization; MyLengths refers to the imported data file. 

 

The fitted model to the input LF data can be visualized using the following code: 

plotSize(LBSPR_model) # plot the model fit to the input LF data 
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The graphical outputs, like maturity curve and selectivity curves for every available year, 

can also be plotted using the given codes: 

plotMat(LBSPR_model)# plots year-wise selectivity curve along with maturity ogive 

 

The code given below plots all the output of the model (SL50, SL95, F/M & SPR) in a single 

graph 

plotEsts(LBSPR_model)# plotting all the graphs in a single graph 
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The code given below plots the SPR, SSB and relative yield trajectories as a response to 

change in relative F (F/M) for different years. For example, to generate the SPR, SSB and 

relative yield trajectories for the fifth year, the user can fit the model for fifth-year data 

only by specifying yrs = 5 in the LBSPRfit code and then plotting the trajectories using 

plotCurves code as mentioned bellow: 

LBSPR_model<- LBSPRfit(MyParameters, MyLengths, yrs = 5) 

plotCurves(LBSPR_model) 

 

The values used for the above plotting of the SPR, SSB and relative yield trajectories as a 

response to change in relative F (F/M) can be retrieved using the following code: 

calcCurves(LBSPR_model) 

 

The code given below plots the SPR status of the required year with reference to the 

prescribed SPR limit and SPR target. For example, to generate the SPR status for the fifth 

year, the user can fit the model for fifth-year data only by specifying yrs = 5 in the 
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LBSPRfit code and then plotting the trajectories using plotSPRCirc code as mentioned 

below: 

LBSPR_model<- LBSPRfit(MyParameters, MyLengths, yrs = 5) 

plotSPRCirc(LBSPR_model) 

 

2.14.4. Plotting observed LFQ vs. target LFQ 

The model also allows us to graphically compare the input LF data with the ideal 

length structure (Target LF) corresponding to the given spawning potential ratio.  To do so, 

we have to rerun the above analysis with some modification.  

Delete the previous analysis and outputs (not required) for a smooth run and avoid 

confusion using the following code: 

rm(list=ls()) # erases all the existing analysis and data 

Now create a new blank “MyParameters” S4 object as done previously and populate it 

with the same input values for the parameters. An additional field “MyPars@SPR”needs to 

be populated, corresponding to the targeted SPR depending on the resilience of the species 

(Ideally taken as 40%). 

MyParameters <- new("LB_pars")#create a blank S4 object of class LB_pars for input 

parameters 

MyParameters@Species <- "P stylifera"# species name  

MyParameters@Linf <- 175 # asymptotic length input 

MyParameters@L50 <- 89.6 # length at which 50% individual attain maturity 

MyParameters@L95 <- 137 # length at which 95% individual attain maturity 

MyParameters@MK <- 1.64 # ratio of natural mortality and growth coefficient (M/K) 
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MyParameters@SPR <- 0.40 # Target SPR for the reference LF 

MyParameters@L_units <- "mm" # units of input data (LF, Linf, Lm50 and Lm95)  

The observed length frequency data needs to be imported in the R environment, as done 

previously 

MyLengths<-new("LB_lengths", LB_pars=MyParameters, 

file=paste0("C:/Users/DELL/Desktop/LBSPR_demo/Pstylifera.csv"), 

dataType="freq", header=TRUE) 

The LBSPR model will be fitted to the LF data using LBSPRfit 

LBSPR_model <- LBSPRfit(MyParameters, MyLengths, yr = NA)# runs the LBSPR model 

For simulating LF data with desired SPR, we need additional input related to selectivity 

parameters, which can be provided from the estimates of fitted model. As the data is of 

multi-year type, we need to specify the year for which the comparison is to be made. 

Following codes can be used: 

yr <- 5 # selection of the year, here 5th year was selected as an example 

MyParameters@SL50 <- LBSPR_model@SL50[yr]# SL50 value from model output 

MyParameters@SL95 <- LBSPR_model@SL95[yr]# SL95 value from model output 

The observed LF and the target LF (SPR = 0.40 in the present case) can be graphically seen 

using plotTarg function 

plotTarg(MyParameters, MyLengths, yr=yr) 
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2.14.5. Implementing R Shiny package for LBSPR analysis 

The Shiny package enables the creation of user-friendly applications that combine 

R's computational power with the interactivity of modern web browsers. This approach 

simplifies access to R-based models through intuitive interfaces, eliminating the need for 

direct interaction with R software. The Shiny application for LBSPR can be launched using 

the following Shiny function code in the R-Studio interface, which will open the interface in 

the web browser. 

library(LBSPR) 

Shiny("LBSPR") 

  

 

References 

Journal articles 

Hordyk, A. R., Ono, K., Sainsbury, K. J., Loneragan, N., & Prince, J. D. (2015a). Some 

explorations of the life history ratios to describe length composition, spawning-

per-recruit, and the spawning potential ratio. ICES Journal of Marine Science, 

72(1), 204–216. https://doi.org/10.1093/icesjms/fst235 

Hordyk, A. R., Ono, K., Valencia, S. R., Loneragan, N. R., & Prince, J. D. (2015b). A novel 

length-based empirical estimation method of spawning potential ratio (SPR), 

and tests of its performance, for small-scale, data-poor fisheries. ICES Journal 

of Marine Science, 72(1), 217–231. https://doi.org/10.1093/icesjms/fsu004 

Hordyk, A. R., Ono, K., Prince, J. D., & Walters, C. J. (2016). A simple length-structured 

model based on life history ratios and incorporating size-dependent selectivity: 

Application to spawning potential ratios for data-poor stocks. Canadian 

Journal of Fisheries and Aquatic Sciences, 73(1), 1–13. 

https://doi.org/10.1139/cjfas-2015-0422 

Prince, J. D., Hordyk, A. R., Valencia, S. R., Loneragan, N. R., & Sainsbury, K. J. (2015). 

https://doi.org/10.1093/icesjms/fst235
https://doi.org/10.1093/icesjms/fsu004
https://doi.org/10.1139/cjfas-2015-0422


Tropical fish stock assessment using R 

 

Page |153 

Revisiting the concept of Beverton–Holt life-history invariants with the aim of 

informing data-poor fisheries assessment. ICES Journal of Marine Science, 

72(1), 194–203. https://doi.org/10.1093/icesjms/fsu011 

Lee, R. M. (1912). An investigation into the methods of growth determination in fishes by 

means of scales. Journal du Conseil International pour l'Exploration de la Mer, 

s1(63), 3–34. https://doi.org/10.1093/icesjms/s1.63.3 

Online resources 

Hordyk, A. R. (n.d.). LBSPR: Length-Based Spawning Potential Ratio [Article]. 

https://adrianhordyk.github.io/LBSPR/articles/LBSPR.html 

The Barefoot Ecologist. (n.d.). LBSPR: Length-Based Spawning Potential Ratio. 

http://barefootecologist.com.au/lbspr 

2.15. The Length-based Bayesian (LBB) estimation method 

Introduction 

The Length-based Bayesian (LBB) estimation method has been developed for 

data-limited fisheries by Froese et al. (2018) for the estimation of key management 

reference points such as depletion level (B/B0), relative fishing mortality (F/M), length at 

first capture corresponding to maximum catch and biomass (Lc_opt) and the relative 

biomass producing maximum sustainable yields (BMSY/B0). Being a data limited method, it 

requires only annual length frequency (LFQ) data as mandatory data input for analysis. The 

method expects that the sampled length frequency (LFQ) data truly represent the exploited 

phase of the population. The method assumes that the organism grows throughout the life 

span and growth follows the Von Bertalanffy’s (VBGF) growth pattern (von Bertalanffy, 

1938). Because of which, the increase in length can be used as a proxy for elapsed time. The 

analysis also assumes a synthetic cohort under equilibrium condition with stable growth, 

mortality, and recruitment during the study period. The analysis expects a ratio of natural 

mortality (M) to somatic growth (K) with a prior mean value around 1.5 which is a typical 

value for adults of species that grow throughout their life, reaching maximum size at 

maximum age (Hordyk et al., 2015 and Froese et al., 2016).  

The analysis requires prior information on crucial input parameters like 

asymptotic length (L∞), length at first capture (LC), but relative values of natural mortality 

(M/K) and fishing mortality (F/M) which minimizes the parameter requirements. 

Nevertheless, the default values are either pre-fixed or estimated from the input LFQ and 

hence the user need not provide the information for the same (Froese et al., 2018). 

However, if robust or local estimates of these priors are available, the user can use the same 

replacing the default priors. These inputs were used to estimates of exploited biomass 

relative to unexploited biomass (B/B0), length at first capture corresponding to maximum 

catch and biomass (Lc_opt) and the relative biomass producing maximum sustainable yields 

as a fraction of unexploited biomass (BMSY/B0). Several additional outputs of management 

importance of the model are relative fishing mortality (F/M), yield per recruit (Y/R’), and 

length based indicators like LC/LC_opt, Lmean/Lopt, and L/L∞. The depletion (B/B0) got from 

the LBB can fix the depletion-prior in the catch-based methods like CMSY and SRA, which 

https://doi.org/10.1093/icesjms/fsu011
https://doi.org/10.1093/icesjms/s1.63.3
https://adrianhordyk.github.io/LBSPR/articles/LBSPR.html
http://barefootecologist.com.au/lbspr
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often requires and independent estimates of these priors. Various steps involved in the 

model are given below: 

Modeling the growth of fish 

In order to use the increase in length as a proxy for elapsed time, the method 

assumes that the fish follows the Von Bertalanffy’s (VBGF) growth pattern, which can be 

expressed as:      𝐿𝑡 = 𝐿∞ × (1 − 𝑒𝑥𝑝−𝐾(𝑡−𝑡0)) 

Where Lt is the length at age t, L∞ is the asymptotic length, K is the growth coefficient, and 

t0 is the theoretical age at which the fish’s length would be zero. 

Estimating the survivors-at-length in the fully exploited phase 

In an exploited population, the number of survivors (NL) at length L after full 

selection (NLStart) is expressed using the following equation of Quinn and Deriso (1999): 

𝑁𝐿 = 𝑁𝐿𝑠𝑡𝑎𝑟𝑡
× (

𝐿∞ − 𝐿

𝐿∞ − 𝐿𝑆𝑡𝑎𝑟𝑡
)

𝑍
𝐾

 

Where NLStart is the number at length LStart with full selection (the length at which all 

individuals entering the gear are retained by the gear), and Z/K is the ratio of the total 

mortality rate Z to the somatic growth rate K. 

Estimating the proportion (probability) of survivors-at-length in the fully 

selected phase 

As, the length frequency (LFQ) data collected from the population only reflect 

relative abundance,  the length class-wise abundances (NL) in the above equation are 

divided with the sum of all NL values across all length classes (ΣNL) to convert the absolute 

abundance to relative abundance or proportion of fish in each length class as follows: 

𝑁𝐿

∑𝑁𝐿

=
𝑁𝐿𝑠𝑡𝑎𝑟𝑡

× (
𝐿∞ − 𝐿

𝐿∞ − 𝐿𝑆𝑡𝑎𝑟𝑡
)

𝑍
𝐾

∑(𝑁𝐿𝑠𝑡𝑎𝑟𝑡
× (

𝐿∞ − 𝐿
𝐿∞ − 𝐿𝑆𝑡𝑎𝑟𝑡

)

𝑍
𝐾
)

 

This relative abundance (NL/ΣNL) at L represents the probability (p̂L) of fish to survive to 

a relative length L under fully exploited condition (at and above LC95). By cancelling the 

NLStart in both the numerator and denominator, the equation can be rewritten as: 

𝑝̂𝐿 =
𝑁𝐿

∑𝑁𝐿

=
(

𝐿∞ − 𝐿
𝐿∞ − 𝐿𝑆𝑡𝑎𝑟𝑡

)

𝑍
𝐾

∑(
𝐿∞ − 𝐿

𝐿∞ − 𝐿𝑆𝑡𝑎𝑟𝑡
)

𝑍
𝐾

 

Estimating the proportion (probability) of survivors-at-length in the 

unexploited phase 

In an unexploited population, as Z = M, the Z/K becomes M/K, LStart becomes 

zero. The probability to survive to a relative length L compared to L∞ (L/L∞) can be derived 

by setting the NLStart to 1 and using the restructured version of the above equation by Quinn 

and Deriso (1999) as follows: 
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𝑝̂𝐿/𝐿∞
= (

𝐿∞ − 𝐿

𝐿∞

)

𝑀
𝐾

= (1 −
𝐿

𝐿∞

)

𝑀
𝐾

 

The above equation shows that all populations with the same M/K ratio, whether 

small or large size, short or long-lived, herbivore or carnivore, occurring in warm or cold 

waters, will have the same probability of reaching a given fraction of their asymptotic length 

in an unexploited stage, independently of the absolute values of M, K, and L∞. The same is 

also true for the fully exploited part of the population, where the probability of reaching a 

length beyond the fully selected length Lstart (p̂L) is a function of Z/K. 

Estimating the proportion (probability) of survivors-at-length in the 

partially exploited phase 

However, for the portion of the population that is not selected fully (partially 

selected), the number of survivors (NLi) at length Li is calculated from the equation of 

Quinn and Deriso (1999) by multiplying the number of survivors in previous length class 

(NLi-1) with the realised fishing mortality rate for the length class L (FLi) (derived by 

multiplying the F with selectivity (SLi) of the exploited gear for the species at length Li) as 

follows: 

𝑁𝐿𝑖
= 𝑁𝐿𝑖−1

× 𝑆𝐿𝑖
× 𝐹 × (

𝐿∞ − 𝐿𝑖

𝐿∞ − 𝐿𝑖−1

)

𝑀
𝐾

+
𝐹
𝐾

×𝑆𝐿𝑖

 

Where SLi is the selectivity of the exploited gear for the species at length Li which is modeled 

using a logistic function, as follows: 

𝑆𝐿𝑖
=

1

1 + 𝑒𝑥𝑝−𝛼 (𝐿𝑖−𝐿𝑐)
 

Where Lc is the length at which 50% of the individuals encountering the gear is captured 

(the length at capture, also referred as Lc50) and α is the steepness of the selection ogive. 

Finally, the relative abundance for length Li (also the probability or proportion of fish (p̂Li) 

to survive to a length Li) can be derived by dividing with the length class-wise abundance 

(NLi) with the sum of all NLi values across the length classes (ΣNLi) as follows: 

𝑝̂𝐿𝑖
=

𝑁𝐿𝑖

∑𝑁𝐿𝑖

=
𝑁𝐿𝑖−1

× 𝑆𝐿𝑖
× 𝐹 × (

𝐿∞ − 𝐿𝑖

𝐿∞ − 𝐿𝑖−1
)

𝑀
𝐾

+
𝐹
𝐾

×𝑆𝐿𝑖

∑(𝑁𝐿𝑖−1
× 𝑆𝐿𝑖

× 𝐹 × (
𝐿∞ − 𝐿𝑖

𝐿∞ − 𝐿𝑖−1
)

𝑀
𝐾

+
𝐹
𝐾

×𝑆𝐿𝑖
)

 

Cancelling the constant F in both the numerator and denominator will produce the final 

equation as follows: 

𝑝̂𝐿𝑖
=

𝑁𝐿𝑖

∑𝑁𝐿𝑖

=
𝑁𝐿𝑖−1

× 𝑆𝐿𝑖
× (

𝐿∞ − 𝐿𝑖

𝐿∞ − 𝐿𝑖−1
)

𝑀
𝐾

+
𝐹
𝐾

×𝑆𝐿𝑖

∑ (𝑁𝐿𝑖−1
× 𝑆𝐿𝑖

× (
𝐿∞ − 𝐿𝑖

𝐿∞ − 𝐿𝑖−1
)

𝑀
𝐾

+
𝐹
𝐾

×𝑆𝐿𝑖
)

 

LBB implementation to fit observed proportion with expected proportion 

The Length-based Bayesian (LBB) estimation method derives the observed 

proportion of survival at length (pLi) from the available length frequency (LFQ) data and fit 
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it the expected or modeled proportion of survival at length (p̂Li) derived using the above 

equation with priors to estimate L∞, M/K, F/K, selectivity parameter (Lc) and steepness of 

selection ogive (α). The LBB is implemented within the Bayesian Gibbs sampler software 

JAGS (Plummer, 2003) and executed using the R-interface. The method uses a Bayesian 

framework (Markov Chain Monte Carlo (MCMC) methods) to estimate L∞, M/K, F/K, 

selectivity parameter (Lc) and steepness of selection ogive (α). It also uses a Dirichlet-

Multinomial Distribution to accounts for over-dispersion in the length data. 

