# Inter Annual and Seasonal Dynamics in Amino Acid, Vitamin and Mineral Composition of Sardinella longiceps

#### Kajal Chakraborty<sup>\*</sup>, Deepu Joseph, Selsa Jose Chakkalakal, Koyadan Kizhakedath Vijayan

Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., Kerala, India \*Corresponding author: kajal\_cmfri@yahoo.com

Received November 16, 2013; Revised December 02, 2013; Accepted December 11, 2013

**Abstract** *Sardinella longiceps* were studied for the spatial (south west (SW) and southeast (SE) coast of India), annual (2008, 2009, 2010 and 2011) and seasonal (pre-monsoon, monsoon and post-monsoon) variations of protein, amino acids, minerals and vitamins. The chlorophyll-a concentration and sea surface temperature of its habitats were taken into account to understand their effect on the nutrient signatures of oil sardine throughout the study period and locations. Mean protein content attained its maximum during pre-monsoon along both SW and SE coasts, with high proportions of essential amino acids. Essential to non-essential amino acid ratio, total aromatic (TArAA) and total sulfated amino acids (TSAA) recorded monsoon maxima along the study locations. Amino acid scores observed monsoon along both SE coast (P<0.05). Significant seasonal variations in vitamin content were observed along the study locations with high vitamin A, D<sub>3</sub> and C on SW coast and higher vitamin E and K in SE coast. The present study demonstrated Sardinella longiceps as a valuable source of the protein, amino acids, minerals and vitamins. A reasonably good ratio of essential to nonessential amino acids for oil sardines was recorded throughout different study period and locations, and therefore it can be concluded that this low-value species is an excellent source of good balanced proteins with high-biological value to be qualified as a preferred health food for human diet.

Keywords: fish, Sardinella longiceps, amino acids, minerals, vitamins, amino acid score

**Cite This Article:** Kajal Chakraborty, Deepu Joseph, Selsa Jose Chakkalakal, and Koyadan Kizhakedath Vijayan, "Inter Annual and Seasonal Dynamics in Amino Acid, Vitamin and Mineral Composition of *Sardinella longiceps.*" *Journal of Food and Nutrition Research* 1, no. 6 (2013): 145-155. doi: 10.12691/jfnr-1-6-6.

# 1. Introduction

Marine fishes are known to be a superior quality and relatively cheaper protein source rich in essential amino acids, mineral elements, and vitamins [1]. Fish proteins are of high nutritional quality and are fairly balanced with respect to various essential amino acids. The amino acid composition is one of the most important nutritional qualities of protein and the amino acid score [2] is used to evaluate protein quality world-wide. Marine fish is of high biological value with the best balance of the dietary essential amino acids comparing favorably with egg, milk and meat in the nutritional value of its protein [3]. Sardinella longiceps Valenciennes, 1847 (Oil Sardine; Family Clupeidae) located in the Indian Ocean (northern and western parts only, Gulf of Aden, Gulf of Oman, but apparently not Red Sea or the "Gulf", eastward to the southern part of India, on the eastern coast to Andhra; possibly to Andamans) [4] is finding more acceptances recently because of its extraordinary nutritional qualities. It is a pelagic fish, which forms prime constituents of India's pelagic fisheries owing to its wide distribution, food/feed value and industrial use of its body oil [5].

The proper understanding about the biochemical constituents of this *S. longiceps* has become a primary

requirement for the nutritionists and dieticians. Another vital area which needed the accurate information on biochemical composition is processing industries of fish and fishery products. A perusal of literature shows that very little information is available on the study regarding nutritional composition of oil sardine viz. its amino acid, mineral and vitamin content, though it is a dominant fishery resource off Indian coast for the past three decades. Hence this study is designed to examine the spatial (south west (SW) and south east (SE) coast of India), annually (2008, 2009, 2010 and 2011) and seasonal (pre-monsoon, monsoon and post-monsoon) variations of true protein, amino acids, minerals and fat soluble vitamins of Sardinella longiceps collected from SW and SE coast of India by studying its living environment *viz*. chlorophyll concentration and sea surface temperature keeping in mind the implication of such a variation for pharmaceutical products, food additives, and dietary health supplements.

# 2. Materials and Methods

#### 2.1. Samples

Fresh oil sardines Figure 1 were collected (1 kg each) from fishing harbors of Mangalore, Calicut, Cochin (SW

coast) and Chennai, Mandapam, Tuticorin (SE coast) during 2008 - 2011 on the  $15^{\text{th}}$  day of each month. In order to obtain information on the seasonal variations, monthly data were grouped as pre-monsoon (February to May), monsoon (June to September) and post-monsoon (October to January). The results of the three centers in each coast were pooled and average values were used in the present study. Within each sampling two pools of fish per fishing site, each composed of 15-20 specimens of comparable body size were collected, washed in sterile water and brought immediately to the laboratory in an ice box. The whole fish were then gutted and minced for analyses. The time interval between capturing and the arrival of the fish at the landing sites was about 3-4 hours. Although, age and sex differences in nutritional composition evidently could occur, we regarded the fish as a whole food source, which was representative of the market and thus totally used by the local population, without any age or sex differences.



Figure 1. Indicative photograph of *Sardinella longiceps* collected from SW and SE coasts