Later, relative fishing mortality (F/M) is derived by dividing F/K with M/K and cancelling 

M in numerator and denominator as follows: 

𝐹

𝑀
=

𝐹

𝐾
÷

𝑀

𝐾
=

𝐹

𝐾
×

𝐾

𝑀
 

The length at which the biomass of the unexploited population is at maximum (Lopt) is 

derived as: 

𝐿𝑜𝑝𝑡 = 𝐿∞ × (
3

3 +
𝑀
𝐾

) 

The length at capture that maximizes catch and biomass for a given fishing pressure and 

leads to Lopt as mean length in the catch (Lc_opt) is got as: 

𝐿𝑐_𝑜𝑝𝑡 =
𝐿∞ × (2 + 3 ×

𝐹
𝑀

)

(1 +
𝐹
𝑀

) × (3 +
𝑀
𝐾

)
 

The relative yield-per-recruit (Y’/R) is calculated following the formulation of Beverton and 

Holt (1966) as follows: 

𝑌′

𝑅
=

𝐹
𝑀

1 +
𝐹
𝑀

× (1 −
𝐿𝑐

𝐿∞

)

𝑀
𝐾

×

(

 
 

1 −
3 × (1 −

𝐿𝑐

𝐿∞
)

1 +
1

𝑀
𝐾

+
𝐹
𝐾

+
3 × (1 −

𝐿𝑐

𝐿∞
)

2

1 +
2

𝑀
𝐾

+
𝐹
𝐾

−
(1 −

𝐿𝑐

𝐿∞
)
3

1 +
3

𝑀
𝐾

+
𝐹
𝐾)

 
 

 

The relative yield-per-recruit (Y’/R) is divided with fishing mortality (or more precisely 

with relative fishing mortality, F/M), assuming F/M is directly proportional to fishing 

effort, to derive CPUE’/R, which can be used as a proxy for the exploited relative biomass 

per recruit (B’/R) as follows: 

𝐵′

𝑅
=

𝐶𝑃𝑈𝐸′

𝑅
=

𝑌′

𝑅
𝐹
𝑀

=
1

1 +
𝐹
𝑀

× (1 −
𝐿𝑐

𝐿∞

)

𝑀
𝐾

×

(

 
 

1 −
3 × (1 −

𝐿𝑐

𝐿∞
)

1 +
1

𝑀
𝐾

+
𝐹
𝐾

+
3 × (1 −

𝐿𝑐

𝐿∞
)

2

1 +
2

𝑀
𝐾

+
𝐹
𝐾

−
(1 −

𝐿𝑐

𝐿∞
)
3

1 +
3

𝑀
𝐾

+
𝐹
𝐾)

 
 

 

The relative biomass per recruit (B0’>Lc/R) in the exploitable phase (all the fish above Lc) of 

the population in the absence of any fishing (F/M = 0) is derived as: 

𝐵0
′ > 𝐿𝑐

𝑅
= (1 −

𝐿𝑐

𝐿∞

)

𝑀
𝐾

×

(

 
 

1 −
3 × (1 −

𝐿𝑐

𝐿∞
)

1 +
1
𝑀
𝐾

+
3 × (1 −

𝐿𝑐

𝐿∞
)

2

1 +
2
𝑀
𝐾

−
(1 −

𝐿𝑐

𝐿∞
)
3

1 +
3
𝑀
𝐾 )
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Where B0’>Lc/R is actually not the entire unexploited biomass, rather an exploitable 

fraction (all the fish above Lc) of the entire unexploited biomass (B0) 

Finally, the B’/R (or CPUE’/R) can be divided by B0’>Lc/R to derive B/B0’>Lc as a proxy 

for the depletion (B/B0) as follows: 

𝐵

𝐵0

=

𝐵′

𝑅
𝐵0

′ > 𝐿𝑐

𝑅

=

𝐶𝑃𝑈𝐸′

𝑅
𝐵0

′ > 𝐿𝑐

𝑅

 

A proxy for the relative biomass that can produce MSY (Bmsy/B0) is calculated by 

re-running equations for Y/R, B/R and B/B0 using F/M = 1 and Lc = Lc_opt. 

LBB: R-implementation 

2.15.1. Requirement for LBB 

Installing dependent R-packages 

LBB is not available as an R package, and therefore it can not be downloaded and 

installed directly using the command ‘install.packages(“….”)’ or indirectly (remotely) from 

the github using the command ‘remotes::install_github("….")’. Therefore, the LBB 

approach requires three different files (mentioned below), which should be externally 

downloaded. The LBB analysis requires several dependent R packages ("R2jags", 

"Hmisc", "lattice", "survival", "Formula", "ggplot2", "crayon"), which will be 

prompted for installation when the R-script (e.g., LBB_33a.R) is loaded for the first time 

on RStudio. All these dependent packages should be installed as and when they are 

prompted for installation. 

Install the correct JAGS (Just Another Gibbs Sampler) 

JAGS is Just Another Gibbs Sampler.  It is a program for analysis of Bayesian 

hierarchical models using Markov Chain Monte Carlo (MCMC) simulation. The correct file 

for the Windows Operating System can be downloaded from the following website: 

https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/ 

 

https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/
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Downloading the LBB files 

LBB implementation module contains 3 essential files i.e., (1) Example_Dat.csv 

(A data file having information on annual length frequency data), (2) Example_ID.csv (A 

data file having information on various other dependent attributes), and (3) LBB_33a.R 

(An R-script file containing all the R codes for implementing LBB), which can be 

downloaded from the following website:  http://oceanrep.geomar.de/43182/. Refer 

‘Example data file download link’ in the last page to download and use the example 

data. 

 

 

Download the ‘LBB_0619.zip’ and unzip (extract) the above-mentioned three files. All the 

three files must be stored in a single common folder. An additional user guide 

‘LBB_UserGuide_33a.docx’ for implementing LBB can also be found after extraction. 

 

 

 

http://oceanrep.geomar.de/xxxx/
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Supplying essential length frequency data and input parameters 

As the R-script is both spelling and case sensitive, utmost care should be taken 

while preparing own input data files (e.g., Example_Dat.csv and Example_ID.csv). 

While working with own data, it is recommended to copy and paste (overwrite) the own 

input data (both the ‘annual length frequency’ and ‘ID’) on the original example data 

supplied in the example files, i.e., ‘Example_Dat.csv’ and ‘Example_ID.csv’ without 

changing the file names of these two CSVs. The copies of the original ‘Example_Dat.csv’ 

and ‘Example_ID.csv’ can be prepared as per requirement and populated with desired 

information for different species.  

Annual Length Frequency data 

(Example_Dat.csv) 

ID data 

(Example_ID.csv) 

 

 

 

 

Preparing own length frequency data file 

‘Example_Dat.csv’ contains four columns viz. Stock, Year, Length and CatchNo. 

The first column (Stock) has the name of the stock (Penaeus_monodon, in the present 

example). Precaution must be taken to avoid spaces and other separators while writing the 

name of the stock. Underscore (_) can be used as a separator in the name of the stock. The 

second column (Year) refers to the data year (single 7 multiple year data can be used). 

Third column (Length) represents the mid-length of the class interval. It must be ensured 

that the mid-lengths are entered in “mm” only. The fourth column (CatchNo) refers to the 

frequency of observation made in each class interval. It may be noted that the length class 

with no observation must be omitted in the data file. It is recommended only to change the 

data inside the LFQ data file ‘Example_Dat.csv’ as per the requirement but not to change 
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the name of the ‘Example_Dat.csv’. However, if the user wants to change the name of the 

LFQ data file (say, for example, to ‘Prawn_Dat.csv’), then the same change must also be 

made to the filename in the column A of the ID file ‘Example_ID.csv’. This is a 

critical point without which the analysis will fail. 

Preparing own input parameter file 

The second ID data file (e.g., Example_ID.csv) allows the user to control the 

analysis. It also allows the user to provide additional information on priors (if default has to 

be replaced) and the other customization if required in the analysis. It is recommended only 

to change the parameters inside the ID data file ‘Example_ID.csv’ as per the requirement 

but not to change the name of the ‘Example_ID.csv’. However, if the user wishes to 

change the name of the ID data file (say, for example, to ‘Prawn_ID.csv’), then the same 

change must also be made to the ID File name in the Line no.25 of the R-script 

‘LBB_33a.R’. This is a critical point without which the analysis will fail. 

 

The details of each attribute in the ID file are described below. 

A. File: This corresponds to the name of the csv file where LFQ data is stored (it must 

be exactly the same as the name of the LFQ file, e.g., Example_Dat.csv) 

B. Species: The name of the species should be filled in this column. 

C. Stock: The name of the stock should be filled (it must be exactly the same as the 

name of the stock in Example_Dat.csv, e.g., Penaeus_monodon)  

D. StartYear: The first year in the data series (e.g., 2011 in present example). It is not a 

mandatory field, default is NA. 

E. EndYear: The last year in the data series (e.g. 2017 in present example). It is not a 

mandatory field, default is NA. 

F. Years.user: a list of year separated by comma (,) which are to be included in the 

analysis. However, first the cell needs to be formatted to have data type as “text”. This 

can be done by right clicking on the cell and using Format Cell options to select text. 
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G. Year.select: A single year (anyone in time series) can be selected to display the 

depletion (B/B0) along with its confidence interval in R console once the analysis is 

complete (e.g., 2016 has been selected in the present case). It is not a mandatory field, 

default is NA. 

H. Gears.user: Here, the list of gears from which the data were sourced can be filled. 

Multiple gears can be listed with comma (,) as separator. It is not a mandatory field, 

default is NA. 

I. Lcut.user: Here, the user can fix the lower limit of the length data (unit =cm) to be 

used in the analysis. All the mid length class below this value will not be used in the 

analysis. It is not a mandatory field, default is NA. 

J. Lc.user: Here, the user can supply any prior information on length at capture, i.e., 

Lc50 (unit = cm). It is the length at which 50% of fish encountering the gear are 

caught. It is not a mandatory field, default is NA. 

K. Lstart.user: Here, the user can supply any prior information on length at capture, 

i.e., Lc95 (unit = cm). It is the length at which 95% of fish encountering the gear are 

caught. It is not a mandatory field, default is NA. 

L. Linf.user: Here, the user can supply any prior information on asymptotic length, i.e., 

L∞ (unit = cm). It is not a mandatory field, default is NA. 

M. MK.user: Here, the user can supply any prior information on M/K. It is not a 

mandatory field, default is NA. 
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N. mm.user: If we need the output to be presented in mm, use “TRUE” and for cm, use 

“FALSE” (which is set as Default). Irrespective of the output, the mid-length in data 

file (e.g., Example_Dat.csv) must always be in mm. 

O. GausSel: If the selectivity is trawl type, use “FALSE” (default) and if it is gillnet type, 

use “TRUE”. 

P. MergeLF: If changed to “TRUE”, it will merge the length frequencies of all the 

available years. Default is “FALSE” which means no merging applies to the data.  

Q. Pile: information regarding correction for pile-up effect. Provide ‘0’ for no pile up 

effect correction. Provide ‘1’ for Pile up effect correction. Provide ‘999’ for model to 

decide if pile up effect correction is required (Refer Froese et al., 2019 and Hordyk et 

al., 2019 for more details). 

R. Lm50: Here, the user can supply any prior information on length at first maturity, 

i.e., Lm50 (unit =cm). 

S. Comment: Any other info which is to be displayed along with the output (e.g., 

Default priors in the present example) 

T. Source: The source of data can be mentioned (e.g. landings in present example) 

2.15.2. Running the LBB analysis 

Open the R-script file in RStudio and set the working directory  

Open the RStudio and click the ‘File’ in RStudio and then ‘Open File…’ (or 

simply CTRL+O). This will open up a browsing window to search and load the R-script file. 

Browse the folder where all the four files (i.e., Example_Dat.csv, Example_ID.csv, and 

LBB_33a.R) are previously saved and load (open) only the R-script file, i.e., LBB_33a.R. 

  

Set the working directory by clicking ‘Session’ in RStudio and then select “Set Working 

Directory” to “To Source File Location”. Setting of working directory is a crucial step 

which facilitates the R-script (LBB_33a.R) to find the remaining three files (i.e., 

Example_Dat.csv, Example_ID.csv) without which analysis can not be done. It also helps in 

storing the outputs from the analysis in the same working directory (folder). 
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Define the stock to be analyzed in the opened R-script 

To analyze any stock in the data, go to the “Select stock to be analyzed” section 

of the R-script and enter the desired stock name (e.g., Penaeus_monodon) in line 22 

(Stock <- “Penaeus_monodon”) by replacing the example stock names or any other 

existing stock name. This is a critical step where the stock name should correctly match 

with the stock name mentioned in Example_Dat.csv (A column) and Example_ID.csv (C 

column). Any mismatch will generate error warnings. 
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Define the ID file to be used in the opened R-script 

It is recommended only to change the attributes and parameters inside the ID data 

file ‘Example_ID.csv’ without changing the name of the ID file, i.e., ‘Example_ID.csv’. 

If no change has been made in the name of the ‘Example_ID.csv’, then there is no need 

to change anything in the R-script Line no.25.  However, if the user has changed the name 

of the ID data file (say, for example, to ‘Prawn_ID.csv’), then the same change must also 

be made to the ID File name in the Line no.25 of the R-script ‘LBB_33a.R’. This is a 

critical point without which the analysis will fail. 

 

Run LBB codes 

In RStudio, click on “Source” (shown in red colour box) or press Ctrl + Shift + S 

to execute the LBB codes. 

 

The analysis will take some time to produce text and graphical outputs. The text output will 

be displayed in the R console (as depicted below) at the end once the analysis is successfully 

completed. 
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LBB text output 

The analysis, though, produces the text output on the console, but it does not save them.  

 

To save the text outputs, paste the following code in the console and press enter. This will 

save the text output in the same analysis folder where the data, ID, and R-script files are 

present. 

sink("./output.txt", append = T) # for saving the result in external .txt file 
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LBB Graphical output 

The graphical outputs are automatically displayed in separate multiple windows. 

The first graph shows the length frequency (LFQ) plots for the analysed years.  

 

The second graph shows the LBB fit to the input LFQ data for the analysed years. 
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The third graph shows the aggregated LFQ plotted with the values of priors (L∞, Z/K and 

Lc) used in the analysis. The Z/K prior was estimated based on the M/K prior and the input 

LFQ data. The graph also has LBB fit and estimated L∞ and Z/K for the first and the last 

year is the series. The time series of Lc and Lmean is plotted in comparison with Lc_opt and 

Lopt. The other two graphical displays are the time series of F/M and B/B0, along with their 

confidence intervals. 

 

The time series of depletion, i.e., B/B0, can be viewed in the R console using following code: 

BB0.ts 

The time series of relative fishing pressure, i.e., F/M, can also be viewed in the R console 

using the following code: 

FM.ts 

B/B0 F/M 
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2.15.3. Plotting crucial outputs of LBB analysis (B/B0 and F/M) 

Time series of relative biomass (B/B0) and relative fishing pressure are the two 

most important outputs from fisheries management aspect. These can be plotted separately 

for the better visualization. Following codes are required to generate the additional time 

series graphs. All the previous graphic windows must be closed to display these graphs. 

#prepare a data frame for the depletion and relative fishing pressure using following codes: 

results <- numeric(0) 

results$x <-c(2011:2017) # the start and end year must be changed based on data  

results$B_B0 <- BB0.ts 

results$B_B0_lcl <- BB0.lcl.ts 

results$B_B0_ucl <-BB0.ucl.ts 

results$FM <- FM.ts 

results$FM_lcl <- FM.lcl.ts 

results$FM_ucl <-FM.ucl.ts 

dat <- as.data.frame(results) 

#Load the ggplot2 package for better plotting 

library(ggplot2) 

#Plot time series of relative depletion (B/B0) using the following code: 

ggplot(dat,  aes(x)) +   geom_line(aes(y = B_B0_lcl), color = "black", linetype = 3, 

linewidth=1) + geom_line(aes(y = B_B0), color = "red", linewidth =1) + geom_line(aes(y = 

B_B0_ucl), color = "black", linetype = 3, linewidth =1) + geom_ribbon(aes(ymin = 

B_B0_lcl, ymax = B_B0_ucl), fill = "lightgreen", alpha = 0.2) + labs(title="Relative 

Biomass (B/B0)", x="Years", y = "B/B0")+scale_x_continuous("Years", labels = 

as.character(Years), breaks = Years)+ theme_classic() 
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#Plot time series of relative fishing pressure (F/M) using the following code: 

ggplot(dat,  aes(x)) +   geom_line(aes(y = FM_lcl), color = "black", linetype = 3, linewidth 

=1) +  geom_line(aes(y = FM), color = "green", linewidth =1) +  geom_line(aes(y = 

FM_ucl), color = "black", linetype = 3, linewidth =1) + geom_ribbon(aes(ymin = FM_lcl, 

ymax = FM_ucl), fill = "lightgreen", alpha = 0.2) + labs(title="Relative Fishing Pressure 

(F/M)", x="Years", y = "F/M") +scale_x_continuous("Years", labels = as.character(Years), 

breaks = Years)+ theme_classic() 

 

Note: In the code marked in bold blue (results$x <- c(2011:2017)), the start and end year must 

be changed based on the years in the data series (e.g. 2012 to 2017 in the present example). The red 

and green solid lines are the values for depletion (B/B0) and relative fishing pressure (F/M) for 

the given year and the dotted lines are the upper and lower confidence intervals. 

Saving the graphs 

The graph can be saved in the desired format by clicking on file followed by save as 

then choose the file format in the drop-down menu (e.g. TIFF was selected in the present 

example). Once the desired file format is clipped, a window to choose folder will pop-up and 

a graph can be saved in the desired folder.  
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3. Catch-based Methods 

Catch-based methods play a crucial role in fisheries' stock assessment, particularly 

in data-limited scenarios where detailed biological or abundance data may be unavailable. 

These methods leverage available information on catch and effort (if available) to generate 

valuable insights into stock health and sustainable harvest levels. Catch-only methods 

(COMs) have become increasingly popular for assessing fish stocks in data poor situations 

where detailed biological data (e.g., age or length-based data) or detailed abundance indices 

are absent. These methods estimate stock status and reference points using only time-series 

data on catch, combined with assumptions about resilience, productivity, and exploitation 

history. One such approach is the Stock Reduction Analysis (SRA), which reconstructs 

historical stock trajectories by integrating observed catches with assumptions about 

biological productivity and management targets. SRA models provide insights into 

historical depletion levels and sustainable exploitation thresholds, making them useful tools 

for assessing data-poor fisheries. Under data moderate condition, when both catch and 

effort data are available, surplus production models, also known as dynamic pool models, 

are used for assessing stock status. These models, such as the Schaefer or Fox surplus 

production models, integrate catch and effort data to estimate population productivity, 

biomass trends, and key management reference points. These data-moderated models lie 

between purely data-limited and data-rich approaches and depend heavily on the reliable 

and uninfluenced abundance data to model the productivity and yield. Under data 

moderate condition, the commercial catch rates (catch-per-unit-effort, CPUE) are often 

used as an indicator of abundance. However, the CPUE is often found to have been 

influenced by many factors (fishing methods, technological improvements, spatio-temporal 

factors and environmental factors) other than abundance, which warrants some kind of 

effort standardization to increase the accuracy and reliability of SPMs. 