## 2.2. Determination of Protein and Amino Acids

The protein contents of the oil sardines were estimated by the established method [6]. The absorbance of the protein aliquot was measured at 660 nm in a UV-Visible spectrophotometer (Varian Cary, USA) within 15 min against the reagent blank. The protein content of the sample was calculated from the standard curve of bovine serum albumin, and expressed as g/100g wet tissue. The amino acid content of the oil sardines was measured using the Pico - Tag method as described earlier [7] using suitable modifications. The sample was hydrolyzed for 24 h at 110°C with 6 M HCl in sealed glass tubes filled with nitrogen. The hydrolyzed samples were treated with redrying reagent (MeOH 95%: water: triethylamine, 2:2:1 v/v/v), and thereafter pre-column derivatization of hydrolyzable amino acids was performed with phenylisothiocyanate (PITC, or Edman's reagent) to form phenylthiocarbamyl (PTC) amino acids. The reagent was freshly prepared, and the composition of derivatising (methanol 95%: triethvlamine: reagent phenylisothiocyanate, 20µL, 7:1:1 v/v/v). The derivatized sample (PTC derivative, 20 µL) was diluted with sample diluent (20 µL, 5 mM sodium phosphate NaHPO<sub>4</sub> buffer, pH 7.4: acetonitrile 95:5 v/v) before being injected into reversed-phase binary gradient HPLC (Waters reversedphase PICO.TAG amino acid analysis system), fitted with a packed column (dimethylocatadecylsilyl- bonded amorphous silica; Nova-Pak C<sub>18</sub>, 3.9 X 150 mm) maintained at 38±1°C in a column oven to be detected by their UV absorbance ( $\lambda_{max}$  254 nm; Waters 2487 dual absorbance detector). The mobile phase eluents used were eluents A and B, whereas eluent A comprises sodium acetate trihydrate (0.14 M, 940 ml, pH 6.4) containing triethylamine (0.05%), mixed with acetonitrile (60 ml), and eluent B used was acetonitrile : water (60:40, v/v). A gradient elution program, with increasing eluent B was employed for this purpose. An additional step of 100% eluent B is used to wash the column prior to returning to initial conditions. Standard (PIERS amino acid standard H; Thermoscientific) was run before each sample injection. Samples (PTC amino acid derivatives) were injected in triplicate, and the output was analyzed using BREEZE software. The quantification of amino acids was carried out by comparing the sample with the standard, and the results were expressed in g/100g wet tissue.

# **2.3. Estimation of Nutritional Indices and Amino acid Score**

The total essential amino acids (TEAA), total nonessential amino acids (TNEAA), total amino acids (TAA), total aromatic amino acids (TArAA), total sulfur containing amino acids (TSAA) and the ratios of total essential amino acid (TEAA) to total non-essential amino acid (TNEAA), i.e. (TEAA/TNEAA); total essential amino acid (EAA) to the total amino acid (TAA), i.e. (TEAA/TAA); total non-essential amino acid (TNEAA) to the total amino acid (TAA), i.e. (TNEAA/TAA), leucine/isoleucine (Leu/ILeu), arginine/lysine (Arg/Lys), cysteine in total sulfur containing amino acids (Cys/TSAA) were calculated. The amino acid score (AS) for the essential amino acids was calculated using the FAO/WHO [8] formula: amount of amino acid per sample protein (mg/g) /amount of amino acid per protein in reference protein (mg/g)., with respect to reference amino acid requirements for adults [9].

#### 2.4. Determination of Fat Soluble Vitamins

Estimation of fat soluble vitamins was carried out by a modified method of Salo-Vaananen et al. [10]. The stock solutions of vitamin standards (Sigma-Aldrich Chemical Co. Inc, St. Louis, MO) were prepared (1, 10, 25, 50, & 100 ppm) to construct the standard curve by HPLC. All the stock solutions were stored at -20°C except vitamin D3 where the stock solutions were stored at 4°C. Lipids (0.1 g, t-BHQ 0.02%, w/w) were extracted using established method [11], which was hydrolyzed, with KOH/MeOH (0.5N, 2 ml) at 60°C for 30 min to furnish the hydrolyzed mixture, which (2 ml) was thereafter extracted with petroleum ether (12 ml), and washed with distilled water (2 x 8ml) to make it alkali-free. The nonsaponifiable matter (8 ml) was concentrated using a rotary evaporator (Heidolph, Germany; 50°C), reconstituted in MeOH, filtered through nylon acrodisc syringe filter (0.2 µm) to be injected (20 µL) in HPLC (Shimadzu, Prominence) equipped with a C<sub>18</sub> column (Phenomenex, 250 mm length, 4.6 mm I.D., 5µm) in column oven (32°C) and connected to a detector (PDA). The run time was 45 min, and the eluents were detected at 265 nm (UV detector) using the gradient program as follows: 20% MeOH up to 3 min, which was increased to 100% in the next 5 min and held for 37 min. The flow rate was 1 ml/min. Vitamin C was determined based upon the quantitative discoloration of 2, 6-dichlorophenol indophenol titrimetric method as described [12]. The vitamins A, D<sub>3</sub>, E, K<sub>1</sub> and C were expressed as  $\mu g/100g$ fresh sample.

#### 2.5. Estimation of Minerals

Estimation of minerals was carried out by atomic absorption spectrophotometer (CHEMITO AA 203) following the di-acid (HNO<sub>3</sub>/HClO<sub>4</sub>) digestion method with suitable modifications [13]. In brief, samples (2 g) were placed in digestion tubes, to which concentrated HNO<sub>3</sub> (7 ml) was added, and the content was kept for overnight digestion in a fume hood until no brown fumes appeared. The digestion was continued over the sand bath with  $HClO_4$  (6 ml) until the color of the solution became pale yellow to colorless. The solution was thereafter cooled and filtered through Whatman No. 1 filter paper. The filtrate was diluted with distilled water (50 ml) to be injected in atomic absorption spectrophotometer for the determination of minerals. The analyses of Ca, Na, K, Mn, Fe, and Zn were performed by flame atomic absorption spectrophotometry equipped with a hollow cathode lamp containing D<sub>2</sub> lamp background correction system. For Se, continuous flow hydride generator coupled with an atomic absorption spectrometer was used. Phosphorus content was analyzed by an alkalimetric ammonium molybdophosphate method as described in AOAC official method 964.06 [12].

# **2.6.** Chlorophyll-a Concentration and Sea Surface Temperature

The chlorophyll-a concentrations were derived from global 9-km monthly mean SeaWiFS (Sea Viewing Wide Field-of-view Sensor) data for the period from January 2008 December 2011 to (http://reason.gsfc.nasa.gov/OPS/Giovanni/ocean.seawifs. shtml) to indicate the distribution of the photosynthetic pigment chlorophyll 'a', and expressed as mg/m<sup>3</sup> Figure 2 A-F. Sea surface temperature (SST) was derived from global 9 km monthly mean MODIS (Moderate Resolution Imaging Spectroradiometer) - AQUA data for the period from January 2008 to December 2011 (http://reason.gsfc.nasa.gov/

*OPS/Giovanni/ocean.seawifs.shtml*) which represented the temperature at the top 0.1 mm of water column.

#### 2.7. Statistical Analyses

Statistical evaluation was carried out with the Statistical Program for Social Sciences 13.0 (SPSS Inc, Chicago, USA, ver. 13.0). Descriptive statistics were calculated for all the studied traits. Analyses were carried out in triplicate, and the means of all parameters were examined for significance by analysis of variance (ANOVA). Pearson correlation coefficient between biochemical compositions of samples collected was analyzed. The level of significance for all analyses was  $p \leq 0.05$ . Principal component analysis (PCA) was carried out.

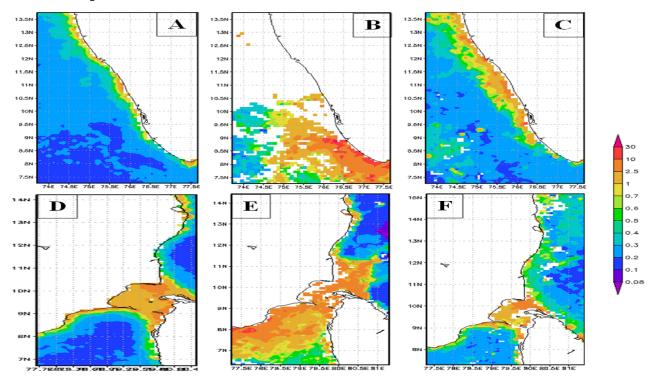



Figure 2. Indicative satellite images of SeaWiFS chlorophyll-a concentration in the year 2009 along Southwest coast of India during (A) pre-monsoon, (B) monsoon, (C) post-monsoon seasons; and Southeast coast of India during (D) pre-monsoon, (E) monsoon, and (F) post-monsoon season.

#### **3. Results**

# **3.1. Inter Annual and Seasonal Variability of Total Protein and Amino acids Content in** *S. longiceps* Collected from the South West and South East Coast of India

The true protein content in oil sardines collected from SW and SE coasts is shown in Table 1A and 1B,

respectively. The total protein content ranged from 11 - 19.7 g/100g in SW coast samples and between 11 - 15.4 g/100g in SE coast samples. The current study indicated substantial spatial and temporal variation in the true protein content with average total protein content being maximum in pre-monsoon along both SW (19.3 g/100g) and SE (14.4 g/100g) coasts.

The essential, non-essential amino acid compositions of *S. longiceps* from SW and SE coasts are recorded in Table 1 A and 1 B, respectively. Essential amino acids (EAA)

dominated the protein content in the sardines from both locations, namely valine, arginine, leucine, lysine etc. No significant differences in the amino acid composition between samples from SW and SE coasts were observed over the studied years (2008 - 2011) (p > 0.05). The oil sardine protein contains a broad variety of amino acids and their isomers especially high proportion of the EAA which was about 52 - 56% TAA in SW and 56 - 61% TAA in SE coast. Likewise, NEAA observed about 44 - 48% TAA in SW and 39 - 45% TAA in SE coast. The EAA content was observed maximum during monsoon

followed by post-monsoon in SW coast dominating valine, leucine and isoleucine. A similar trend was observed in SE coast with valine, methionine, leucine and lysine as the predominant ones. Concerning non-essential amino acid (NEAA), the most important were glutamic acid, glycine, serine, cysteine in SW coast with maximum NEAA observed in monsoon, followed by post-monsoon and premonsoon. On SE coast, glutamic acid, glycine, serine, alanine were found dominant with maximum value observed in monsoon, followed by post-monsoon and premonsoon.

Table 1A. Protein (g/100g wet sample) and amino acid composition (g/100g wet sample) of *S. longiceps* collected from south west coast of India during 2008-2011 in three different seasons