3.1. Effort Standardisation 

Introduction 

Catch-based method uses various forms of surplus production models (Schaefer 

SPM, Fox SPM, Pella and Tomlinson SPM, Pella-Tomlinson-Fletcher SPM (PTF SPM) and 

hybrid Schaefer-Pella-Tomlinson-Fletcher SPM (Schaefer-PTF SPM)) to derive the 

maximum sustainable yield and associated management reference points. These SPMs, 

however, require information of biomass or a reliable proxy or index for abundance to 

construct the surplus production for the stock. Biomass or any other index of abundance 

(e.g., CPUE) got from fishery independent surveys (experimental surveys using swept area 

method or acoustic surveys) are usually recommended to derive reliable estimates from the 

SPM. However, such fishery independent data are very expensive and cumbersome to get 

because of which are not available for most of the fisheries around the world. Because of 

these limitations, the catch per unit effort (CPUE) derived from the commercial fisheries is 

commonly used as an index of abundance for the SPM. It is believed that CPUE is 

proportional to the biomass and increases when abundance (biomass) increases or vice 

versa. This relationship between CPUE and biomass (B) is expressed as: 

𝐶𝑃𝑈𝐸 = 𝑞 × 𝐵 
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Where, q is called catchability coefficients and represents the fraction of biomass 

that is caught by deploying a unit amount of effort (CPUE/B).  

Ideally, the change in CPUE should only reflect the change in abundance for its reliability in 

SPM application. However, in the real-world, the CPUE is affected by many other factors 

other than abundance. Some common factors that can be considered as the potential 

influencers of the CPUE other than the abundance are given below: 

(a) Fishing method: In a multi-gear and multi-species fishery, different fishing 

methods have different catching efficiency for different species, which is expressed as 

catchability coefficients (q). For example, the efficiency with which a fishing gear, e.g., 

gill net catches certain targeted fish, may differ from the efficiency of a trawler for the 

same targeted fish. Using the above-mentioned relationship between CPUE and 

biomass, a gear with lower ‘q’ for a given fish can give lower CPUE compared to the 

gear with higher ‘q’ for the same fishable biomass.  

(b) Technological improvement: The efficiency of fishing method also changes over 

time because of technological improvements such as use of SONAR, Fish-finder device 

to track fishing ground, increase in engine power and net design etc. significantly 

increase the catchability coefficient of fishing method. This effect is called 

‘technological creep’ or ‘effort creep’. However, under the influence of ‘effort creep’, a 

higher catch and catch rate can be got from the unchanged biomass or even from a 

decreasing biomass. As catch rate is used as a proxy of abundance, the increase in 

catch rate under technological advancement can give a false impression about the 

increase of biomass, where it is either stagnant or even declining. The widely used 

catch base methods (CMSY++ and sraplus) address this issue by using a correction 

factor expecting an annual increase in efficiency of fishing methods (1-5%). 

(c) Spatio-temporal factors: Change in the composition of fishing fleet, change in 

fishing grounds and seasonal change in fish abundance can influence CPUE. For 

example, fishing in different areas or seasons might yield different catch rates, 

unrelated to fish abundance. Similarly, environmental factors like temperature, 

rainfall, upwelling etc. can affect the catch rate irrespective of abundance. 

The effect of any of the above-mentioned factors other than the abundance is 

eliminated or minimized from the CPUE data through an effort standardization process 

that improves the reliability of CPUE in reflecting the true abundance of the fish. Therefore, 

effort standardization is a foundational step in catch-based assessments. Several methods 

have been proposed for the standardization of fishing effort and CPUE, such as (1) the 

standard vessel/gear based approach by Beverton and Holt (1957), (2) the relative effort 

based approach by Robson (1966), (3) the derived effort based approach by Sparre (1998), 

(4) the multi-gear mean standardization (MGMS) by Daniel et al. (2016), and (5) the 

generalized linear models (GLMs) and their variants such as generalized linear mixed 

effects models and generalized additive models (Maunder and Punt, 2004; Zuur et al., 2009 

and Okamura et al., 2018). 

In case of tropical fisheries that uses multiple gears to target multiple species, 

fishing effort varies in terms of units (e.g., hours fished, number of vessels, engine power or 

net length), raw catch per unit effort (CPUE) values are not directly comparable. 
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Standardizing effort adjusts for these differences, often by scaling CPUE to a common 

baseline gear type, facilitating robust assessments of relative abundance and fishing 

efficiency. The present description deals only with the simple analytical framework 

developed by Varghese et al. (2020) for the standardization of the fishing efforts and the 

CPUE for a targeted species exploited by different fishing gears which is frequently 

encountered in tropical fisheries. 

3.1.1. Effort standardisation using FESta R package 

In tropical fisheries, multiple gear types (e.g., trawls, gillnets, bag nets, etc.) are 

commonly used to target the same species. Each gear type operates differently, requiring 

distinct levels of effort, such as time spent fishing, area covered, etc. The catch per unit 

effort (CPUE), a key measure of abundance and fishing efficiency, differs significantly 

across gear types because of their varying efficiency and fishing methods. The scales of 

CPUE for different gears may not be directly comparable. For example, a trawl might yield a 

much higher CPUE than a gillnet because of its larger coverage area, even when targeting 

the same species. Therefore, the standardization of the effort across different gear types is 

critical for assessing fish abundance, fishing pressure, and overall stock health in tropical 

regions. 

This method of standardization requires the species catch, total catch and total fishing 

effort. Let Yijk represents the catch of kth species (k = 1, 2,..., s) from ith (i = 1, 2,..., g) gear at 

the jth (j = 1, 2,..., t) year and corresponding effort is expressed as Xij. 

Calculation of species catch proportion 

The proportion of the species catch (catch or yield of the interested species, i.e., 

Yijk) in the total catch (Yij) is calculated for each gear and each year as follows: 

 𝑃𝑖𝑗𝑘 =
𝑌𝑖𝑗𝑘

𝑌𝑖𝑗
   

Calculation of mean and variance of catch proportion 

The mean and variance of species catch proportion are calculated using catch 

proportions over the t years of observations for each gear as follows: 

 𝑃̅𝑖𝑘 =
1

𝑡
× ∑ 𝑃𝑖𝑗𝑘

𝑡
𝑗=1   𝑎𝑛𝑑    𝜎𝑖𝑘

2 =
1

𝑡
× ∑ (𝑃𝑖𝑗𝑘 − 𝑃̅𝑖𝑘)𝑡

𝑗=1  

Calculation of weighing factor 

The weighing factors for each gear are calculated as follows: 

 𝑊𝑖𝑘 =
𝑃̅𝑖𝑘

𝜎𝑖𝑘
2 +1 

 

Calculation of standardised weighing factor 

The calculated weighing factor for each gear is standardized to unity as follows: 

 𝑊𝑖𝑘
′ =

𝑊𝑖𝑘

∑ 𝑊𝑖𝑘
𝑔
𝑖=1
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Calculation of standardised fishing effort  

The standardized fishing effort for the species was calculated for every gear and 

year by multiplying respective total efforts with species catch proportions and standardized 

weighing factors for the gears as follows: 

𝐸𝑖𝑗𝑘 = 𝑋𝑖𝑗 × 𝑃𝑖𝑗𝑘 × 𝑊𝑖𝑘
′  

Calculation of CPUE multiplication or conversion factor 

Calculate the catch per unit effort (CPUEij) of every gear and year by dividing the 

respective total catch with total effort as follows: 

 𝐶𝑃𝑈𝐸𝑖𝑗 =
𝑌𝑖𝑗

𝑋𝑖𝑗
 

Calculate the mean CPUE (𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑖) for every gear by averaging the annual CPUEs 

(CPUEij) for the respective gear as follows: 

 𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑖 =

1

𝑡
× ∑ (𝐶𝑃𝑈𝐸𝑖𝑗)𝑡

𝑗=1  

Calculate the CPUE multiplication or conversion factor (𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑚𝑓) for each gear by dividing 

the respective mean CPUE of the gear (𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑖) with the mean CPUE of the selected base 

gear (𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑏𝑎𝑠𝑒) as follows: 

 𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑚𝑓 =

𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅ 𝑖

𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅ 𝑖𝑏𝑎𝑠𝑒
 

Conversion of standardised fishing effort 

The standardized fishing effort of the species for every observed gear and year is 

finally multiplied by the CPUE multiplication or conversion factor to express the 

standardized effort in terms of selected base gear as follows: 

 𝐸𝑏𝑎𝑠𝑒 𝑖𝑗𝑘 = 𝐸𝑖𝑗𝑘 × 𝐶𝑃𝑈𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑚𝑓 

Calculation of standardised CPUE 

The summation of these converted standardized efforts (equivalent to the selected 

base gear) from different gears for every year produces the total annual standardized effort 

in terms of selected base gear, which can be expressed as follows: 

 ∑ (𝐸𝑏𝑎𝑠𝑒 𝑖𝑗𝑘)𝑔
𝑖=1  

Similarly, the gear-wise catches of every year are added to calculate the total annual catches 

as follows:    ∑ (𝑌𝑖𝑗𝑘)
𝑔
𝑖=1  

Finally, the standardized CPUE is calculated by dividing the annual catch with the annual 

standardized effort as:   ∑ (𝑌𝑖𝑗𝑘)
𝑔
𝑖=1 / ∑ (𝐸𝑏𝑎𝑠𝑒 𝑖𝑗𝑘)

𝑔
𝑖=1  
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FESta: R Implementation  

3.1.2. Requirements for FESta  

Installing and loading FESta R package 

Use the following codes to install and load the ‘FESta’:  

install.packages("FESta") 

library(FESta) 

Importing the catch and effort data  

The analysis requires the time-series gear-wise total efforts, total catch and catch data of the 

species of interest in the below-mentioned format. Refer ‘Example data file download 

link’ in the last page to download and use the example data. 

Catch and effort data 

 

Click the Import Dataset of the Environment tab (top right side panel) and then select from 

Excel. Browse the Excel file (e.g., ‘catcheffort_data’ sheet of ‘catcheffort_data’ excel file) 

and then import. 
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Environment> Import Dataset> from Excel and then browse the file on disk and import. 

Excel Import Window Catch and Effort data 

  

Note: The codes are spelling and case sensitive. Use the exact spelling and case for the different 

attributes mentioned in the above data format while preparing the data set. 

Formatting of imported catch and effort data 

Format the freshly imported data (e.g., catcheffort_data) by splitting the imported 

time-series of gear-wise catch and effort data into three different data, i.e., species catch 

data, total catch data, and total effort data. 

newdata<-split(catcheffort_data, catcheffort_data$type) 

newdata $sp_catch<-as.data.frame(newdata $sp_catch[, -c(1)]) 

newdata $tot_catch<-as.data.frame(newdata $tot_catch[,-c(1)]) 

newdata $effort<-as.data.frame(newdata $effort[,-c(1)]) 

3.1.3. Running FESta R package  

Standardize effort in terms of least efficient gear 

Use the following code to standardize effort in terms of least efficient gear: 

StdEffort(sp_catch=newdata$sp_catch,tot_catch=newdata$tot_catch,effort=newdata$effo

rt,meg=FALSE) 

Standardize effort in terms of most efficient gear 

Use the following code to standardize effort in terms of most efficient gear: 

StdEffort(sp_catch=newdata$sp_catch,tot_catch=newdata$tot_catch,effort=newdata$effo

rt,meg=TRUE) 
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FESta tabular output 

 

FESta graphical output 

 

3.1.4. Effort standardization using tweaked implementation of FESta 

The effort standardization process is quite straightforward when it is done using 

the R package ‘FESta’. However, the only limitation with the package is that it gives the 

standardized effort and CPUE only in terms of most efficient gear (meg = TRUE) or least 

efficient gear (meg = FALSE). It does not standardize the effort and CPUE in terms of 

gear of interest (predominantly exploiting gear). This section explains an improvised FESta 

implementation by a series of R codes prepared following the conceptual framework of 
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FESta developed by Varghese et al. (2020). For more detail, refer to ‘3.1.1.Effort 

standardisation using FESta R package’. 

3.1.5. Requirements for tweaked implementation of FESta  

Tweaked R codes following the concept of FESta 

Installation of FESta R package is not required as the approach uses tweaked R 

codes following the concept of FESta. The calculation is basically done using a series of 

tweaked R codes (R-scripts).  

Importing the catch and effort data 

Follow the steps mentioned in ‘Importing the catch and effort data’ 

mentioned in ‘3.1.2. Requirements for FESta’ to import catch and effort data. Refer 

‘Example data file download link’ in the last page to download and use the example 

data. 

Formatting of imported catch and effort data 

Format the freshly imported data (e.g., catcheffort_data) by splitting the imported 

time-series of gear-wise catch and effort data into three different data, i.e., species catch 

data, total catch data, and total effort data. 

newdata<-split(catcheffort_data, catcheffort_data $type) 

newdata $sp_catch<-as.data.frame(newdata $sp_catch[,-c(1:2)]) 

newdata $tot_catch<-as.data.frame(newdata $tot_catch[,-c(1:2)]) 

newdata $effort<-as.data.frame(newdata $effort[,-c(1:2)]) 

3.1.6. Running tweaked FESta R codes  

Use the following R codes prepared following the conceptual framework of FESta 

(Varghese et al., 2020) to standardize effort and CPUE in terms of any gear of interest. 

sp_catch_proportion<-newdata$sp_catch/newdata$tot_catch 

weights<-(colMeans(sp_catch_proportion, na.rm = 

TRUE)/(sapply(sp_catch_proportion, na.rm = TRUE, 

var)+1)/sum(colMeans(sp_catch_proportion, na.rm = 

TRUE)/(sapply(sp_catch_proportion, na.rm = TRUE, var)+1))) 

weights<-as.data.frame(t(weights)) 

weights<-rbind(weights, weights[rep(1, nrow(sp_catch_proportion)-1), ]) 

row.names(weights) <- c(1:nrow(weights)) 

sp_effort_proportion<-newdata$effort*sp_catch_proportion*weights 

gearwise_cpuh<-newdata$tot_catch/newdata$effort 

gearwise_cpuh_standardization_factor<-colMeans(gearwise_cpuh, na.rm = 

TRUE)/mean(gearwise_cpuh$MDTN, na.rm = TRUE) 

Note: In the above-mentioned code, the catch, effort and catch rate have been standardized in 
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terms of multi-day trawlers (MDTN). The gear code of any desired gear can be mentioned in the 

above code to perform the standardization for that gear. For example, the standardization for the 

mechanized gill netters can be achieved by using MBN instead of MDTN 

gearwise_cpuh_standardization_factor<- 

as.data.frame(t(gearwise_cpuh_standardization_factor)) 

gearwise_cpuh_standardization_factor <-rbind(gearwise_cpuh_standardization_factor, 

gearwise_cpuh_standardization_factor [rep(1, nrow(gearwise_cpuh)-1), ]) 

row.names(gearwise_cpuh_standardization_factor) <- 

c(1:nrow(gearwise_cpuh_standardization_factor)) 

standardised_efforts_selected_gear<-

gearwise_cpuh_standardization_factor*sp_effort_proportion 

standardised_total_effort<-rowSums (standardised_efforts_selected_gear, na.rm = 

TRUE) 

species_total_catch<-rowSums(newdata$sp_catch, na.rm = TRUE) 

standardised_cpuh<-species_total_catch/standardised_total_effort 

years<- catcheffort_data$year[1:(length(catcheffort_data$year)/3)] 

standardization_results<-as.data.frame(t(rbind(years, species_total_catch, 

standardised_total_effort, standardised_cpuh))) 

standardization_results 

 

3.1.7. Exporting the standardized catch, effort and CPUH as CSV 

Use the following R codes to export the species catch, standardized effort and 

CPUE for the selected species by selected fishing gear: 

write.csv(standardization_results, "C:\\Users\\Dell\\Desktop\\catch & catch 

rate.csv",  row.names = FALSE) 

Note: To know the path of the location where the CSV is saved, just right click on any other file in 

that location > go to the ‘properties’ > under the ‘General’ copy the location of that file (ex: 
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C:\Users\Dell\Desktop). Now replace this copied file location with the bold portion of the code 

mentioned above and then suffix with the desired name of the file with extension (ex: \\catch & 

catch rate.csv). Remember to put a double backslash (\\) or a single forward slash (/) between 

each string and the entire path inside the quote mark (“….”). 

3.1.8. Plotting the effort and CPUE standardization results 

Use the following codes to generate the effort and CPUE standardization plots: 

par(mar = c(5, 4, 4, 5) + 0.3) 

plot(years, species_total_catch/1000, type="o", lwd=2, pch = 16, col = "blue", xlab = " 

Years", ylab = " Species catch (tonnes)") 

par(new = TRUE) 

plot(years, standardised_cpuh, type="o", lwd=2, pch = 17, col = "red", axes = FALSE, xlab = 

" ", ylab = "") 

axis(side = 4, at = pretty(range(standardised_cpuh))) 

mtext("CPUH (kg/h)", side = 4, line = 3) 

legend(x = "topleft", bg="transparent", legend=c("Species catch", "CPUH"), fill = 

c("blue","red")) 
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3.2. Surplus production model (SPM) 

Introduction 

Surplus production models, also known as biomass dynamic models (Hilborn and 

Walters, 1992), are some of the simplest and most widely used tools in stock assessment. 

The biomass of a fish population changes over time because of natural processes such as 

birth, death, and growth. Each year, the biomass can be calculated based on the previous 

year's biomass by adding the biomass contributed by new recruits and growth, while 

subtracting the biomass lost due to natural mortality (Hilborn and Walters, 1992). 

The biomass for the next year can be expressed as: 

Next biomass = Last Biomass + Recruitment + Body Growth - Natural Mortality  

However, with an exploited population, fishing mortality in the form of catch 

(harvesting) also reduces biomass, which can be expressed as: 

Next Biomass = Last Biomass + Recruitment + Body Growth -Natural Mortality - Catch 

In this context, production refers to the sum of recruitment and body growth, while surplus 

production is what remains after accounting for losses due to natural mortality (surplus 

production = production - natural mortality) (Prager, 1994). As long as the exploited catch 

aligns with the surplus production, the biomass will remain in a steady state. 