| during 2008-2011 in ti         | aree allier                 |                              |                          |                          |                      | Mor                         | isoon                       |                             | Post-monsoon                |                             |                             |                             |
|--------------------------------|-----------------------------|------------------------------|--------------------------|--------------------------|----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                                | Pre-monsoon                 |                              |                          |                          |                      |                             |                             |                             |                             |                             |                             |                             |
|                                | 2008                        | 2009                         | 2010                     | 2011                     | 2008                 | 2009                        | 2010                        | 2011                        | 2008                        | 2009                        | 2010                        | 2011                        |
| Protein                        | $19.2 \pm 0.98^{\rm a}$     | 19.7 ± 1.23 <sup>a</sup>     | 19.3 ± 1.48 <sup>a</sup> | 19.0 ± 1.73 <sup>a</sup> | $17.32 \pm 1.98^{a}$ | 12.1 ± 0.23 <sup>b</sup>    | 16.5 ± 2.48 <sup>ab</sup>   | 14.6 ± 2.73 <sup>ab</sup>   | $12.4 \pm 0.98^{b}$         | 12.4 ± 0.32 <sup>b</sup>    | $11.25 \pm 0.36^{b}$        | $11.01 \pm 0.12^{b}$        |
| Histidine (His) <sup>a</sup>   | $0.98 \pm 0.23 \pm$         | $0.23 \pm$                   | $0.17 \pm$               | $0.28 \pm$               | $0.12 \pm$           | $0.23 \pm 0.25 \pm$         | $0.33 \pm$                  | $0.23 \pm$                  | 0.98<br>0.46 ±              | 0.32<br>0.47 ±              | 0.50<br>0.51 ±              | 0.12<br>0.57 ±              |
| (1.9 mg/100g)                  | 0.01 <sup>a</sup>           | 0.03 <sup>a</sup>            | $0.07^{a}$               | $0.08^{a}$               | 0.12 <sup>a</sup>    | 0.25 <sup>a</sup>           | 0.01 <sup>a</sup>           | 0.02 <sup>a</sup>           | 0.01 <sup>a</sup>           | 0.01 <sup>a</sup>           | 0.001 <sup>a</sup>          | 0.02 <sup>a</sup>           |
| Arginine(Arg) <sup>a</sup>     | $0.78 \pm$                  | $0.78 \pm$                   | $0.58 \pm$               | $0.98 \pm$               | $0.96 \pm$           | $0.22 \pm$                  | 0.25 ±                      | 0.48 ±                      | $0.86 \pm$                  | 0.23 ±                      | $0.71 \pm$                  | $0.81 \pm$                  |
|                                | 0.35 <sup>a</sup>           | 0.27 <sup>a</sup>            | 0.42 <sup>a</sup>        | 0.09 <sup>a</sup>        | $0.07^{a}$           | 0.65 <sup>b</sup>           | 0.27 <sup>b</sup>           | 0.41 <sup>ab</sup>          | $0.08^{a}$                  | 0.009 <sup>b</sup>          | 0.038 <sup>a</sup>          | 0.02 <sup>a</sup>           |
| Threoninea(Thr)                | $0.31 \pm$                  | $0.31 \pm$                   | $0.25 \pm$               | $0.37 \pm$               | $0.16 \pm$           | $0.13 \pm$                  | $0.21 \pm$                  | $0.17 \pm$                  | $0.39 \pm$                  | $0.34 \pm$                  | $0.32 \pm$                  | $0.38 \pm$                  |
| (3.4 mg/100g)<br>Valinea (Val) | 0.03 <sup>a</sup><br>0.41 ± | $0.3^{a}$<br>0.41 ±          | $0.05^{a}$<br>$0.31 \pm$ | $0.37^{a}$<br>$0.50 \pm$ | $0.16^{a}$<br>1.02 ± | 0.13 <sup>a</sup><br>1.01 ± | 0.01 <sup>a</sup><br>1.32 ± | 0.05 <sup>a</sup><br>1.14 ± | 0.09 <sup>a</sup><br>0.35 ± | $0.04^{a}$<br>$0.26 \pm$    | 0.02 <sup>a</sup><br>0.41 ± | $0.01^{a}$<br>$0.50 \pm$    |
| (3.5  mg/100g)                 | $0.41 \pm 0.01^{a}$         | $0.41 \pm 0.01^{a}$          | 0.31 ± 0.01 <sup>a</sup> | 0.50 ± 0.5 <sup>a</sup>  | $1.02 \pm 0.03^{b}$  | $0.01^{b}$                  | $1.32 \pm 0.01^{b}$         | $0.014^{b}$                 | 0.35 ±<br>0.05 <sup>a</sup> | 0.20 ± 0.06 <sup>a</sup>    | $0.41 \pm 0.01^{a}$         | 0.00 ± 0.02 <sup>a</sup>    |
|                                | $0.23 \pm$                  | $0.23 \pm$                   | $0.18 \pm$               | 0.28 ±                   | $0.09 \pm$           | $0.01 \pm 0.01$             | $0.09 \pm$                  | $0.01 \pm 0.08 \pm$         | 0.29 ±                      | 0.00<br>0.43 ±              | $0.19 \pm$                  | $0.50 \pm$                  |
| Methioninea(Met)               | $0.01^{a}$                  | 0.03 <sup>a</sup>            | $0.08^{a}$               | $0.28^{a}$               | $0.09^{a}$           | $0.07^{a}$                  | 0.09 <sup>a</sup>           | $0.008^{a}$                 | $0.09^{a}$                  | 0.03 <sup>a</sup>           | $0.09^{a}$                  | 0.01 <sup>a</sup>           |
| Isoleucinea(Ileu)              | $0.35 \pm$                  | $0.35 \pm$                   | $0.27 \pm$               | $0.42 \pm$               | $1.00 \pm$           | $0.07~\pm$                  | $0.65 \pm$                  | $0.27 \pm$                  | $0.41 \pm$                  | $0.38 \pm$                  | $0.39 \pm$                  | $0.38 \pm$                  |
| (2.8 mg/100g)                  | 0.03 <sup>a</sup>           | $0.05^{a}$                   | $0.07^{a}$               | $0.42^{a}$               | $0.09^{a}$           | $0.07^{a}$                  | $0.05^{a}$                  | 0.001 <sup>a</sup>          | 0.01 <sup>a</sup>           | $0.08^{a}$                  | $0.09^{a}$                  | $0.08^{a}$                  |
| Leucinea(Leu)                  | 0.56 ±                      | $0.56 \pm$                   | $0.26 \pm$               | 0.22 ±                   | 0.36 ±               | 0.24 ±                      | 0.23 ±                      | 0.28 ±                      | 0.65 ±                      | 0.32 ±                      | 0.57 ±                      | 0.50 ±                      |
| (6.6 mg/100g)                  | 0.01 <sup>ab</sup>          | $0.06^{ab}$                  | $0.46^{ab}$              | 0.67 <sup>ab</sup>       | 0.36 <sup>a</sup>    | 0.24 <sup>a</sup>           | 0.03 <sup>a</sup>           | 0.28 <sup>a</sup>           | 0.05 <sup>ab</sup>          | 0.32 <sup>a</sup>           | $0.02^{ab}$                 | 0.01 <sup>ab</sup>          |
| Phenylalaninea(P<br>he)        | $0.34 \pm 0.01^{a}$         | $0.34 \pm 0.04^{a}$          | $0.26 \pm 0.26^{a}$      | $0.41 \pm 0.01^{a}$      | $1.05 \pm 0.01^{b}$  | 1.25 ± 0.01 <sup>b</sup>    | $1.30 \pm 0.03^{b}$         | $1.20 \pm 0.05^{b}$         | $0.69 \pm 0.04^{a}$         | $0.69 \pm 0.06^{a}$         | $0.68 \pm 0.02^{a}$         | $0.60 \pm 0.01^{a}$         |
| Lysinea(Lys)                   | $0.01 \pm 0.69 \pm$         | 0.69 ±                       | 0.20<br>$0.51 \pm$       | 0.01<br>$0.86 \pm$       | $0.01 \\ 0.68 \pm$   | $0.01 \pm 0.61 \pm$         | $0.03 \pm 0.62 \pm$         | 0.05<br>0.75 ±              | 0.04<br>0.56 ±              | 0.00<br>0.22 ±              | 0.02<br>0.75 ±              | $0.01 \\ 0.50 \pm$          |
| (5.8  mg/100g)                 | $0.09 \pm 0.01^{a}$         | $0.09 \pm 0.01^{a}$          | $0.01^{a}$               | 2.01 <sup>a</sup>        | 0.00 ±               | 2.01ª                       | $0.02 \pm 0.01^{a}$         | 0.001 <sup>a</sup>          | 0.00 ±                      | 0.22 ±                      | $0.01^{a}$                  | 0.01 <sup>a</sup>           |
|                                | 0.65 ±                      | $0.65 \pm$                   | $0.41 \pm$               | $0.89 \pm$               | $0.25 \pm$           | 0.15 ±                      | 0.21 ±                      | $0.20 \pm$                  | 0.23 ±                      | 0.20 ±                      | $0.5 \pm$                   | 0.57 ±                      |
| Alanine(Ala)b                  | 0.01 <sup>a</sup>           | $0.02^{a}$                   | 0.01 <sup>a</sup>        | 0.01 <sup>a</sup>        | 0.01 <sup>a</sup>    | 0.01 <sup>a</sup>           | $0.02^{a}$                  | 0.01 <sup>a</sup>           | 0.01 <sup>a</sup>           | 0.02 <sup>a</sup>           | 0.01 <sup>a</sup>           | 0.01 <sup>a</sup>           |
| Cysteine(Cys) b                | $0.02 \pm$                  | $0.02 \pm$                   | $0.03 \pm$               | $0.01 \pm$               | 0.94 ±               | 0.96 ±                      | 0.95 ±                      | 0.95 ±                      | $0.23 \pm$                  | $0.14 \pm$                  | $0.02 \pm$                  | $0.12 \pm$                  |
|                                | 0.03 <sup>a</sup>           | 0.02 <sup>a</sup>            | 0.03 <sup>a</sup>        | $0.00^{a}$               | 0.04 <sup>b</sup>    | $0.06^{b}$                  | 0.05 <sup>b</sup>           | 0.95 <sup>b</sup>           | 0.03 <sup>a</sup>           | 0.14 <sup>a</sup>           | 0.02 <sup>a</sup>           | $0.00^{a}$                  |
| Glutamic acid                  | 1.07 ±                      | 1.07 ±                       | $0.94 \pm$               | 1.20 ±                   | $0.95 \pm$           | 1.02 ±                      | $1.24 \pm$                  | $1.07 \pm$                  | $0.94 \pm$                  | $0.86 \pm$                  | $1.15 \pm$                  | 1.24 ±                      |
| (Glu)b                         | $0.3^{a}$                   | $0.25^{a}$                   | $0.37^{a}$               | $0.16^{a}$               | $0.03^{a}$           | 0.01 <sup>a</sup>           | $0.05^{a}$                  | 0.39 <sup>a</sup>           | $0.04^{a}$                  | $0.32^{a}$                  | $0.38^{a}$                  | $0.03^{a}$                  |
| Glycine(Gly)b                  | $0.60 \pm 0.02^{a}$         | $0.66 \pm 0.006^{a}$         | $0.52 \pm 0.002^{a}$     | $0.68 \pm 0.008^{a}$     | $0.06 \pm 0.006^{b}$ | $0.07 \pm 0.07^{b}$         | $0.09 \pm 0.09^{b}$         | $0.07 \pm 0.07^{b}$         | $0.68 \pm 0.009^{a}$        | $0.16 \pm 0.01^{a}$         | $0.33 \pm 0.003^{a}$        | $0.56 \pm 0.06^{\rm a}$     |
|                                | 0.02<br>$0.46 \pm$          | 0.000<br>0.46 ±              | 0.002<br>0.37 ±          | 0.008<br>0.55 ±          | 0.000<br>0.65 ±      | $0.07 \pm 0.32 \pm$         | 0.09<br>0.21 ±              | 0.07<br>0.39 ±              | 0.009<br>0.79 ±             | 0.01<br>$0.55 \pm$          | 0.003<br>0.24 ±             | 0.00<br>0.26 ±              |
| Proline(Pro)b                  | 0.05 <sup>a</sup>           | $0.46^{a}$                   | $0.37^{a}$               | 0.55ª                    | 0.005 <sup>a</sup>   | $0.02^{a}$                  | 0.21 <sup>a</sup>           | 0.39 <sup>a</sup>           | 0.01 <sup>a</sup>           | 0.05 <sup>a</sup>           | 0.24 <sup>a</sup>           | 0.06 <sup>a</sup>           |
| Contra (Con)b                  | 0.40 ±                      | $0.44 \pm$                   | 0.38 ±                   | 0.42 ±                   | 0.35 ±               | 0.78 ±                      | 0.88 ±                      | 0.43 ±                      | 0.96 ±                      | 0.82 ±                      | 0.34 ±                      | 0.61 ±                      |
| Serine(Ser) <sup>b</sup>       | $0.02^{a}$                  | $0.04^{a}$                   | $0.08^{a}$               | $0.02^{a}$               | $0.05^{a}$           | $0.05^{a}$                  | $0.008^{a}$                 | 0.003 <sup>a</sup>          | $0.01^{a}$                  | $0.02^{a}$                  | $0.004^{a}$                 | 0.01 <sup>a</sup>           |
| Tyrosine(Tyr) <sup>b</sup>     | $0.15 \pm$                  | $0.15 \pm$                   | $0.13 \pm$               | $0.16 \pm$               | $0.34 \pm$           | $0.36 \pm$                  | $0.42 \pm$                  | $0.37 \pm$                  | $0.53 \pm$                  | $0.56 \pm$                  | $0.54 \pm$                  | $0.42 \pm$                  |
| ryrosine(ryr)                  | 0.03 <sup>a</sup>           | 0.18 <sup>a</sup>            | 0.08 <sup>a</sup>        | 0.09 <sup>a</sup>        | 0.07 <sup>a</sup>    | 0.09 <sup>a</sup>           | 0.08 <sup>a</sup>           | 0.029 <sup>a</sup>          | 0.43 <sup>a</sup>           | 0.09 <sup>a</sup>           | 0.5ª                        | 0.08 <sup>a</sup>           |
| TEAA                           | $3.90 \pm$                  | $3.90 \pm$                   | 2.79 ±                   | 4.32 ±                   | 5.44 ±               | $3.85 \pm$                  | 5.00 ±                      | $4.60 \pm$                  | 4.66 ±                      | $3.34 \pm$                  | 4.53 ±                      | 4.74 ±                      |
|                                | $0.02^{a}$                  | $0.6^{a}$                    | $0.02^{a}$               | $0.68^{a}$               | $0.06^{a}$           | $0.07^{a}$                  | $0.09^{a}$                  | $0.007^{a}$                 | $0.09^{a}$                  | $0.06^{a}$                  | $0.04^{a}$                  | 0.06 <sup>a</sup><br>3.78 ± |