 Production  Natural Loss  

Next biomass = Last Biomass + Recruitment + Body Growth -Natural Mortality - Catch 

 Surplus Production  

The surplus production models (SPMs) are based on the ecological principle of 

density-dependent population growth, which is characterized by rapid exponential growth 

at low population sizes (whether in numbers or biomass) and a slowdown in growth as the 

population approaches its carrying capacity (K). In SPMs, the stock is treated as a single, 

undifferentiated biomass unit, with no distinction made between age, size, or sex. 

https://doi.org/10.1139/cjfas-2016-0460
https://eprints.cmfri.org.in/14401/
https://doi.org/10.1007/978-0-387-87458-6
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Continuous and discrete forms of the production function (dBt/dt) in the presence of 

exploitation (catch) can be expressed as follows: 

 

 

 SPM continuous form SPM discrete form 

Schaefer SPM 

model 

𝑑𝐵𝑡

𝑑𝑡
= 𝑟𝐵𝑡 × (1 −

𝐵𝑡

𝑘
) − 𝐶𝑡 𝐵𝑡+1 − 𝐵𝑡 = 𝑟𝐵𝑡 × (1 −

𝐵𝑡

𝑘
) − 𝐶𝑡 

Fox SPM model 𝑑𝐵𝑡

𝑑𝑡
= 𝑟𝐵𝑡 × (1 −

𝑙𝑛(𝐵𝑡)

𝑙𝑛(𝑘)
) − 𝐶𝑡 𝐵𝑡+1 − 𝐵𝑡 = 𝑟𝐵𝑡 × (1 −

𝑙𝑛(𝐵𝑡)

𝑙𝑛(𝑘)
) − 𝐶𝑡 

Pella and 

Tomlinson SPM 

model 

𝑑𝐵𝑡

𝑑𝑡
=

𝑟

𝑝
 × 𝐵𝑡 × (1 − (

𝐵𝑡

𝑘
)

𝑝

) − 𝐶𝑡 𝐵𝑡+1 − 𝐵𝑡 =
𝑟

𝑝
 × 𝐵𝑡 × (1 − (

𝐵𝑡

𝑘
)

𝑝

) − 𝐶𝑡 

Surplus production models capture population dynamics based on logistic or more 

generalized theta-logistic growth principles (Pedersen et al., 2011), resulting in a dome-

shaped relationship between surplus biomass production and population biomass. The 

Schaefer SPM (1954) produces a symmetric, dome-shaped curve, with maximum 

sustainable yield (MSY) occurring at half the carrying capacity (0.5K). In contrast, the Fox 

SPM (1970) creates an asymmetric, right-skewed dome, with MSY occurring at 

approximately 36.8% of the carrying capacity (0.37K). Overall, the Fox SPM generally 

shows higher productivity compared to the Schaefer model. 
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The Pella and Tomlinson SPM (Pella and Tomlinson, 1969) incorporates an 

additional shape parameter (p, which is also expressed as m, where p = m - 1) that 

influences the skewness or shape of the production function. This parameter allows the 

model to achieve maximum production (MSY) at any biomass level below the carrying 

capacity. When p approaches 1 (or m ≈ 2), the Pella and Tomlinson model closely resembles 

the Schaefer SPM. If p is near zero (e.g., 10−8 or m ≈ 1), the model behaves similarly to the 

Fox SPM, resulting in a right-skewed, asymmetric production curve. On the other hand, 

when p is around 2 or greater (or m ≈ 3 or higher), the model produces a left-skewed, 

asymmetric production curve, typical of marine mammal population dynamics. The figure 

below illustrates the adaptability of the Pella and Tomlinson SPM, which serves as a 

generalized surplus production model. This simulation assumes a carrying capacity (K) of 

1000 tonnes and a maximum intrinsic population growth rate (r) of 1. 

 

The formulas for deriving management reference points from some of the most well-known 

surplus production models (SPMs), including the Schaefer, Fox, and Pella-Tomlinson 

models, are summarized below: 

Models 𝑩𝑴𝑺𝒀 𝑭𝑴𝑺𝒀 𝑴𝑺𝒀 

Schaefer SPM 

(1954) 

𝑘

2
 

𝑟

2
 

𝑟𝑘

4
 

Fox SPM (1970) 
𝑘

𝑒𝑥𝑝(1)
 

𝑟

ln (𝑘)
 

𝑟𝑘

𝑒𝑥𝑝(1) × ln (𝑘)
 

Pella and 

Tomlinson SPM 

(1969) 

𝑘

(1 + 𝑝)
1
𝑝

 
𝑟

1 + 𝑝
 

𝑟𝑘

(1 + 𝑝)
1+𝑝

𝑝
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Note: FMSY denotes the fishing mortality rate that results in the maximum sustainable yield 

(MSY). It should not be confused with EMSY, which represents the effort level that generates MSY. 

EMSY can be calculated by dividing the catchability coefficient (q) by FMSY (EMSY = FMSY/q), and is 

sometimes referred to as fMSY or fopt. The catchability coefficient (q) reflects the proportion of stock 

biomass captured per unit of fishing effort, and is calculated as q = CPUE/B. While q is typically 

assumed to be constant, it can fluctuate over time because of improvements in fishing technology. 

For example, a trawler equipped with a fish-finding device will have a higher catchability, 

enabling it to catch more fish in a given time compared to a standard trawler without such 

equipment. This increase in fishing efficiency, resulting from technological improvements, is 

known as technological creep or effort creep. 

3.2.1. Equilibrium SPM 

The initial deterministic versions of surplus production models (SPMs) were 

developed based on the equilibrium assumption. The stock is assumed to be in a long-term 

equilibrium state (steady state of biomass), where the biomass, recruitment, and fishing 

mortality have reached a stable equilibrium point with reference to a particular fishing 

effort. The model assumes that the observed catch and effort data represents a balance 

between population growth and removals by fishing. Under equilibrium conditions, the 

biomass remains constant over time because any surplus production is exactly balanced by 

losses due to fishing. Mathematically, this means the temporal rate of change of biomass 

(dB/dt) is zero. The continuous form of the Schaefer production function (dB/dt) under the 

steady state biomass (equilibrium condition) can be presented as: 

𝑑𝐵

𝑑𝑡
= 𝑟𝐵 × (1 −

𝐵

𝑘
) − 𝐶 = 0 

Where 𝑟𝐵 × (1 −
𝐵

𝑘
) is the surplus production and ‘C’ is the catch. From the above equation, 

it is evident that under equilibrium conditions, surplus production and catch are equal, 

resulting in no net change in the original biomass. 

𝑟𝐵 × (1 −
𝐵

𝑘
) = 𝐶 

Under equilibrium conditions, the fishing mortality rate (F) is assumed to be 

constant, leading to a stable catch from the biomass (C = F × B), which is replenished by 

surplus production from the remaining biomass. As a result, the catch per unit effort 

(CPUE) (CPUE = C/E = q × B) remains steady over time at a given level of fishing effort (E) 

because the biomass (B) does not fluctuate significantly. CPUE will only change if there is a 

shift in fishing effort (E) or catchability (q), which in turn influences biomass. For example, 

an increase in effort (E) leads to a reduction in biomass because of greater catch (C). The 

remaining biomass then compensates by producing surplus, stabilizing at a new level where 

the surplus production matches the removals (C). This new stable biomass generates a 

corresponding equilibrium catch and CPUE (C/E). Over time, a gradual increase in fishing 

effort decreases biomass to a lower steady state, resulting in a decline in equilibrium CPUE. 

If effort remains constant, CPUE will stabilize at a new equilibrium, representing the 

sustainable catch level for that level of effort. In equilibrium models, CPUE is considered a 

linear indicator of biomass, and changes in CPUE are typically interpreted as changes in 

biomass over extended time periods.The Catch can be replaced with Effort (E), Biomass (B) 
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and catchability coefficient (q) in the equilibrium surplus production function using the 

rearranged proportional relationship between CPUE and Biomass (i.e., C = q × E × B) as 

follows: 

[𝑟𝐵 × (1 −
𝐵

𝑘
) = 𝐶] →  [𝑟𝐵 × (1 −

𝐵

𝑘
) = 𝑞𝐸𝐵] 

By dividing both the side with B and expanding the terms, the above equation can be 

expressed as: 

[𝑟 × (1 −
𝐵

𝑘
) = 𝑞 𝐸] → [𝑟 −

𝑟𝐵

𝑘
= 𝑞 𝐸] → [

𝑟𝐵

𝑘
= 𝑟 − 𝑞 𝐸] → [𝐵 = 𝑘 (1 −

𝑞𝐸

𝑟
)] 

Since stock biomass (B) is typically unknown, the observable proxy, CPUE, can be used in 

the equation above, based on the relationship between biomass and CPUE (i.e., B = 

CPUE/q), as shown below: 

[𝐵 = 𝑘 (1 −
𝑞𝐸

𝑟
)] → [

𝐶𝑃𝑈𝐸

𝑞
= 𝑘 (1 −

𝑞𝐸

𝑟
)] → [𝐶𝑃𝑈𝐸 = 𝑞𝑘 (1 −

𝑞𝐸

𝑟
)] → [𝐶𝑃𝑈𝐸 = 𝑞𝑘 −

𝑞2𝑘

𝑟
𝐸] 

Finally, by expressing ‘qk’ as ‘a’ and ‘q²K/r’ as ‘b,’ the linear relationship between CPUE and 

effort (E) can be written as: 

𝐶𝑃𝑈𝐸 = 𝑎 − 𝑏 × 𝐸 

In the equation above, the negative slope (b) shows a decline in CPUE with increasing 

effort. The regression coefficients (a and b) can be estimated using the least squares method 

and subsequently applied to calculate MSY and EMSY (or fMSY) as follows: 

𝑀𝑆𝑌 =
𝑎2

4𝑏
=

𝑞2𝑘2

4 ×
𝑞2𝑘

𝑟

=
𝑟𝑘

4
     𝐸𝑀𝑆𝑌 =

𝑎

2𝑏
=

𝑞𝑘

2 ×
𝑞2𝑘

𝑟

=
𝑟

2𝑞
 

Since CPUE is regressed against effort (E) to get the regression coefficients (a and 

b), sufficient variation (contrast) in CPUE across different effort levels is essential to 

enhance the reliability and accuracy of the regression. The production function, or curve, 

represents an equilibrium yield (catch) curve in response to equilibrium CPUE, which 

serves as a proxy for biomass. Each point on this curve corresponds to different equilibrium 

yields (catches) associated with varying equilibrium CPUE values (proxies for biomass 

levels). Thus, constructing a reliable production curve requires a broad range of equilibrium 

CPUE values. This indicates that greater contrast in CPUE data results in a more reliable 

SPM model. Insufficient variation in CPUE can lead to an unstable and unreliable SPM 

(Hilborn and Walters, 1992). Besides contrast, the SPM also requires a sufficient number of 

observations on catch and CPUE for the model to be reliable. A minimum time series of at 

least 10 years of catch and CPUE data is recommended for the model's reliability (Cousido-

Rocha et al., 2022). 

These models are relatively simple to apply, as they assume a constant 

environment and a stable relationship between stock biomass and fishing effort. However, 

equilibrium-based SPMs often oversimplify reality by ignoring year-to-year variability in 

environmental factors, recruitment, and fishing pressure. The equilibrium assumption 

implies that each level of fishing effort yields a sustainable catch that precisely matches the 

surplus production in a stable population. In practice, this assumption frequently breaks 

down in complex real-world conditions, leading to potential overestimation of MSY. Several 
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major fisheries, such as the Peruvian anchovy fishery, have collapsed following catch 

recommendations based on equilibrium-based SPMs (Borema and Gulland, 1973; Larkin, 

1977; Hilborn and Walters, 1992). This limitation of deterministic equilibrium models has 

rendered them obsolete, prompting the development of non-equilibrium SPMs that 

incorporate uncertainties (stochasticity) in the surplus production process. The examples of 

the SPMs that follow the equilibrium assumption are the initial deterministic versions of 

popular SPMs such as Schaefer SPM, Fox SPM and Pella Tomlinson SPM.   

3.2.2. Non-equilibrium SPM 

The biomass is assumed to be in a dynamic state, where the stock biomass 

fluctuates over time, not only because of a change in fishing effort but also because of 

recruitment variation, growth imbalance, environmental variability, etc. In non-equilibrium 

state the biomass changes over time, as surplus production of the stock does not balance 

the catch because of different factors such as over-fishing, under-fishing, recruitment 

variability, growth imbalance, fluctuations in natural mortalities or changes in 

environmental conditions etc. Mathematically, this means the rate of change of biomass 

(dB/dt) is not zero. The continuous form of the Schaefer production function (dBt/dt) 

under the dynamic state biomass (non-equilibrium condition) can be presented as: 

𝑑𝐵𝑡

𝑑𝑡
= 𝑟𝐵𝑡 × (1 −

𝐵𝑡

𝑘
) − 𝐶𝑡 ≠ 0 

Where 𝑟𝐵𝑡 × (1 −
𝐵𝑡

𝑘
)  is the surplus production and ‘Ct’ is the catch. From the above 

equation, it can be seen that under the equilibrium condition, both the surplus production 

and catch are not equal to each other, leading to an effective change in the original biomass.  

𝑟𝐵𝑡 × (1 −
𝐵𝑡

𝑘
) ≠ 𝐶𝑡 

Two conditions are possible under non-equilibrium condition: 

(1) If catch is higher than surplus production, i.e.,  𝐶 > 𝑟𝐵𝑡 × (1 −
𝐵𝑡

𝑘
), then biomass 

decreases, leading to a 
𝑑𝐵𝑡

𝑑𝑡
< 0. 

(2) If catch is higher than surplus production, i.e.,  𝐶 < 𝑟𝐵𝑡 × (1 −
𝐵𝑡

𝑘
), then biomass 

increases, leading to a 
𝑑𝐵𝑡

𝑑𝑡
> 0 

Unlike the equilibrium model, biomass is not stable and changes over time in non-

equilibrium models as the stock responds to fishing pressure, recruitment variability, 

environmental changes, etc. Therefore, CPUE also fluctuates over time and can provide 

real-time insight into the stock's changing biomass. CPUE is still proportional to biomass, 

but it now varies with time not only in response to effort but also because of natural 

population dynamics, recruitment, mortality, and environmental impacts on the stock. For 

example, if there’s a strong recruitment year, CPUE might increase even without reducing 

fishing effort. Alternatively, adverse environmental conditions may reduce biomass and 

CPUE, even if fishing effort remains stable. 

The model uses time-series data on catch and effort, assuming that the stock is not 

in a stable equilibrium. It accounts for temporal changes in biomass, including potential 



Tropical fish stock assessment using R 

 

Page |187 

process errors (εproc) to capture environmental, ecological and biological variability, and 

observation errors (εobs) to address inaccuracies or noise in catch and CPUE data. These 

models are complex and realistic, as they reflect changes in stock size, recruitment, and 

fishing mortality over time. This approach is well-suited for managing fluctuations in stock 

size, making it more effective in capturing the true dynamics of a fishery under variable 

conditions. The models are particularly useful for stocks impacted by overfishing, 

environmental stressors, or shifts in fishing practices. 

3.2.3. Incorporating uncertainty (stochasticity) in the non-equilibrium SPM 

The fundamental deterministic formulation of surplus production models under 

equilibrium assumption are too simplistic to accurately capture the population dynamics of 

a real-world stock affected by variability in size structure, species interactions, recruitment, 

catchability, selectivity, and environmental conditions (Pella and Tomlinson 1969). 

Exploited stocks are influenced not only by fishery-dependent factors but also by fishery-

independent factors. Fisheries data often exhibit noise because of the complex interactions 

of biophysical factors on the stocks, as well as sampling errors in the observation of catch or 

CPUE, which ultimately introduce uncertainties into the models. These uncertainties 

(stochasticity) are addressed by incorporating random stochastic errors into the equations 

(Polacheck et al., 1993 and Srinath, 2002). The stochastic errors can be categorized into two 

broad categories: (1) Process error and (2) Observation error. 

Process error 

It assumes that there are no errors in the observation of catch, CPUE, or any other 

index of abundance. All uncertainties (errors) in the model arise solely from the complex 

and dynamic biological processes involved in biomass generation within the population. 

The most widely used Schaefer SPM with process error (εproc) can be expressed as: 

𝐵𝑡+1 = 𝐵𝑡 + 𝑟𝐵𝑡 × (1 −
𝐵𝑡

𝑘
) − 𝐶𝑡 + 𝜀𝑝𝑟𝑜𝑐  

Process error (εt) accounts for natural fluctuations in biomass resulting from factors such as 

environmental changes, variations in ecological interactions, or recruitment fluctuations 

that are not solely because of fishing activities. 

Observation error 

It assumes that there are no errors in the processes related to the population 

dynamics of fish stocks. All uncertainty (error) in the model arises solely from inaccuracies 

in the observation or sampling of catch and CPUE data. 