| TNEAA                          | $3.35 \pm 0.02^{a}$         | $3.45 \pm 0.06^{a}$          | $2.78 \pm 0.02^{\rm a}$  | $3.91 \pm 0.68^{a}$      | $3.54 \pm 0.06^{b}$  | $3.66 \pm 0.07^{a}$         | $4.00 \pm 0.09^{a}$         | $3.48 \pm 0.007^{a}$        | $4.36 \pm 0.09^{\circ}$     | $3.29 \pm 0.06^{a}$         | $3.12 \pm 0.03^{a}$         | $0.06^{a}$                  |
|                                | 0.02<br>7.25 ±              | 0.00<br>7.35 ±               | 0.02<br>5.57 ±           | 8.23 ±                   | 8.98 ±               | 0.07<br>7.51 ±              | $9.00 \pm$                  | 8.08 ±                      | $9.02 \pm$                  | 6.63 ±                      | 0.03<br>7.65 ±              | 8.52 ±                      |
| TAA                            | 0.02 <sup>a</sup>           | 0.6 <sup>a</sup>             | $0.02^{a}$               | 0.68 <sup>a</sup>        | 0.01 <sup>a</sup>    | 0.07 <sup>a</sup>           | 0.009 <sup>a</sup>          | $0.07^{ba}$                 | 0.09 <sup>a</sup>           | $0.06^{ba}$                 | 0.03 <sup>a</sup>           | 0.06 <sup>a</sup>           |
|                                | $0.54 \pm$                  | $0.53 \pm$                   | $0.50 \pm$               | $0.52 \pm$               | $0.61 \pm$           | $0.51 \pm$                  | $0.56 \pm$                  | $0.57 \pm$                  | $0.52 \pm$                  | $0.50 \pm$                  | $0.59 \pm$                  | $0.56 \pm$                  |
| TEAA/TAA                       | 0.32 <sup>a</sup>           | $0.4^{\mathrm{a}}$           | $0.08^{a}$               | $0.42^{a}$               | $0.005^{a}$          | $0.05^{a}$                  | $0.08^{a}$                  | 0.43 <sup>a</sup>           | 0.96 <sup>a</sup>           | $0.02^{a}$                  | 0.34 <sup>a</sup>           | 0.01 <sup>a</sup>           |
| TNEAA/TAA                      | $0.46 \pm$                  | $0.47 \pm$                   | $0.50 \pm$               | $0.48 \pm$               | 0.39 ±               | 0.49 ±                      | $0.44 \pm$                  | 0.43 ±                      | $0.48 \pm$                  | $0.50 \pm$                  | 0.41 ±                      | $0.44 \pm$                  |
| 11(21112)1111                  | 0.23ª                       | $0.08^{a}$                   | $0.08^{a}$               | 0.09 <sup>a</sup>        | 0.01 <sup>a</sup>    | 0.09 <sup>a</sup>           | 0.08 <sup>a</sup>           | 0.29 <sup>a</sup>           | 0.43 <sup>a</sup>           | 0.09 <sup>a</sup>           | 0.05 <sup>a</sup>           | 0.04 <sup>a</sup>           |
| TEAA/TNEAA                     | 1.16 ± 0.02 <sup>a</sup>    | $1.13 \pm 0.06^{a}$          | 1.00 ± 0.02 <sup>a</sup> | $1.10 \pm 0.08^{a}$      | $1.54 \pm 0.06^{b}$  | $1.05 \pm 0.07^{a}$         | $1.25 \pm 0.09^{a}$         | $1.32 \pm 0.07^{a}$         | 1.07 ± 1.09 <sup>a</sup>    | $1.02 \pm 0.16^{a}$         | $1.45 \pm 0.001^{a}$        | $1.25 \pm 0.56^{a}$         |
|                                | $0.02 \pm 0.72 \pm$         | 0.08<br>0.72 ±               | $0.02 \\ 0.56 \pm$       | 0.08<br>0.85 ±           | 0.00<br>1.51 ±       | 0.07<br>1.86 ±              | 0.09<br>2.05 ±              | $1.80 \pm$                  | 1.69<br>1.68 ±              | 0.16 <sup>a</sup><br>1.72 ± | 0.001<br>1.73 ±             | 0.36<br>1.59 ±              |
| TArAA                          | $0.05^{a}$                  | $0.72 \pm 0.46^{a}$          | $0.00 \pm 0.07^{a}$      | 0.05 <sup>a</sup>        | $0.05^{a}$           | $0.02^{a}$                  | $0.21^{a}$                  | $0.39^{a}$                  | $0.09^{a}$                  | $0.05^{a}$                  | 0.24 <sup>a</sup>           | $0.06^{a}$                  |
| <b>Ta</b> + +                  | 0.25 ±                      | 0.25 ±                       | 0.21 ±                   | 0.29 ±                   | 1.03 ±               | 1.03 ±                      | 1.04 ±                      | 1.03 ±                      | 0.52 ±                      | 0.57 ±                      | 0.21 ±                      | 0.62 ±                      |
| TSAA                           | $0.002^{a}$                 | $0.4^{a}$                    | $0.08^{a}$               | $0.02^{a}$               | $0.05^{a}$           | $0.05^{a}$                  | $0.8^{a}$                   | 0.43 <sup>a</sup>           | $0.06^{a}$                  | $0.02^{a}$                  | 0.34 <sup>a</sup>           | 0.01 <sup>a</sup>           |
| Arg:Lys                        | $1.13 \pm$                  | $1.13 \pm$                   | $1.14 \pm$               | $1.14 \pm$               | $1.41 \pm$           | $0.36 \pm$                  | $0.40 \pm$                  | $0.64 \pm$                  | $1.54 \pm$                  | $1.05~\pm$                  | $0.95 \pm$                  | $1.62 \pm$                  |
| Aig.Lys                        | 0.302 <sup>a</sup>          | $0.4^{a}$                    | $0.08^{a}$               | $0.02^{a}$               | 0.05 <sup>a</sup>    | 0.05 <sup>a</sup>           | $0.02^{a}$                  | 0.43 <sup>a</sup>           | $0.06^{a}$                  | 0.02 <sup>a</sup>           | 0.34 <sup>a</sup>           | 0.01 <sup>a</sup>           |
| Leu: Ileu                      | $1.60 \pm$                  | 1.6 ±                        | $0.96 \pm$               | 0.52 ±                   | $0.36 \pm$           | 3.43 ±                      | 0.35 ±                      | 1.04 ±                      | 1.59 ±                      | $0.84 \pm$                  | $1.46 \pm$                  | 1.32 ±                      |
|                                | $0.03^{a}$                  | $0.08^{a}$                   | $0.08^{a}$               | $0.09^{a}$               | 0.01 <sup>a</sup>    | $0.09^{a}$                  | $0.08^{a}$                  | $0.29^{a}$                  | $0.03^{a}$                  | $0.09^{a}$                  | $0.5^{a}$                   | $0.04^{a}$                  |
| Cys: TSAA                      | $0.08 \pm 0.02^{a}$         | $0.08 \pm 0.00^{\mathrm{a}}$ | $0.14 \pm 0.02^{a}$      | $0.03 \pm 0.00^{a}$      | $0.91 \pm 0.06^{b}$  | $0.93 \pm 0.07^{\rm b}$     | $0.91 \pm 0.002^{b}$        | $0.92 \pm 0.07^{b}$         | $0.44 \pm 0.02^{\circ}$     | $0.25 \pm 0.06^{\circ}$     | $0.1 \pm 0.003^{\circ}$     | $0.19 \pm 0.06^{\circ}$     |
|                                | 0.02                        | 0.00                         | 0.02                     | 0.00                     | 0.00                 | 0.07                        | 0.002                       | 0.07                        | 0.02                        | 0.00                        | 0.003                       | 0.00                        |