Since Catch per Unit Effort (CPUE) increases with biomass, it is frequently used as a proxy 

for biomass. The directly proportional relationship between CPUE and biomass (i.e., CPUE 

= C/E = q × B) allows to express CPUE and catch in terms of effort (E), biomass (B), and 

the catchability coefficient (q), along with the associated observation error (εobs) as follows: 

𝐶𝑃𝑈𝐸𝑡 =
𝐶𝑡

𝐸𝑡
= 𝑞 𝐵𝑡 + 𝜀𝑜𝑏𝑠   𝑎𝑛𝑑   𝐶𝑡 = 𝑞𝐸𝑡𝐵𝑡 + 𝜀𝑜𝑏𝑠        

Observation error (εobs) represents inaccuracies in the observed data (CPUE), addressing 

issues such as sampling errors or measurement errors in catch and biomass indices. 
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Both types of uncertainties (errors) are incorporated into the model using a state-

space implementation of SPMs, such as the Schaefer SPM, Fox SPM, or generalized SPMs 

like the Pella & Tomlinson SPM. State-space models are typically fitted using one of two 

approaches: (1) the Bayesian approach, which employs Markov Chain Monte Carlo (MCMC) 

methods that uses prior distributions on parameters for better estimation of parameters 

and associated uncertainty, or (2) the frequentist approach, which uses maximum 

likelihood estimation (MLE) to maximize the log-likelihood function for the model 

parameters and associated uncertainty. Nevertheless, similar to deterministic SPMs, the 

stochastic SPMs under non-equilibrium assumptions also require sufficient contrast in 

catch and CPUE and a minimum of at least 10 years time series data for the model to be 

reliable (Cousido-Rocha et al., 2022). The examples of the SPMs that follow the non-

equilibrium assumption are the stochastic versions of popular SPMs such as Schaefer SPM, 

Fox SPM and Pella Tomlinson SPM follow non-equilibrium assumption. 

The working principle and method of implementation of commonly used 

stochastic SPMs under the non-equilibrium assumption such as ASPIC, SPiCT, JABBA, 

CMSY++ have been described in this section. 

3.2.4. ASPIC (A Stock-Production Model Incorporating Covariates)  

It is a widely used stock assessment tool developed by Prager in the early 1990s 

(Prager, 1992, 1994 and 1996) to manage fisheries with time-series data. ASPIC is 

particularly useful for stock assessments in data-limited or low-complexity scenarios, where 

minimal data input and a straightforward structure allow for effective management advice 

without extensive computational overhead. 

Data Requirements: It requires time series data of removals (catch) and either 

standardized fishing effort or relative abundance (CPUE) data to assess stock dynamics. 

However, it does not support sub-annual data (e.g., monthly or seasonal catch and CPUE), 

so it is best suited for assessments based on annual data. 

Error Components: It assumes observation error is associated only with CPUE, treating 

the catch data as error-free. Unlike some other models, ASPIC does not account for process 

errors associated with biomass or fishing mortality, which simplifies its structure but limits 

its flexibility in incorporating uncertainty in these processes. 

Model Structure: It fits either a logistic (Schaefer) surplus production model or a 

generalized Pella–Tomlinson model. The logistic model assumes symmetrical growth 

around carrying capacity, while the Pella–Tomlinson model allows for an asymmetric shape 

in the population growth curve, which can capture different species-specific resilience and 

productivity levels. 

Estimation Methods: It uses four estimation methods, i.e., Least squares, least absolute 

values, maximum likelihood, and maximum a posteriori (MAP), which is similar to 

maximum likelihood, but incorporates prior information, making it a Bayesian-like 

approach while remaining computationally efficient for model fitting. 

ASPIC: R Implementation  
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The independent executable program for the ASPIC can be downloaded using the 

following links: 

To download the earlier version (ASPIC5), use the following link:  

https://noaa-fisheries-integrated-toolbox.github.io/ASPIC 

To download the latest version (ASPIC7), use the following link: 

https://www.mhprager.com/aspic.html 

The R implementation of the ASPIC7 can be achieved through a package connectASPIC 

which can be installed using following links: 

https://github.com/IMPRESSPROJECT/connectASPIC 

3.2.5. SPiCT (Surplus Production model in Continuous Time)  

It is a flexible and advanced stock assessment tool well-suited for fisheries with 

time-series data. Developed by Pedersen and Berg (2017), SPiCT is valuable for its capacity 

to incorporate both seasonal patterns and sub-annual data, enhancing the model's 

forecasting capabilities. The key features of the method are given below: 

Data Requirements: It requires a time series of removals (catch data) alongside either 

standardized fishing effort or relative abundance (CPUE). The model can handle sub-

annual (e.g., seasonal) data for both catch and CPUE, making it effective for seasonal 

fisheries and short-term forecasting. 

Error Components: SPiCT models both observation and process errors, considering 

observation errors in CPUE and catch data, while process errors relate to biomass, fishing 

mortality, and seasonality in fishing mortality. 

Model Structure: It fits a generalized Pella–Tomlinson surplus production model (SPM), 

a flexible approach that allows fitting to different growth rates and carrying capacities. 

Estimation Methods: The model uses both the Bayesian approach with Markov Chain 

Monte Carlo (MCMC) and the Frequentist approach via Maximum Likelihood Estimation 

(MLE), making it adaptable for various estimation preferences. 

SPiCT: R Implementation 

The model is implemented in R through the SPiCT package, which requires the 

Template Model Builder (TMB) package. TMB provides the computational framework for 

efficient model fitting and optimization. The detailed instruction for R-implementation can 

be got using the following link: https://github.com/DTUAqua/spict 

3.2.6. JABBA (Just another Bayesian Biomass Assessment)  

This is a Bayesian stock assessment tool developed by Winker et al. (2018) well-

suited for fisheries with time-series data. JABBA provides probabilistic estimates of 

biomass and fishing mortality, making it a valuable tool for assessing stock status and 

guiding fisheries. 

Data Requirements: It requires a time series of removals (catch) and either 

standardized fishing effort or relative abundance (CPUE) data. The model can not use the 

https://noaa-fisheries-integrated-toolbox.github.io/ASPIC
https://www.mhprager.com/aspic.html
https://github.com/IMPRESSPROJECT/connectASPIC
https://github.com/DTUAqua/spict
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sub-annual catch and relative abundance data and therefore lacks the capability to model 

seasonal patterns directly. 

Error Components: It assumes observation error only in CPUE and treats catch data as 

error-free. It also includes process error for biomass only, simplifying the model by 

excluding fishing mortality or other errors.. 

Model Structure: It fits a generalized Pella–Tomlinson surplus-production model 

combined with a generic ‘hockey stick’ recruitment function to constrain the recruitment 

when the relative biomass (Bt/k) falls below a threshold level of 0.20 to 0.25 levels. This 

makes it especially useful for stocks with lower abundance and over exploitation. 

Estimation Methods: It uses a Bayesian state-space approach with MCMC via JAGS 

(Just Another Gibbs Sampler), enabling incorporation of prior information and producing 

probabilistic outcomes. 

JABBA: R Implementation 

R implementation of the JABBA can be achieved through a package JABBA which, 

along with dependent JAGS program, can be downloaded and installed using the following 

links: https://github.com/jabbamodel/JABBA 

The section presents a detailed, step-by-step guide for implementing CMSY++, 

offering additional flexibility to apply methods like the Catch-Only Method (COM), such as 

CMSY, under data-poor conditions, and Catch-and-Effort-based methods, such as BSM, 

under data-moderate conditions. 

3.2.7. CMSY++ 

Introduction 

This Bayesian stock assessment tool was originally developed as catch-MSY by 

Martell and Froese (2013) and later modified by Rosenberg et al. (2014) and Froese et al. 

(2017) into CMSY++. It offers flexibility for users to apply either CMSY or BSM, allowing 

for analysis under varying data conditions—from catch-only data in CMSY to more detailed 

catch and CPUE data in BSM. This adaptability makes the methods broadly applicable to 

data-limited fisheries, especially for initial stock assessments and management planning. 

CMSY requires only time-series catch data for the target species, which is often 

found in data-poor condition. It also requires priors for parameters such as the intrinsic 

growth rate (r) and carrying capacity (k), based on species resilience and life-history traits. 

Additionally, it requires estimated ranges for relative stock biomass (Bt/k) in the initial and 

final years of the time series. BSM, in contrast, requires time-series data on both catch and 

biomass or index of relative abundance (e.g., CPUE), making it suitable for fisheries with 

data-moderate condition. 

Both the CMSY and BSM use a conditional implementation of a modified Schaefer 

surplus-production model that includes an additional conditional multiplier of 4×Bt/k to 

solve the unrealistic high productivity at very low biomass 

The CMSY++ uses a generalised Schaefer surplus production model when the Bt is more 

than a quarter of the virgin biomass (k), i.e. Bt > 0.25 k 

https://github.com/jabbamodel/JABBA
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𝐵𝑡+1 = 𝐵𝑡 + 𝑟𝐵𝑡 × (1 −
𝐵𝑡

𝑘
) − 𝐶𝑡 

The CMSY++ uses a modified Schaefer surplus production model when the Bt is 

less than a quarter of the virgin biomass (k) i.e. Bt < 0.25 k. The modified SPM includes an 

additional conditional multiplier 4×Bt/k. This multiplier equals to 1 when Bt/K=0.25, but 

when Bt/k drops below 0.25, it linearly reduces recruitment to zero as biomass approaches 

zero. This effectively emulates a ‘hockey stick’ recruitment function, similar to JABBA, and 

is particularly useful for assessing stocks with low abundance and high exploitation levels. 

The modified version of Schaefer surplus production model is expressed as: 

𝐵𝑡+1 = 𝐵𝑡 + (𝟒 ×
𝑩𝒕

𝒌
) × 𝑟𝐵𝑡 × (1 −

𝐵𝑡

𝑘
) − 𝐶𝑡 

When only catch data is available (data-poor condition), CMSY is used which 

performs a typical stock reduction analysis (SRA) that employs users guess on the values 

(prior) for certain productivity indicators r, k, and initial and final year relative biomass 

levels (B/K) to estimate "viable" pairs of r and k. This is achieved through a Markov Chain 

Monte Carlo (MCMC) bootstrap approach, simulating biomass trajectories with a Schaefer 

SPM (or a modified version of the Schaefer SPM if biomass falls below 0.25k) that can 

produce the observed catch over time without exceeding the carrying capacity, and 

collapsing the stock or resulting in a final year depletion (Bt/K) outside the bounds of the 

supplied priors. The most probable r and k pairs are estimated from the viable r and k pairs 

which is used to estimate MSY (MSY = rk/4), and related reference points such as biomass 

(BMSY = K/2), exploitation rates (FMSY = r/2), etc. 

However, under data-moderate conditions, when time-series data on catch is 

available along with biomass or an index of abundance (e.g., CPUE), the calculated CPUE 

(derived from the simulated biomass) is fitted to the observed CPUE through the 

implementation of Bayesian surplus production model (BSM). This approach accounts for 

variability (uncertainty) in both population dynamics process (process error) and the 

variability (uncertainty) in measurement/sampling of catch and CPUE (observation error) 

through the state-space implementation of the Bayesian approach using the Markov Chain 

Monte Carlo (MCMC) method, which is often implemented with JAGS or Stan, to derive 

productivity parameters (r, k and B/k).  

CMSY++: R Implementation 

3.2.8. Requirements for CMSY++ 

Installing dependent R-packages 

CMSY++ is not available as an R package, and therefore it can not be downloaded 

and installed directly using the command ‘install.packages(“….”)’ or indirectly (remotely) 

from the github using the command ‘remotes::install_github("….")’. Therefore, CMSY++ 

approach requires four different files (mentioned below), which should be externally 

downloaded. The CMSY++ includes functions for both CMSY and BSM, allowing users to 

seamlessly implement either model based on the data available. The LBB analysis requires 

several dependent R packages (“R2jags", "coda", "parallel", "foreach", "doParallel", "gplots", 

"mvtnorm", "snpar", "neuralnet", "conicfit"), which will be prompted for installation when 
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the R-script (e.g., CMSY++16.R) is loaded for the first time on RStudio. All these dependent 

packages should be installed as and when they are prompted for installation. 

Installing the JAGS (Just Another Gibbs Sampler) 

JAGS is Just Another Gibbs Sampler. It is a program for analysis of Bayesian 

hierarchical models using Markov Chain Monte Carlo (MCMC) simulation. The correct file 

for the Windows Operating System can be downloaded from the following website: 

https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/ 

 

The correct file for the Mac Operating System can be downloaded from the following 

website: 

https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Mac%20OS%20X/ 

Check the version of R installed in the system, using the following code 

R.version$version.string 

If the current version of R in the system is 4.2.0 or later, then install JAGS-4.3.2.exe 

If the current version of R in the system is 4.1.3 or earlier, then install JAGS-4.3.0.exe 

If the current version of R in the system is 4.1.3 or earlier, then it is strongly recommended 

to update the R. 

Installing ‘snpar’ R package 

The ‘snpar’ package is required to run the code from the source. As the package 

‘snpar’ has been removed from R, it can not be downloaded and installed directly using the 

command ‘install.packages(“snpar”)’. Therefore, first download ‘snpar’ from https://cran.r-

project.org/src/contrib/Archive/snpar/ 

 

https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Windows/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Mac%20OS%20X/
https://cran.r-project.org/src/contrib/Archive/snpar/
https://cran.r-project.org/src/contrib/Archive/snpar/
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Click the ‘snpar_1.0.tar.gz’ inside the above-mentioned green border box to download the 

file. Install the downloaded ‘snpar’ in RStudio as follows: go to Tools in RStudio > Install 

Packages > Install From (select Package Archive File .zip, .tar.gz) > Browse under the 

Package archive (select the freshly downloaded snpar) > Install 

 

Downloading the CMSY++ files 

CMSY++ implementation module contains 4 essential files i.e., (1) CMSY++16.R 

(An R-script file containing all the R codes for implementing CMSY++), (2) ffnn.bin (A file 

with the trained neural network data), (3) Train_Catch_9e.csv (A data file having 

information on catch and effort data) and (4) Train_ID_9e.csv (A data file having 

information on various other dependent attributes) which can be downloaded from the 

following website.https://oceanrep.geomar.de/id/eprint/52147/ 

 

Click the ‘Download under Archive’ inside the above-mentioned green border box to 

download all the four files. After download, keep all the four files (i.e. CMSY++16.R, 

https://oceanrep.geomar.de/id/eprint/52147/
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ffnn.bin, Train_Catch_9e.csv, Train_ID_9e.csv) preferably in a single folder in the same 

directory as the R-script (CMSY++16.R). Refer ‘Example data file download link’ in 

the last page to download and use the example data. 

Supplying essential catch (and effort) data and input parameters 

As the R-script is both spelling and case sensitive, utmost care should be taken 

while preparing own input data files. While working with own data, it is recommended to 

copy and paste (overwrite) the own input data (both the ‘catch & effort’ and ‘ID’) on the 

original training data supplied in the example files, i.e., ‘Train_Catch_9e.csv’ and 

‘Train_ID_9e.csv’ without changing the file names of these two CSVs. The copies of the 

original Train_Catch_9e.csv and Train_ID_9e.csv can be prepared as per requirement and 

populated with desired information for different species.  

Catch and effort data ID data 
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Preparing own input data file 

A minimum time series of at least 10 years of continuous catch data is required for 

the catch-based MSY (CMSY) analysis. Populate the catch data in the ‘ct’ column (the C 

column) in Train_Catch_9e.csv file. If additional information on CPUE or biomass is 

available, then populate this information in the ‘bt’ column (the D column) in 

Train_Catch_9e.csv file. This additional CPUE or biomass information is essentially 

required to perform the Bayesian Schaefer surplus production model (BSM). It is not 

compulsory to provide the continuous CPUE or biomass data for every available year. Only 

provide the reliable CPUE or biomass data, preferably from fishery independent surveys. If 

fishery independent information, such as the CPUE or biomass data from experimental 

trawlings or acoustic surveys, is not available, then use the standardized CPUE information 

from the commercial fisheries. The ‘bt’ column (the D column) in Train_Catch_9e.csv 

should be populated with the standardized CPUE (here CPUH) from the effort 

standardization process. Refer ‘Effort Standardization’ to standardize effort from multi-

species and multi-gear fisheries. The ‘bt’ column (the D column) should preferably contain 

CPUE information. If CPUE information is not available, then biomass or spawning stock 

biomass information can also be provided. The name of the stock (ex: P.stylifera_WB) 

should be identical both in the ‘Stock’ column (the A column) of the Train_Catch_9e.csv 

file and in the ‘Stock’ column (the D column) of the Train_ID_9e.csv file. If multiple stocks 

are available, then list them one after the other as shown in the example data files 

(Train_Catch_9e.csv and Train_ID_9e.csv). 

Note: It is compulsory to provide continuous time series catch data for at least 10 years. However, it 

is not compulsory to provide continuous time series CPUE or biomass data for all the years. Only use 

the CPUE or biomass data for the credible years. 

Error message produced if time series catch data is less than 10 years 

 

Error message generated if time series catch data is not continuous (some years and their 

corresponding catches are unavailable/missing from the time series) 

 

Error message generated if time series catch data is not continuous (years are continuous 

but only for some intermittent years catches are unavailable/missing). 

 

In such a situation the unavailable/missing catch values need to be provided either by 

guessing or interpolating or taking the mean of the previous year and next year catch data. 

Some values need to be put to prevent error messages and carry on the analysis.   
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Preparing own input parameter file 

The name of the stock (ex: P.stylifera_WB) should be identical both in the ‘Stock’ 

column (the A column) of the Train_Catch_9e.csv file and in the ‘Stock’ column (the D 

column) of the Train_ID_9e.csv file. The following six columns (D, L, M, V, AF and AH) in 

the Train_ID_9e.csv file essentially require certain inputs (information) without which the 

analysis does not work. Error messages will be generated if these six columns of the 

Train_Catch_9e.csv file were not populated with the following suggested values. 

Column Attribute Action 

D Stock compulsorily provide stock name same as the A column of 

the Train_Catch_9e.csv file 

L StartYear Compulsorily provide the desired starting year for the 

analysis 

M EndYear Compulsorily provide the desired end year for the analysis 

V Resilience Compulsorily provide the resilience information such as 

‘High’ or ‘Medium’ or ‘Low’ or ‘Very low’ for the species.  

The resilience of the species can be guessed as  

R ≈ 2× M (Natural mortality rate) or 

R ≈ 2× Fmsy (Maximum sustainable fishing mortality rate) 

Refer to FishBase (https://www.fishbase.se/search.php)  

or SeaLifeBase (https://www.sealifebase.se/search.php) to 

get prior information on the species resilience. 

As per these sites, the r has been categorized as 

Resilience Prior r range 

High 0.6-1.5 

Medium 0.2-0.8 

Low 0.05-0.5 

Very low 0.015-0.1 
 

AF btype Compulsorily provide the information as ‘CPUE’ or ‘biomass’ 

or ‘None’.  

CPUE or biomass: If CPUE or Biomass information is 

available, provide such input to additionally perform BSM 

analysis. 

None: To perform only the CMSY analysis under the 

circumstances where actually such information is not 

available. Also to suppress the CPUE or biomass information 

where such information is available to perform only the 

https://www.fishbase.se/search.php
https://www.sealifebase.se/search.php
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CMSY analysis. 

AH force.cmsy Compulsorily provide the information as ‘TRUE’ or ‘FALSE’.  

TRUE: To get management outputs from the CMSY. 

FALSE: To get management outputs from the BSM. 

Rest of 

the 

columns 

 Not compulsory to provide information. Mention as not 

available (NA). When NA is provided, the numerical values 

are guessed by the neural network file (ffnn.bin) 

If multiple stocks are available, then list them one after the other as shown in the example 

data files (Train_Catch_9e.csv and Train_ID_9e.csv). 

Controlling the analysis 

To do only the catch-based CMSY analysis 

This requires only the time series catch information (i.e., populated ct column or C 

column) in the Train_Catch_9e.csv. However, in the absence of CPUE or biomass 

information, it is essential to mention the btype column (the AF column shown in green) in 

the Train_ID_9e.csv as None. If additional information on the CPUE or biomass (i.e., 

populated bt column or D column) is available in the Train_Catch_9e.csv, then suppress 

such information by mentioning the btype column (the AF column shown in green) in the 

Train_ID_9e.csv as None. This will trigger the analysis to follow only the CMSY approach 

suppressing the BSM approach in the absence of CPUE or biomass information. 

To do both the catch-based CMSY analysis and catch and effort-based BSM 

analysis 

This requires both the Catch (i.e., populated ct column or C column) and CPUE or 

biomass (i.e., populated bt column or D column) information in the Train_Catch_9e.csv. In 

the presence of CPUE or biomass information, it is essential to mention the btype column 

(the AF column) in the Train_ID_9e.csv as CPUE or biomass. This will trigger the analysis 

to follow both the catch-based MSY (CMSY) and Bayesian Schaefer surplus production 

model (BSM) approaches. 

1. To get management results only from the CMSY analysis, mention the force.cmsy 

(AH column shown in red) as TRUE in the Train_ID_9e.csv. 

2. To get management results only from the BSM analysis, mention the force.cmsy 

(AH column shown in red) as FALSE in the Train_ID_9e.csv. 

3.2.9. Running the CMSY++ analysis 

Open the R-script file in RStudio and set the working directory  

Click the ‘File’ in RStudio and then ‘Open File…’ (or simply CTRL+O). This will 

open up a browsing window to search and load the R-script file. Browse to the folder, where 

all the four files (i.e. CMSY++16.R, ffnn.bin, Train_Catch_9e.csv, Train_ID_9e.csv) are 

previously saved and load (open) only the R-script file, i.e., CMSY++16.R. 
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If it is a first time CMSY++ operation, then the system may ask to install few more 

dependent packages such as conicfit, gplots, neuralnet while loading the CMSY++16.R, 

which may be installed by clicking install in the warning message itself. 

Set the working directory by clicking ‘Session’ in RStudio and then select “Set 

Working Directory” to “To Source File Location”. Setting of working directory is a crucial 

step to facilitate the R-script (CMSY++16.R) find the remaining three files (i.e., ffnn.bin, 

Train_Catch_9e.csv, Train_ID_9e.csv) without which analysis can not be done. It also 

helps in storing the outputs from the analysis in the same working directory. 

 

Define the stock to be analyzed in the opened R-script 

To analyze any particular stock in the data go to the “Select stock to be analyzed” 

section of the code and enter the desired stock name (e.g., P.stylifera_WB) in line 56 (stocks 

<- “ple.27.7d”) by replacing the example stock name (i.e., ple.27.7d). After the change, it 

should look like stocks <-"P.stylifera_WB" in line 56. 
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In the case where more stocks are there to be analysed (information is already there in 

Train_Catch_9e.csv, Train_ID_9e.csv), define the names of the stocks (same as the 

Train_Catch_9e.csv and Train_ID_9e.csv) one after the other in line 56 as follows:  

stocks <-c("P.stylifera_WB", “P.monodon_WB” ,“P.semisulcatus_WB”) 

The sequence of analysis, i.e., whether the stocks are going to be analysed in alphabetic 

order or in the sequence they appear in the ID file or by Region or subregion, can be 

controlled by uncommenting (removing # before stocks) in lines 403 of the “Analyze 

stocks” section, and below.  

 

Define the output settings for the analysis 

Several settings can be controlled in the “General settings for the analysis” to 

produce different outputs as follows: 

Line 85: Set the graphical output “save.plots” as false ‘F’ (save.plots <- F) in the “General 

settings for the analysis” section to prevent the default graphical output savings in low 

resolution JPEG format. 

Line 86: Set the graphical output “close.plots” as false ‘F’ (close.plots <- F) in the “General 

settings for the analysis” section to prevent the graphical window from disappearing, which 

then can be used to save the graphs manually in pdf format, which are better in resolution.  

Line 88: Set the graphical output “write.pdf” to false ‘F’ (write.pdf <- F) in the “General 

settings for the analysis” section to suppress the errors that will be generated while saving 

the pdf files in the absence of "pdflatex" package.  “pdflatex” package is not readily available 

in R and therefore, can not be installed using install.packages("pdflatex"). Therefore, the 

graphical output should be saved manually in the pdf format. 

Line 87: Set the “write.output” to true ‘T’ (write.output <- T) in the “General settings for 

the analysis” section to save the analysis outputs in a tabular .csv format.  



Tropical fish stock assessment using R  

 

Page | 200 

 

Line 78 (optional): Set the graphical output “mgraphs” to true ‘T’ (mgraphs <- T) in the 

“General settings for the analysis” section to produce additional graphs for management. 

Line 80 (optional): Set the graphical output “kobe.plot” to true ‘T’ (kobe.plot <- T) in the 

“General settings for the analysis” section to produce an additional Kobe status plot. 

Line 81 (optional): Set the graphical output “BSMfits.plot” to true ‘T’ (BSMfits.plot <- T) 

in the “General settings for the analysis” section to produce additional diagnostic plots for 

the BSM analysis. 

Line 82 (optional): Set the graphical output “pp.plot” to true ‘T’ (pp.plot <- T) in the 

“General settings for the analysis” section to plot posterior and prior distributions for CMSY 

and BSM. 

Line 83 (optional): Set the graphical output “rk.diags” to true ‘T’ (rk.diags <- T) in the 

“General settings for the analysis” section to plot diagnostic plot for r-k space. 

 

Run CMSY++ codes 

In RStudio, click on “Source” (shown in green colour box) or simply press Ctrl + 

Shift + S to execute the CMSY++ codes. 

To do only the catch-based CMSY analysis  

This requires only the time series catch information (i.e., populated ct column) in 

the Train_Catch_9e.csv. However, in the absence of CPUE or biomass information, it is 

essential to mention the btype column (the AF column) in the Train_ID_9e.csv as None. If 

additional information on the CPUE or biomass (i.e., populated bt column) is available in 

the Train_Catch_9e.csv, then suppress such information by mentioning the btype column 

(the AF column) in the Train_ID_9e.csv as None. This will trigger the analysis to follow 

only the CMSY approach suppressing the BSM approach in the absence of CPUE or biomass 

information. 
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To do both the catch-based CMSY analysis and catch and effort-based BSM 

analysis 

This requires both the Catch (i.e., populated ct column) and CPUE or biomass (i.e., 

populated bt column) information in the Train_Catch_9e.csv. In the presence of CPUE or 

biomass information, it is essential to mention the btype column (the AF column) in the 

Train_ID_9e.csv as CPUE or biomass. This will trigger the analysis to follow both the 

catch-based MSY (CMSY) and Bayesian Schaefer surplus production model (BSM) 

approaches. 

1. To get management results only from the CMSY analysis, mention the force.cmsy 

(AH column) as TRUE in the Train_ID_9e.csv. 

2. To get management results only from the BSM analysis, mention the force.cmsy 

(AH column) as FALSE in the Train_ID_9e.csv.  

 

3.2.10. CMSY++ text output  

The result of the analysis is displayed after the successful completion of CMSY++ run as 

follows: 
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Yellow box: The contents inside the highlighted yellow box show the correct reading of 

Train_Catch_9e.csv, Train_ID_9e.csv and ffnn.bin files by the system. 

Black box: The contents inside the highlighted black box show the priors used by the 

system for the analysis. 

Blue box: The contents inside the highlighted blue box show the stock status from the 

CMSY analysis. 

Red box: The contents inside the highlighted red box show the stock status from the BSM 

analysis. 

Green box: The contents inside the highlighted green box show the management results 

from the BSM analysis.  

Note: The analysis can be forced to produce the management results from the CMSY analysis by 

forcing the CMSY as TRUE (force.cmsy = TRUE) in the AH column of Train_ID_9e.csv. The analysis 

can be forced to produce both the stock status and management results only from the CMSY analysis 

by suppressing the biomass information (btype = None) in the AF column of Train_ID_9e.csv. The 

BSM results will disappear from the above mentioned computational output. 

3.2.11. CMSY++ graphical outputs 

The graphical result of the analysis is displayed after the successful completion of 

CMSY++ run as follows: 

CMSY and BSM plots 

Panel A: Black line shows the time series of catches. The blue curve shows the smoothed 

data and the red dots show the highest and lowest catch. 
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Panel B: The explored log r-k space. The rectangle shows the range of the r and k priors 

provided in the ID file. The point in the center of the blue cross is the most likely r-k pair, 

while horizontal and vertical error bars approximate 95% confidence limits. 

 

Panel C: Zoomed view of Panel B 

Panel D: The solid and dotted blue curve shows the median of the biomass trajectories and 

their confidence interval estimated by CMSY. The solid and dotted red curve shows the 

median of the biomass trajectories and their confidence interval estimated by BSM. Vertical 

purple lines show the prior biomass ranges, dotted if provided by the neural network and 

solid if set by the user. 

Panel E: The solid and dotted blue curve shows the median of the F/Fmsy trajectories and 

their confidence interval estimated by the CMSY. The solid and dotted red curve shows the 

median of the F/Fmsy trajectories and their confidence interval estimated by BSM. 

Panel F: Panel F shows the Schaefer equilibrium curve of catch/MSY relative to B/k, 

indented at B/k < 0.25 to account for reduced recruitment at low stock sizes. The blue and 

red curves show the predictions by CMSY and BSM, from the first year (square) to the last 

years (triangle). 

Note: The analysis can be forced to produce the stock status and management results only from the 

CMSY analysis by suppressing the biomass information (btype = None) in the AF column of 

Train_ID_9e.csv. The red lines (BSM results) will disappear from the above graphical results.  
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Management plots 

Set the graphical output “mgraphs” to true ‘T’ (mgraphs <- T) in the “General 

settings for the analysis” (Line 78) section to produce additional graphs for 

management. 

 

The upper left panel shows catches relative to MSY (dashed line) as estimated by CMSY, 

with an indication of 95% confidence limits in light grey.  

The upper right panel shows the time series of predicted total biomass relative to Bmsy 

(dashed line) and to the border of reduced recruitment (dotted line), with the light grey area 

showing uncertainty.  

The lower left panel shows relative exploitation (F/Fmsy).  

The lower-right panel is a flipped Kobe plot which shows the trajectory of relative stock 

size (B/Bmsy) as a function of fishing pressure (F/Fmsy). The “banana” shape around the 

assessment of the final year (triangle) shows uncertainty with yellow for 50%, grey for 80% 

and dark grey for 95% confidence levels. 
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Kobe plot 

Additionally, set the graphical output “kobe.plot” to true ‘T’ (kobe.plot <- T) in the 

“General settings for the analysis” section (Line 80) to produce the Kobe status plot. 

 

The Kobe plot represents the time series plotting of fishing pressure (F/FMSY) on 

the Y-axis against the stock biomass status (B/BMSY) on the X-axis. The plot is divided into 

four quadrants, i.e. (1) The orange area shows healthy stock sizes that are about to be 

depleted by overfishing, (2) The red area shows that the stock is overfished and is 

undergoing overfishing, with biomass levels being too low to produce maximum sustainable 

yields, (3) The yellow area shows reduced fishing pressure on stocks recovering from still 

too low biomass levels and (4) The green area is the target area for management, showing 

sustainable fishing pressure and healthy stock size capable of producing high yields close to 

MSY. The “banana” shape around the assessment of the final year (triangle) shows 

uncertainty with yellow for 50%, grey for 80% and dark grey for 95% confidence levels. The 

legend in the upper right graph also shows the probability of the last year falling into one of 

the colored areas, i.e., in this example there is a 66% probability that the stock is in the 
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green area and a 11.4% probability that it is in the red area. Target would be, e.g., a higher 

than 75% probability that the stock is in the green area. 

BSM diagnostic plots 

The graphical output “BSMfits.plot” can be set to true ‘T’ (BSMfits.plot <- T) in the 

“General settings for the analysis” section (Line 81) to produce additional diagnostic plots 

for the BSM analysis. 

 

The upper left panel shows the fit represented by the median of predicted catch 

posterior, with 95% confidence limits (grey shaded area), compared to the observed catch 

(points). The upper right panel shows a similar graph for predicted versus observed CPUE. 

The lower left panel shows the deviation between deterministic expectation (surplus 

production minus catch) and the stochastic realization (after adding process error), where a 

strong deviation of the bold curve from the dashed line would show that changes in biomass 

diverge from the Schaefer model expectations due to, e.g., (1) strong environmental 

variation, (2) CPUE not properly describing the abundance or (3) the priors being mis-

specified. The lower right panel shows an analysis of the log-CPUE residuals, which should 

preferably be randomly distributed. 

Posterior and prior distributions plot 

The graphical output “pp.plot” can be set to true ‘T’ (pp.plot <- T) in the “General 

settings for the analysis” section (Line 82) to plot the Posterior and Prior distributions for 

CMSY and BSM input and output variables. The graphs below show the comparison of prior 

and posterior densities (area under curves) for resilience or productivity (r), unexploited 

stock size (k), maximum sustainable yield (MSY), and relative stock size (B/k) at the 

beginning, the end, and an intermediate year of the available time series of catch data. 
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Scroll down to get the outputs from CMSY and BSM analysis. Lower the prior and posterior 

variance ratio (PPVR) better is the result. 

 

 

r-k diagnostic plot 

The graphical output “rk.diags” can be set to true ‘T’ (rk.diags <- T) in the 

“General settings for the analysis” section (Line 83) to plot the diagnostic plot for r-k. 
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The above graphs show a random distribution of r-k pairs (dots) generated from different 

approaches, i.e., (1) logistic approach (blue dots), (2) empirical approach (purple dots); (3) 

JAGS modeling approach (Orange dots); and (4) posterior distribution of r-k points as a 

result of the Bayesian modeling approach (green dots) 
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3.3. Stock Reduction Analysis (SRA) 

Introduction 

These are the simplest stock assessment tools used under data poor situations 

when only catch data is available and therefore, the methods are also known as catch only 

methods (COMs). Unlike the surplus production model (SPM) which use both catch and an 

index of abundance (CPUE) to derive maximum intrinsic rate of population growth (r) and 

carrying capacity (k) which are further used to derive maximum sustainable yield (MSY) 

and related fisheries management reference points, the stock reduction analysis (SRA) in its 

basic form use alternative approach to derive the fisheries management reference points 

from only the catch data. Instead of using catch and CPUE data to directly derive r and k for 

the estimation of fisheries management points, the method use computational simulation 

to prepare biomass trajectories (through a biomass dynamic model) with a probable range 

of r and k pair values which will produce the observed catch while confirming with the 

assumed initial and final biomass levels (more precisely relative B/k or depletion levels) 

without exceeding the carrying capacity (k) or collapsing the stock.  

The simplest deterministic method for the SRA was initially developed by Kimura 

and Tagart (1982), which was further refined by Kimura et al. (1984). The SRA of Kimura 

and Tagart (1982) assumed a simple biomass production function with constant 
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recruitment. However, the simple SRA formulation proposed by Kimura and Tagart (1982) 

did not give any consideration for the growth in biomass and variability in recruitment. 

Later, Kimura et al. (1984) improved the SRA by including Deriso’s delay difference model 

in the biomass production function to account for growth and inter-annual change in the 

biomass. He also included variability in recruitment either by incorporating a stock 

recruitment relationship (Cushing recruitment) or by using an exogenous variable 

(proportional recruitment) in the biomass production functions. The variables of the 

models M, B1, P, R and Fs of simple SRA by Kimura and Tagart (1982) and B1, R, P, Fs, M, 

ρ, r and pi by Kimura et al. (1984) are solved by conditioning (fixing) certain parameters 

using an interactive SRA plot and then iteratively solving the remaining parameters to 

arrive at an acceptable solution for the parameters that will produce the observed catch. 

Once the parameters are resolved, the exploitation rates (Ui) and the biomass (Bi) for the 

corresponding years are determined using the standard formula. Later, Walter (2006) 

developed a stochastic approach for SRA. The working principle and method of 

implementation of commonly used SRA approaches, such as Depletion Corrected Average 

Catch (DCAC), Depletion Based Stock Reduction Analysis (DB-SRA) and sraplus, have been 

described in this section. 

3.3.1. Depletion corrected average catch (DCAC) 

Ideally, a sustainable yield can be inferred if a fishery has shown a long period of 

steady catch without a decrease in the underlying resource abundance (biomass). In this 

case, the long-term average annual catch might serve as an estimate of sustainable yield. 