a Essential amino acids; <sup>b</sup>Non-essential amino acids; TEAA- Total amino acids; TNEAA – Total non-essential amino acids; TAA - Total amino acids; TAAA - Total amino acids; TAAA - Total aromatic amino acids; TSAA - Total sulphur containing amino acids; Data are expressed as mean  $\pm$  standard deviation (n = 3); Different superscripts (a-c) within a row denote significant differences (p < 0.05). FAO/WHO reference pattern (1990) for evaluating proteins (mg/ 100g) were indicated in parentheses (FAO/WHO, 1990). Tryptophan was not determined.

Table 1B. Protein (g/100g wet sample) and amino acid composition (g/100g wet sample) of *S. longiceps* collected from south east coast of India during 2008-2011 in three different seasons

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | during 2008-2011         | in three un       |                   | onsoon            |                   |                   | Mon               | soon        |                   | Post-monsoon      |                   |                   |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------|-------------------|-------------------|-------------------|-------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |                   |                   |                   | 2008              |                   |             | 2011              |                   |                   |                   |                    |
| Histoline (His)a         0.55 $_{}$ 0.44 $_{}$ 0.45 $_{}$ 0.46 $_{}$ 0.46 $_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Protein                  | $0.02^{a}$        | 0.03 <sup>a</sup> | 0.02 <sup>a</sup> | $0.02^{a}$        | $0.01^{a}$        | 0.36 <sup>a</sup> | $0.48^{a}$  | 0.73 <sup>a</sup> | 0.98 <sup>a</sup> | 1.23 <sup>a</sup> | $1.48^{a}$        | 2.73 <sup>a</sup>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Histidine (His)a         | $0.55 \pm$        | $1.01 \pm$        |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.9 mg/100g)            | 0.01 <sup>a</sup> | $0.04^{a}$        | $0.002^{b}$       | $0.00^{b}$        | $0.00^{ab}$       | $0.00^{b}$        | $0.00^{ab}$ | $0.01^{ab}$       | $0.00^{ab}$       | $0.00^{ab}$       | $0.01^{ab}$       | $0.00^{ab}$        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/100g)                 |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Methioninea              |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{c} \mbox{mg} (100) \\ \mbox{Lexinc} (6.6 & 0.56 + 0.29 \pm 0.29 \pm 0.53 \pm 0.58 \pm 1.32 \pm 0.98 \pm 1.11 \pm 0.99 \pm 0.01^{+} 0.01^{+} 0.01^{+} 0.00^{+} 0.00^{+} 0.00^{+} 0.00^{+} \\ \mbox{D} (11 \pm 0.91 \pm 0$ |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                        |                   |                   |                   |                   |                   |                   | $0.65 \pm$  | $0.71 \pm$        | $0.39 \pm$        | $0.38 \pm$        | $0.36 \pm$        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phenylalaninea           | $0.01^{a}$        | $0.02^{a}$        | $0.01^{a}$        | 0.03 <sup>a</sup> | $0.01^{a}$        | $0.00^{a}$        | $0.00^{a}$  | $0.00^{a}$        | $0.00^{a}$        | $0.00^{a}$        | $0.00^{a}$        |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lysine <sup>a</sup> (5.8 | $0.45 \pm$        |                   |                   | $0.76 \pm$        |                   |                   | $1.14 \pm$  |                   |                   | $0.89 \pm$        | $0.87 \pm$        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/100g)                 | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | 0.02 <sup>a</sup> | 0.03 <sup>a</sup> | $0.06^{a}$  | $0.02^{a}$        | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | $0.07^{a}$        | $0.02^{a}$         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alanine <sup>b</sup>     |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cysteine                 |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cl · · · · · h           |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Glutamic acid            |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clusinsb                 |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Giyenne                  |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proline <sup>b</sup>     |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tiolille                 |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Serine <sup>b</sup>      |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tyrosine <sup>b</sup>    |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                        | $4.46 \pm$        | $3.72 \pm$        | $3.47 \pm$        | $3.88 \pm$        | $7.35 \pm$        | $5.56 \pm$        | $5.92 \pm$  |                   | $4.88 \pm$        | $4.80 \pm$        | $4.70 \pm$        | $5.11 \pm$         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEAA                     | $0.005^{a}$       | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | 0.02 <sup>a</sup> | 0.03 <sup>a</sup> | $0.06^{a}$  | 0.02 <sup>a</sup> | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | $0.07^{a}$        | 0.02 <sup>ac</sup> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                   |                   |                   |                   |                   |                   |             | $4.90 \pm$        |                   | $3.10 \pm$        |                   |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TNEAA                    |                   |                   | $0.01^{a}$        |                   | $0.01^{a}$        |                   |             | $0.01^{a}$        | $0.01^{a}$        | $0.00^{a}$        | $0.02^{a}$        |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TAA                      |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEAA/TAA                 |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INEAA/IAA                |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IEAA/INEAA               |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TArAA                    |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 117 117               |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TSAA                     |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101111                   |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arg:Lys                  |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| Leu: Ileu $0.09^{a}$ $0.01^{a}$ $0.09^{a}$ $0.09^{a}$ $0.09^{a}$ $0.01^{a}$ $0.09^{a}$ $0.09^{a}$ $0.01^{a}$ $0.09^{a}$ $0.09^{a}$ $0.09^{a}$ $0.01^{a}$ $0.09^{a}$ $0.09^{a}$ $0.01^{a}$ $0.09^{a}$ $0.09^{a}$ $0.01^{a}$ $0.09^{a}$ $0.01^{a}$ $0.01^{a}$ $0.09^{a}$ $0.01^{a}$ $0.01^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 7                      |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
| Cys: TSAA 0.06 <sup>a</sup> 0.06 <sup>a</sup> 0.01 <sup>a</sup> 0.01 <sup>a</sup> 0.06 <sup>a</sup> 0.03 <sup>a</sup> 0.02 <sup>a</sup> 0.01 <sup>a</sup> 0.01 <sup>a</sup> 0.01 <sup>a</sup> 0.01 <sup>a</sup> 0.01 <sup>a</sup> 0.01 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Leu: Ileu                |                   |                   |                   |                   |                   |                   |             |                   |                   |                   |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |                   |                   |                   |                   |                   |             |                   |                   | $0.22 \pm$        | $0.08 \pm$        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |                   |                   |                   |                   |                   |             | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | 0.01 <sup>a</sup> | 0.06 <sup>a</sup>  |