However, it is rare for a fishery to maintain a constant abundance, as exploitation often 

leads to an initial depletion of the stock. For new or recently developed fisheries, part of the 

catch often comes from this onetime decline in underlying biomass rather than from 

sustainable production. Including this portion of the catch, that will never be used for the 

sustainable production cycle, during averaging procedure might overestimate the 

sustainable yield. Depletion-corrected average catch (DCAC) addresses this issue. 

DCAC is based on the potential-yield formula of Alverson and Pereyra (1969) and Gulland 

(1970). By approximating BMSY = 0.5 × B0 and FMSY = M, the potential yield can be 

expressed as:  

𝑌𝑝𝑜𝑡 = BMSY × FMSY = 0.5 × B0 × M 

This maximum yield (MSY) can be considered as an onetime harvest (windfall harvest or 

W) that deplete the virgin stock biomass (B0) to half of the B0 (0.5 ×B0) which can be 

expressed as: 

𝑊 = 0.5 × B0 

After windfall reduction in biomass, Ypot can be considered a tentatively sustainable annual 

yield. Under the potential-yield assumptions, the ratio of the onetime windfall yield to the 

sustainable yield can be calculated as: 

𝑊

𝑌𝑝𝑜𝑡
=

0.5 × B0

0.5 × B0 × M
=

1

M
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W/Ypot expresses the magnitude of the windfall harvest relative to a single year of potential 

yield. For example, if M is 0.1 per year, the estimated windfall harvest is 10 times the value 

of estimated annual sustainable yield. 

However, these above-mentioned generalized empirical relationships are not very 

accurate or universal. Most fishery stock–recruitment relationships (SRRs) show that the 

BMSY of fish is less than the generally accepted 0.5 ×B0, and 0.4 × B0 has been proposed as a 

more realistic proxy for BMSY (Clark, 1991; NMFS, 1998; Restrepo et al., 1998). Similarly, 

fishery experience suggests that the FMSY may not be exactly the same as M and most often a 

time requires a correction factor (c) so that the FMSY = cM. Now using these revised BMSY = 

0.4 × B0 and FMSY = cM, the potential yield can be expressed as: 

𝑌𝑝𝑜𝑡 = BMSY × FMSY = 0.4 × B0 × cM 

Similarly, the windfall harvest can be expressed as the relative reduction in 

vulnerable stock abundance from the first year (FYR) to the last year (LYR) of the catch 

time-series, i.e. where W= BFYR - BLYR. In data poor condition where biomass has not been 

estimated, it is still possible to assume relative decline in abundance, ∆, which can be 

estimated as: 

∆=
𝐵𝐹𝑌𝑅 − 𝐵𝐿𝑌𝑅

𝐵0
 

Now multiplying B0 at both side the windfall harvest can be estimated as: 

∆ × 𝐵0 =
𝐵𝐹𝑌𝑅 − 𝐵𝐿𝑌𝑅

𝐵0
× 𝐵0 = 𝐵𝐹𝑌𝑅 − 𝐵𝐿𝑌𝑅 = 𝑊 = ∆ × 𝐵0 

Now, using the preceding equations, the general windfall ratio can be expressed as: 

𝑊

𝑌𝑝𝑜𝑡
=

∆ × B0

0.4 × B0 × cM
=

∆

0.4 × cM
 

This generalized equation for the windfall ratio forms the basis for a depletion 

corrected average catch method. It is assumed that, on average, each year produces one unit 

of annual sustainable yield, which produces a catch that consists of a portion derived from 

sustainable annual production, whereas the remaining portion comes from a onetime 

windfall harvest. For a catch (C) series of length n = LYR - FYR + 1, the total cumulative 

catch (∑C) comprises n years of sustainable production, plus a windfall equivalent to W/Ypot 

years of potential yield. The DCAC provides an estimate of the yield that could have been 

sustained (Ysust) during that period as: 

𝑌𝑠𝑢𝑠𝑡 =
∑ 𝐶

𝑛 +
𝑊

𝑌𝑝𝑜𝑡

=
∑ 𝐶

𝑛 +
∆

0.4 × cM

 

Note: if there has been no underlying change in abundance, then ∆ becomes zero, which makes 

W/Ypot = 0, turning the above equation a simple averaging for a multiyear catch. On the contrary, if 

the abundance has increases than the ∆ and so does the W/Ypot become a negative number, which will 

increase the estimated sustainable yield larger than the historical average catch. 

The DCAC uses reliable cumulative annual catch or individual year’s catch for 

many years. It also assumes that the natural mortality rate (M) is not greater than 0.2 yr-1 as 

at a value above 0.2 yr-1 the effect of depletion correction becomes negligible. Assuming a 
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log-normal distribution of M, a CV of 0.5 could be used as a minimal default value. The 

correction factor (c) while estimating the annual fishing mortality rate (F) from M, should 

not be higher than 1 and therefore, c=1 should be used as a target or upper limit. Walters 

and Martell (2004) suggest that the coefficient c is commonly 0.8, but may be 0.6 or less for 

vulnerable stocks. A standard error of 0.2 is suggested as the default estimate of precision. 

In a data-poor situation where the index of abundance is not available, it is difficult to 

estimate the relative reduction in biomass over the duration of a catch series. An estimate of 

relative depletion (∆) can be got by questioning the experienced fishers and from the expert 

opinion. When no information is available, a ∆ of 0.5 with a standard error of 0.15 is 

recommended for DCAC. The DCAC is implemented through a Monte Carlo exploration 

technique for the estimation parameters and their confidence intervals.  

DCAC: R implementation 

The DCAC is implemented through the ‘DLMtool’ using R. 

https://dlmtool.github.io/DLMtool/reference/DCAC.html 

https://search.r-project.org/CRAN/refmans/DLMtool/html/DCAC.html 

https://www.rdocumentation.org/packages/DLMtool/versions/3.1/topics/DCAC 

To download the executable file for R independent installation: 

https://noaa-fisheries-integrated-toolbox.github.io/DCAC 

3.3.2. Depletion based stock reduction analysis (DB-SRA) 

The method was developed by Dick and MacCall (2011) by combining stochastic 

SRA developed by Walter et al. (2006) with depletion corrected average catch (DCAC) of 

MacCall (2009). It uses a delay difference model to assess the current biomass (Bt) from the 

previous year biomass (Bt-1), catch (Ct-1) and latent annual production of parental biomass 

[P(Bt-a)] which can be expressed as: 

𝐵𝑡 = 𝐵𝑡−1 + 𝑃(𝐵𝑡−𝑎) − 𝐶𝑡−1 

It uses a Pella–Tomlinson–Fletcher (PTF) production model, a reparameterized version of 

Pella and Tomlinson SPM (1969) by Fletcher (1978) to calculate the latent annual 

production.  

𝑃 = 𝑔𝑚 × (
𝐵𝑡−𝑎

𝑘
) − 𝑔𝑚 × (

𝐵𝑡−𝑎

𝑘
)

𝑛

 

Where g = nn/(n−1)/(n-1), m = MSY and k = unfished biomass. The exponent n (n > 0) 

determines the skewness of the production function. The production function becomes 

symmetric like Schaefer SPM when n = 2 and right skewed like fox SPM, when n 

approaches 1. The production function becomes left skewed when n > 2. The ratio of 

biomass required to produce MSY to virgin stock biomass (Bmsy/k) is expressed as Bmnpl in 

DB-SRA and is determined by the exponent n. If n ≠ 1, then Bmnpl = n1/(1−n). If n = 1, and 

Bmnpl = exp (-1). 

The production function is almost equivalent to the Beverton and Holt Stock 

Recruitment Relation (BHSRR) driven latent production function used for data-rich 

fisheries while addressing the limitations of the latter. The BHSRR restricts the peak latent 

https://dlmtool.github.io/DLMtool/reference/DCAC.html
https://search.r-project.org/CRAN/refmans/DLMtool/html/DCAC.html
https://www.rdocumentation.org/packages/DLMtool/versions/3.1/topics/DCAC
https://noaa-fisheries-integrated-toolbox.github.io/DCAC
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productivity at Bmnpl (which is Bmsy/k) < 0.5, whereas the PTF allows the Bmnpl to take any 

value between 0 and 1 (0 < Bmnpl < 1). Nevertheless, the PTF predicts unrealistically high 

productivity at low biomass in the case of highly skewed production curves, especially when 

Bmnpl = exp (-1). High skewness is often encountered under typical high values of BHSRR 

steepness (h > 0.5, where ‘h’ is Mace–Doonan steepness, the ratio of recruitment at B = 

0.2K to recruitment at B = K; Punt et al., 2008). The issue is solved by the use of a modified 

hybrid Schaefer PTF model (different from the hybrid Schaefer PTF model by McAllister et 

al. (2000) which under-estimate productivity at low biomass) which provides a latent 

production function that has properties similar to the BHSRR while allowing full flexibility 

in specifying Bmnpl. This function has the form of a PTF production model for abundances 

(Bt-a) above a join-point (Bjoin) and has the form of a Schaefer model for abundances below 

Bjoin. The value of varies from 0 to Bmsy (0< Bjoin< Bmsy) and can be controlled to produce a 

good approximation of the BHSRR model. Following set of linear rules are used to define Bjoin 

during simulation:  

if Bmnpl < 0.3, Bjoin/K = 0.5 Bmnpl;  

if 0.3 < Bmnpl < 0.5, Bjoin/K = 0.75 Bmnpl − 0.075;  

if Bmnpl > 0.5, use PTF model for all Biomass. 

The method requires time-series data on annual catches, an approximation on 

natural mortality rate (M) and age at maturity (a). The production function is specified 

based on general fishery knowledge of the relative location of maximum productivity (Bmnpl) 

and the relationship of FMSY to the M. This helps the model to estimate the unfished 

biomass for a given a depletion level (Bt/k) near the end of the time series. The method uses 

historic catch data, believing that the catch data is reliable and error free. The catch data is 

subsequently depletion corrected and used in the analysis. The method uses a log-normal 

distribution assumption for M and recommends a log scale standard deviation of 0.4 as a 

default value to draw priors for the analysis. The method also recommends a log-normal 

distribution assumption for FMSY and the ratio of FMSY to M. The method recommends a 

mean FMSY/M of 0.8 and a log-scale standard deviation of 0.2 for all species to draw priors. 

The maximum productivity (Bmnpl) which is nothing but the biomass that produces 

maximum surplus production (MSY) relative to the unfished biomass (BMSY/K) is assumed 

to follow a bounded beta distribution. The relative location of Bmnpl on the production curve 

depends on the productivity of the species under investigation. However, the method 

recommends a mean (E) of 0.4 and a standard deviation of 0.05 on the untransformed scale 

(Bmnpl range = 0.31-0.49) to draw Bmnpl priors for most of the fish. The relative depletion 

(Bt/k) which is the final year biomass in relation to the unfished biomass, is also assumed to 

follow a bounded beta distribution with a mean (E) of 0.4 and a standard deviation of 0.1 if 

no prior information is available. The experience fishers and the experts can be interviewed 

to get a more reasonable prior for the relative depletion. Finally, the Monte Carlo 

exploration technique is used to incorporate the uncertainty associated with the above-

mentioned model parameters and to calculate the management reference points and their 

probability distribution. 

DB-SRA: R implementation 

The DB-SRA is implemented through the ‘DLMtool’ using R. 
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https://dlmtool.github.io/DLMtool/reference/DBSRA.html 

https://rdrr.io/cran/fishmethods/man/dbsra.html 

https://www.rdocumentation.org/packages/DLMtool/versions/5.0/topics/DBSRA 

https://search.r-project.org/CRAN/refmans/DLMtool/html/DBSRA.html 

The section presents a detailed, step-by-step guide for implementing sraplus, 

offering additional flexibility to apply methods like the Catch-Only Method (COM), such as 

SRA, under data-poor conditions, and Catch-and-Effort-based methods, such as a Bayesian 

SPM, under data-moderate conditions. 

3.3.3. Stock Reduction Analysis Plus (sraplus) 

The sraplus has been developed by Ovando et al. (2021) using the stochastic stock 

reduction analysis (SRA) earlier developed by Kimura et al. (1984) and Walters et al. 

(2006). It allows users to combine a biomass dynamics model with a variety of data sources 

(e.g. catch data, priors on recent stock status or an index of abundance, CPUE) to derive 

information on the status of a fishery. Under data-poor situation, sraplus works like a catch 

only method (COM) and implements stochastic SRA (Walters et al., 2006). When more 

information such as biomass or index of abundance (CPUE) is available, the sraplus go 

beyond the conventional SRA type analysis and try to fit to the index of abundance using 

Hamiltonian Monte Carlo with the No-U-Turn sampler (Hoffman & Gelman, 2011). 

The sraplus uses a conditional modified implementation of Pella–Tomlinson generalized 

SPM (Pella & Tomlinson, 1969) constructed in the manner of Winker et al. (2018) to 

address the unrealistic high productivity issue at very low biomass. 

The Pella–Tomlinson generalized SPM is used when Bt is more than the quarter of k 

(Bt>0.25 k) 

𝐵𝑡+1 = (𝐵𝑡 +  
𝑟

𝑚 − 1
 × 𝐵𝑡 × (1 − (

𝐵𝑡

𝑘
)

𝑚−1

) − 𝐶𝑡)  𝑝𝑡 

The modified Pella–Tomlinson generalized SPM containing an additional conditional 

multiplier of Bt/(0.25×k) is used when Bt drops below the quarter of k (Bt<0.25 k). 

𝐵𝑡+1 = (𝐵𝑡 + 
𝑩𝒕

𝟎. 𝟐𝟓 × 𝒌
× 

𝑟

𝑚 − 1
 × 𝐵𝑡 × (1 − (

𝐵𝑡

𝑘
)

𝑚−1

) − 𝐶𝑡)  𝑝𝑡 

The sraplus uses the above Pella–Tomlinson generalized SPM when the Bt is less 

than a quarter of the virgin biomass (k), i.e., Bt < 0.25 k. The modified SPM includes an 

additional conditional multiplier Bt/(0.25×k). This multiplier equals to 1 when Bt/K=0.25, 

but when Bt/k drops below 0.25, it linearly reduces recruitment to zero as biomass 

approaches zero. This effectively emulates a ‘hockey stick’ recruitment function, similar to 

CMSY++ and JABBA. The Pella and Tomlinson SPM (1969) generalized SPM includes an 

additional shape parameter (m, sometime expressed as p which is equal to m-1), which 

controls the shape or skewness of the production function, allowing the model to reach 

maximum production (or MSY) at any biomass level below carrying capacity. As m 

approaches 2, the Pella and Tomlinson SPM resembles the Schaefer SPM. When m is close 

to 1 the model behaves like the Fox SPM, producing a right-skewed, asymmetric production 

curve shifting the peak productivity to left. Conversely, with a ‘m’ value of more than 2, the 

https://dlmtool.github.io/DLMtool/reference/DBSRA.html
https://rdrr.io/cran/fishmethods/man/dbsra.html
https://www.rdocumentation.org/packages/DLMtool/versions/5.0/topics/DBSRA
https://search.r-project.org/CRAN/refmans/DLMtool/html/DBSRA.html
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model generates a left-skewed, asymmetric production curve, shifting the peak productivity 

to the right. It is difficult to estimate m value using the SPM and therefore, it is fixed 

following the established ratio of BMSY/K for fish taxa developed by Thorson et al. (2012). 

Thorson et al. (2012) have shown that the m value varies from 0.599 in clupeiformes to 1.97 

in scorpaeniformes, with a mean of 1.478 corresponding to the BMSY/K of 0.404. The 

process error (pt) is assumed to be log-normally distributed (Walters et al., 2006) which can 

be expressed as: 

log(𝑝𝑖) ~𝑁 (−
𝜎𝑝𝑟𝑜𝑐

2

2
, 𝜎𝑝𝑟𝑜𝑐) 

When only catch data is available (data-poor condition), sraplus performs a 

stochastic stock reduction analysis following the approach of Walters et al. (2006). The SRA 

approach uses a prior ranges for productivity indicators r (prior distribution drawn from 

Fishlife, Thorson (2020)), k and initial and final year relative biomass levels (B/K) to 

estimate "viable" combination of r-k pairs. This is achieved through a Markov Chain Monte 

Carlo (MCMC) bootstrap approach, simulating biomass trajectories with the above 

mentioned Pella and Tomlinson SPM that can produce the catch consistent with observed 

catch over time without collapsing the stock, exceeding the carrying capacity, or resulting in 

a final year depletion (Bt/K) outside the bounds of the supplied priors. These viable 

parameters are used to calculate management reference points, such as MSY, B/BMSY, 

F/FMSY, etc. 

However, under data-moderate conditions, when time-series data on catch is 

available along with biomass or an index of abundance (e.g., CPUE), the model besides the 

above-mentioned biomass estimation, tries to fit the observed biomass or index of 

abundance (CPUE) to the simulated biomass. In the presence of effort data, instead of using 

the conventional CPUE which represent catch per unit effort, the approach uses a catch per 

effective harvest rate, which is expressed as: 

𝐶𝑃𝑈𝐸𝑡 =
𝐶𝑡

1 − 𝑒𝑥𝑝−𝐹
 

Where Ft is the fishing mortality, which is calculated from catchability coefficient 

(qt) and effort (Et) using the formula, Ft = qt × Et. The catchability coefficient is calculated 

from the effort creep (τ, which is 2.6% as a default in sraplus) using the formula, qt = qt-1 × 

(1+τ) 

Finally, the observed CPUEt is fitted to the simulated biomass (or calculated CPUE 

from simulate biomass including observation error) to get the likelihood of obtaining the 

observed CPUEt under different combination of input parameters for the production 

process which is further used to derive the posterior distribution of input parameters.  

𝑙𝑜𝑔 (𝐶𝑃𝑈𝐸𝑡) = 𝑁(𝐵𝑡, 𝜎𝑜𝑏𝑠  ) 

These posterior distributions of parameters are subsequently used to derive the 

management reference points (MSY, BMSY, FMSY, etc.). 
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sraplus: R Implementation 

3.3.4. Requirements for sraplus 

Updating R 

The sraplus requires R version 4.0 or above. Check the version of R installed in the 

system, using the following code: R.version.string 

Download/upgrade the R, if the version of R is lower than 4.0. For more details, refer to 

‘1.4.Updating R’. 

Updating Rtools 

Check the version of Rtools installed in the system, using ‘pkgbuild’ R package. 

Install the ‘pkgbuild’ directly using the following code: 

 install.packages("pkgbuild") 

If it does not install ‘pkgbuild’, try installation through devtools: 

install.packages("devtools") 

devtools::install_github("r-lib/pkgbuild") 

pkgbuild::find_rtools(debug = TRUE) 

If the Rtools are obsolete, then download and install the correct version of Rtools 

depending on the version of R installed in the system. Windows installation pack for the 

installation of Rtools for the correct version of R can be found in the below link: 

https://cran.r-project.org/bin/windows/Rtools/ 

 

Installing sraplus 

To install the sraplus package from the github, use the following code: 

install.packages("remotes") 

remotes::install_github("danovando/sraplus") 

If the package is not installed and the following message pop-up, then retry the package 

installation by increasing the connection timeout as follows: 

 

options(timeout=500) 

https://cran.r-project.org/bin/windows/Rtools/
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library(remotes) 

install_github("danovando/sraplus") 

Updating dependent R packages 

 During sraplus installation, the system will ask to update and install many other 

dependent R packages required for the installation of the sraplus. Give permission to 

update all the dependent packages (Press 1 and enter key). Press ‘yes’ to install the packages 

from the source which need compilation. 

  

Troubleshooting sraplus installation failure 

 If sraplus installation fails with the following warning, then check and update 

‘rlang’ and retry installation. If the rlang version is very old (outdated), then lazy loading 

failed for package ‘sraplus’ warning message is generated during sraplus installation, 

leading to failure. 

 

Check the version of rlang installed in the system, using following code: 

packageVersion("rlang") 

Update/install the latest rlang for the R using the following code:  

install.packages("rlang")  

If the above code does not install and update rlang, attempt installation through 

devtools: 

devtools::install_github("r-lib/rlang") 

After updating rlang, retry sraplus installation using the following codes: 

options(timeout=500) 

library(remotes) 

install_github("danovando/sraplus") 

If the installation fails even after updating rlang, then look for the R package name in 

namespace ‘……..’ in the Error in loadNamespace () warning message. Update the obsolete 

R package, creating installation failure using the following code:  
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install.packages("name of the package", dependencies = TRUE) 

If there are too many obsolete packages, try installing the packages with their dependencies 

one after the other till the sraplus installation succeeds. Use the following code to update all 

the R packages. Press ‘Yes’ for every prompt to proceed with the update. 

update.packages(checkBuilt = TRUE) 

Note: The updation of all the available R packages is a time-consuming process and therefore, 

should be done if Error in loadNamespace () warnings are generated even after updating rlang 

or other such dependent R packages, leading to repeated installation failure. 

After updating dependent R packages, retry sraplus installation using the following codes: 

options(timeout=500) 

library(remotes) 

install_github("danovando/sraplus") 

Installing TAF 

 Use the following code to install the FAO transparent assessment framework 

(TAF) R package: 

install.packages("TAF") 

Installing SOFIA 

 Use the following code to install the state of world fisheries and aquaculture 

(SOFIA) R package: 

library(remotes) 

install_github("sofia-taf/SOFIA") 

Installing Git 

 Choose the Git depending on the operating system (OS) of the system following 

the below link: https://git-scm.com/download/ 

A direct link to get Git for the latest Windows OS 64-bit systems is given below: 

https://github.com/git-for-windows/git/releases/download/v2.39.1.windows.1/Git-2.39.1-

64-bit.exe 

 

https://git-scm.com/download/
https://github.com/git-for-windows/git/releases/download/v2.39.1.windows.1/Git-2.39.1-64-bit.exe
https://github.com/git-for-windows/git/releases/download/v2.39.1.windows.1/Git-2.39.1-64-bit.exe
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After the download, install the Git executable file (ex: Git-2.39.1-64-bit.exe) as the 

Administrator. Give permission (ex: Yes/Next) when asked during the installation of the 

Git. Restart RStudio after the installation of Git. 

  

Cloning a demo data from the Git repository 

Clone a demo data (ex: 2023Area57Demo) from the github (Git Repository). Go to 

https://github.com/sofia-taf. Type 2023Area57Demo in the search box (highlighted in red 

box) under the Repositories and search. 

 

Click on the search result, i.e., 2023Area57Demo. Go to the “Code” tab (right side top green 

button) and click the link under HTTPS https://github.com/sofia-taf/2023Area57Demo.git 

https://github.com/sofia-taf/2023Area57Demo
https://github.com/sofia-taf
https://github.com/sofia-taf/2023Area57Demo
https://github.com/sofia-taf/2023Area57Demo
https://github.com/sofia-taf/2023Area57Demo.git
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Now go to RStudio > File > new Project > version control > Git 

 

 

 

Paste the copied link (ex: https://github.com/sofia-taf/2023Area57Demo.git) in the 

Repository URL: slot of the Clone Git Repository window to clone the sraplus codes and 

demo data from the Git Repository. Create a main directory (folder) at any desired location 

(e.g., Desktop) and give a name to the folder (e.g., my_SRAplus). Type the name (e.g.,  

my_SRAplus) in the Project directory name: slot of the Clone Git Repository window. Now 

https://github.com/sofia-taf/2023Area57Demo.git
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Press the Browse button of the Clone Git Repository window to search for the above-

mentioned newly created directory/folder (e.g., my_SRAplus). Search the location (e.g., 

Desktop) for this newly created directory/folder (e.g., my_SRAplus) and click the same 

which will create a path (e.g., C:\Users\Dell\Desktop) for the subdirectories (subfolders) in 

the Create project as subdirectory of: slot of the Clone Git Repository window. 

  

Finally, Press the Create Project button. It will start cloning the Repository.  

 

Preparing own input catch (and effort) data file 

Open the my_SRAplus folder. Open the ‘bootstrap’ subfolder inside the 

my_SRAplus folder. Avoid the ‘data’ subfolder inside the ‘bootstrap’ subfolder. Now open 

the ‘initial’ subfolder inside the ‘bootstrap’ subfolder and finally the ‘data’ subfolder inside 

the initial’ subfolder. The path is: C:\Users\Dell\Desktop\my_SRAplus\bootstrap\ 

initial\data.  
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Now open the ‘catch.csv’ and copy and paste the year-wise catch data of your own. A 

minimum of 11 years of continuous time-series data is required for the sraplus analysis as a 

default setup. Otherwise, the following error message will be produced. 

 

Open the ‘effort.csv’ and copy and paste the year-wise effort data of your own. 

Open the ‘prior.csv’ and give information on priors such as initial and terminal biomass 

levels and their CVs (proportions). 

Open the ‘sofia20_proportions.csv’ to categorise the stock health status. 

Note: Do not alter any catch, effort, priors and stock categorization data inside the ‘data’ subfolder 

of the ‘bootstrap’ subfolder, as it will be auto-populated from the ‘data’ subfolder inside the ‘initial’ 

subfolder of the ‘bootstrap’ subfolder after using the ‘taf.bootstrap()’ code that erases all the traces of 

any previous analysis. 

Catch and effort file types: 

catch.csv 

single species or  

multi-species catch 

effort.csv  

single species effort or 

multi-species exploited by 

the same level of effort 

effort.csv  

multi-species exploited by 

different level of efforts 

   
A minimum of 11 years time-

series catch data is required 

Make same.effort=TRUE in 

the Line 60 of data.R 

Make same.effort=FALSE in 

the Line 60 of data.R 
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Preparing own input prior parameter file 

Priors file types 

priors.csv 

 
A common initial and final biomass status and their CV can be provided as priors for all the 

available stocks. Make same.priors=TRUE in the Line 70 of data.R. 

priors.csv 

 
A stock-wise different initial and final biomass status and their CV can be provided as priors 

for all the available stocks. Make same.priors=FALSE in the Line 70 of data.R. Refer 

‘Example data file download link’ in the last page to download and use the example 

data. 

sofia20_proportions.csv 

 

The values provided in the CSV to compare the 

current analysis results with this previous 

assessment status of SOFIA, which is depicted in 

the status_summary.png of report. Instead of 

SOFIA status, the values from the last assessment 

status can be supplied here (in 

sofia20_proportions.csv) to compare the current 

assessment status with the previous assessment 

status. Additionally, change the xlab="Last 

SOFIA" to xlab="Last assessment" in Line 48 of 

the report.R. 
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3.3.5. Running the sraplus analysis 

Erase traces of previous analysis  

To erase any traces of previous analysis (ex: contents in the previously created data, model, 

outputs and report subfolders inside the my_SRAplus folder), use the following codes on 

the just cloned demo data (ex: 2023Area57Demo). 

library(TAF) 

clean() 

clean("bootstrap", force=TRUE) 

taf.bootstrap() 

Note: Repeat the step every time any change is made in the catch, effort, priors and stock data of the 

‘data’ subfolder inside the ‘initial’ subfolder of the ‘bootstrap’ subfolder. It will populate the catch, 

effort, priors and stock data in the ‘data’ subfolder of the ‘bootstrap’ subfolder. In simple words, the 

procedure ensures the flow of data from the boot/initial/data subfolder to boot/data subfolder, and 

finally to a newly created data subfolder. 

Preparation of data  

Click the data.R (right side bottom window shown inside the green box). The R 

codes in the data.R will be visible on the left side top window (shown inside the red box). 

Select all the codes by pressing control+A) and Run (shown inside the red box). 

 

Note: If one species or more than one species are there for which the effort levels are the same (Refer 

to the Catch and effort file types), then the same.effort=TRUE should be kept unchanged and TRUE in 

Line 60 of data.R (shown inside the blue box). If more than one species are there for which the efforts 

are different (Refer to Catch and effort file types), then the same.effort=TRUE should be changed to 

same.effort=FALSE in Line 60 of data.R (shown inside the blue box).  
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A data subfolder will be created (right side bottom window shown in the red box). 

Click it to view the data, plots including input.rds in the RStudio which is going to be used 

for modeling. These input files can also be seen inside the data subfolder inside the 

my_SRAplus folder created on the Desktop. 

RStudio view 

of data subfolder 

Windows view 

of data subfolder 

  

Clicking the individual items inside the data subfolder will produce the following outputs. 

catch_by_stock.png Driors.pdf 

 

 

catch_relative.png 

 

 

catch_total.png 
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sraplus modeling  

Click the model.R (right side bottom window shown inside the green box). The R 

codes in the model.R will be visible on the left side top window (shown inside the red box). 

Select all the codes (click anywhere on the code and Press control+A) and Run. 

 

A model subfolder will be created (right side bottom window shown inside the green box). 

Click it to view the model outputs (results.rds) in the RStudio. This results.rds can also be 

seen inside the model subfolder inside the my_SRAplus folder created on the Desktop. 

RStudio view 

of model subfolder 

Windows view 

of model subfolder 
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Model engine customization 

The sraplus uses three algorithms for the modeling, i.e., (1) SIR, (2) tmb, and (3) 

stan, which can be controlled by changing the engine (Line no. 27) of the model.R. 

The engine argument specifies how the model will be fit. 

To implement stan algorithms, make engine = "stan" in the Line no. 27 of model.R. 

(Use STAN as the engine when data on a perfect index of abundance is not available, rather data on 

catch and effort (CPUE) is available, to fit the model via the Bayesian approach)  

To implement tmb algorithms, make engine = "tmb" in the Line no. 27 of model.R. 

(Use Template Model Builder (TMB) as the engine when there is a perfect index of abundance (e.g., 

Biomass) to fit the model via maximum likelihood approach) 

To implement SIR algorithms, make engine = "SIR" in the Line no. 27 of model.R. 

(Use SIR as the engine when not actually “fitting” to anything, rather simply sampling from priors that 

don’t crash the population) 

3.3.6. sraplus tabular outputs  

Click the output.R (right side bottom window shown inside the green box). 

The R codes in the output.R will be visible on the left side top window (shown inside the red 

box). Select all the codes (click anywhere on the code and press control+A) and Run. 

 

An output folder will be created (right side bottom window shown inside the green box). 

Click it to view the processed outputs (current_status.csv, stock_timeseries.csv and 
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stock_tables subfolders) in the RStudio. These outputs can also be seen inside the output 

subfolder inside the my_SRAplus folder created on the Desktop. 

RStudio view 

of output subfolder 

Windows view 

of output subfolder 

  

Clicking the individual items inside the output subfolder will produce the following outputs. 

current_status.csv 

 

The result shows the mean B/Bmsy for P. monodon is 0.76, which shows that the stock is in 

an overfished status. However, P.stylifera with a B/Bmsy of 1.36 is in an underfished status. 

stock_timeseries.csv 

 

 

 

 

 

 

The result shows the time-series 

(year-wise) B/Bmsy and F/Fmsy 

status for the two analysed stocks of P. 

monodon and P.stylifera. 
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CSV files inside the stock_tables subfolder 

 

Depending on the numbers of stocks in the input data, the .csv files will be created. These 

individual .csv files will give detailed outputs on all the parameters of the stocks in a tabular 

form. 

3.3.7. sraplus graphical outputs  

The graphical output can be prepared by executing the report.R. However, the R script will 

not work if the dependent “egg” R package is not previously installed. 

If the package “egg” has not been installed yet, a warning message will flag as follows: 

Package egg required but is not installed, Install/ Don’t Show Again. 

Press the Install (shown in the red box in below image) to install the R package ‘egg’. 
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If the report.R is executed without installing the ‘egg’ R package, then the following error 

will pop up: Error in library(egg): there is no package called ‘egg’ 

The error can be circumvented by installing the ‘egg’ R package using the following code:  

install.packages("egg") 

Click the report.R (right side bottom window shown inside the green box). 

The R codes in the report.R will be visible on the left side top window (shown inside the red 

box). Select all the codes (click anywhere on the code and press control+A) and Run. 

 

A report folder will be created (right side bottom window shown inside the green box). Click 

it to view the graphical outputs (bbmsy.png, status_by_year.png, status_sofia.png, 

status_sraplus.png, stock_cpue.pdf, stock_posterior.pdf, stock_timeseries.pdf) in the 

RStudio. These outputs can also be seen inside the report subfolder inside the my_SRAplus 

folder created on the Desktop. 

RStudio view of report Windows view of report 
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Clicking the individual items inside the report subfolder will produce the following 

graphical outputs. 

b_over_bmsy.png 

 
A times-series of B/Bmsy status for the analyzed stocks. 

status_count.png 

 
A times-series of stock health status (underfished or fully fished or overfished) in terms of 
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count for the analyzed stocks. 

status_proportion.png 

 
A times-series of stock health status (underfished or fully fished or overfished) in terms of 

proportion for the analyzed stocks. 

status_summary.png 

 
A comparison of stock health status (last assessment vs. current assessment) of the 

analyzed stocks in terms of proportion. 
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stock_cpue.pdf 

  
A pictorial demonstration of time-series of CPUE for the analyzed stocks. 

stock_posterior.pdf 

  

A comparison between the priors and posteriors of variables used in the sraplus modeling 

of the analyzed stocks. 

stock_timeseries.pdf 

  
A times-series of B/Bmsy, F/Fmsy (U/Umsy), Catch/MSY and Depletion status for the 

analyzed stocks. 
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Additional outputs 

F/Fmsy plot 

Additional outputs, such as F/Fmsy plot, can be plotted using the following codes. 

Copy and paste the following codes below the last line of codes in the report.R (R-script file) 

to produce an additional graph on F/Fmsy: 

## F over Fmsy 

ggplot(stock.timeseries, aes(x=year, y=ffmsy, colour=stock, group=stock)) + 

  geom_line(show.legend=TRUE) + 

  geom_hline(yintercept=0.8, linetype="dashed", color="red", linewidth=2) + 

  geom_hline(yintercept=1.2, linetype="dashed", color="green", linewidth=2) 

ggsave("report/f_over_fmsy.png", width=12, height=6) 

dev.off() 

 
f_over_fmsy.png 

 
A times-series of F/Fmsy status for the analysed stocks. 
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Kobe plot 

Additional outputs, such as Kobe plot, can be plotted using the following codes. 

Copy and paste the following codes below the last line of codes in the report.R (R-script file) 

to produce an additional Kobe plot. 

## Stock kobe plot 

pdf("report/stock_kobe.pdf") 

for(i in seq_len(nrow(stocks))) 

  print(plot_sraplus(stocks$sraplus_fit[[i]], kobe = TRUE) + ggtitle(stocks$stock[i])) 

dev.off() 

 
Kobe plot 
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Note: If one species or more than one species are there for which the effort levels are the same (Refer 

to the Catch and effort file types), then the same.effort=TRUE should be kept unchanged and TRUE in 

Line 60 of data.R (shown inside the blue box). If more than one species are there for which the efforts 

are different (Refer to Catch and effort file types), then the same.effort=TRUE should be changed to 

same.effort=FALSE in Line 60 of data.R (shown inside the blue box). 

 

References 

Journal articles 

Ovando, D., Hilborn, R., Monnahan, C., Rudd, M., Sharma, R., Thorson, J. T., Rousseau, Y., 

& Ye, Y. (2021). Improving estimates of the state of global fisheries depends on 

better data. Fish and Fisheries, 22(6), 1377–1391. 

https://doi.org/10.1111/faf.12593 

Online resources  

GitHub repository: Ovando, D. (n.d.). sraplus [GitHub repository]. GitHub. 

https://github.com/DanOvando/sraplus 

 

Example data file download link 

Use the following Google Drive link to download the example data file. The user 

may work with this file and modify it according to the data at hand. 

https://drive.google.com/drive/folders/1cNNiT5t3vr1MRpK69vygENsQdqwn-

OJD?usp=sharing 
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