Data are expressed as mean  $\pm$  standard deviation (n = 3). All notations are as indicated in Table 1

# **3.2.** Inter Annual and Seasonal Variability of Nutritional Indices in *S. longiceps* Collected from the South West and South East Coast of India

The nutritional indices with respect to different amino acid ratios of *S. longiceps* collected from SW and SE coast of India is shown in Table 1A and 1B, respectively. EAA/NEAA ratio observed maximum during monsoon in both SW (1.3) and SE (1.6) coasts of India. The EAA/TAA ratio observed monsoon maxima (0.56) in SW coast and monsoon/post-monsoon maxima in SE coast (0.61). Apparently, high NEAA/TAA ratio was observed maximum during pre-monsoon ( $\geq$  0.44) along both coasts. The average total aromatic amino acids (TArAA) showed monsoon maxima in both the coasts (1.8 g/100g in SW & 2.0 g/100g in SE). The average total sulfated amino acids (TSAA = cysteine + methionine) showed higher values in monsoon (1.0 & 0.8 g/100g in SW & SE, respectively). Cys: TSAA ratio also showed higher values in monsoon along both coasts (0.8 & 0.3 in SW & SE, respectively). Correspondingly, in both the coasts, average leucine: isoleucine ratio showed higher values in monsoon/postmonsoon (1.3 g/100g) and monsoon in SE coast (2.8 g/100g). Arg: Lys ratio observed high values in premonsoon and post-monsoon in both the coasts. The amino acid scores (with respect to His, Thr, Val, Met+Lys, Ileu, Leu, Phe +Tyr and Lys) of *S. longiceps* collected from SW and SE coast of India is shown in Table 2. The amino acid scores were observed to be higher during monsoon with respect to TSAA, valine, isoleucine, phe+tyr along SW coast. However during post-monsoon, amino acid scores with respect to histidine, threonine, valine, isoleucine, leucine and lysine observed maximum along the SE coast.

Table 2. Essential amino acid scores (%) of S. longiceps collected from south west coast and south east coast of India during 2008-2011 in three different seasons

| Pre-monsoon       |      |      |      |      |          | Mon      | soon |      | Post-monsoon |      |      |      |  |
|-------------------|------|------|------|------|----------|----------|------|------|--------------|------|------|------|--|
| Amino acids       | 2008 | 2009 | 2010 | 2011 | 2008     | 2009     | 2010 | 2011 | 2008         | 2009 | 2010 | 2011 |  |
| SOUTH WEST COAST  |      |      |      |      |          |          |      |      |              |      |      |      |  |
| His (1.9)         | 63   | 61   | 46   | 78   | 36       | 109      | 105  | 83   | 195          | 199  | 239  | 272  |  |
| Thr (3.4)         | 47   | 46   | 38   | 57   | 27       | 32       | 37   | 34   | 93           | 81   | 84   | 102  |  |
| Val (3.5)         | 61   | 59   | 46   | 75   | 168      | 238      | 229  | 223  | 81           | 60   | 104  | 130  |  |
| Met + Cys (2.5)   | 52   | 51   | 44   | 61   | 238      | 341      | 252  | 282  | 168          | 184  | 75   | 225  |  |
| Ile (2.8)         | 65   | 63   | 50   | 79   | 206      | 21       | 141  | 66   | 118          | 109  | 124  | 123  |  |
| Leu (6.6)         | 44   | 43   | 20   | 18   | 31       | 30       | 21   | 29   | 79           | 39   | 77   | 69   |  |
| Phe $+$ Tyr (6.3) | 41   | 39   | 32   | 48   | 127      | 211      | 165  | 171  | 156          | 160  | 172  | 147  |  |
| Lys (5.8)         | 62   | 60   | 46   | 78   | 68       | 87       | 65   | 89   | 78           | 31   | 115  | 78   |  |
|                   |      |      |      | 1    | SOUTH EA | AST COAS | ST   |      |              |      |      |      |  |
| His (1.9)         | 190  | 346  | 70   | 92   | 207      | 136      | 150  | 163  | 231          | 220  | 246  | 268  |  |
| Thr (3.4)         | 44   | 38   | 62   | 77   | 109      | 76       | 72   | 79   | 115          | 107  | 112  | 129  |  |
| Val (3.5)         | 67   | 48   | 74   | 96   | 199      | 279      | 126  | 109  | 128          | 124  | 137  | 157  |  |
| Met + Cys (2.5)   | 155  | 109  | 70   | 67   | 227      | 252      | 255  | 194  | 117          | 98   | 94   | 124  |  |
| Ile (2.8)         | 122  | 60   | 80   | 114  | 195      | 111      | 93   | 75   | 171          | 152  | 157  | 178  |  |
| Leu (6.6)         | 56   | 29   | 56   | 70   | 140      | 132      | 137  | 106  | 115          | 99   | 98   | 116  |  |
| Phe + Tyr $(6.3)$ | 107  | 63   | 51   | 59   | 141      | 234      | 220  | 208  | 87           | 79   | 84   | 97   |  |
| Lys (5.8)         | 51   | 65   | 71   | 104  | 123      | 185      | 160  | 112  | 153          | 139  | 146  | 155  |  |

The reference value for adults standard FAO/WHO (1991) (g/100 g protein) are given in parentheses.

**3.3.** Inter Annual and Seasonal Variability of Vitamin Content in *S. longiceps* Collected from the South West and South East Coast of India

The vitamin content of *S. longiceps* collected from SW and SE coast of India is shown in Table 3. No significant differences (p > 0.05) in vitamin A, D, E and K content were observed between the samples collected from both SW and SE coast over four years (2008 - 2011). The mean vitamin A content was significantly higher during postmonsoon for the samples collected from both SW (> 8.0 µg/100g) and SE (~ 8.0 µg/100g) coast compared with

pre-monsoon and monsoon (<  $5.0 \ \mu g/100g$ ). The vitamin D content in samples collected from SW coast was significantly higher in monsoon (~  $868 \ \mu g/100g$ ) while for SE samples pre-monsoon maxima (~  $391 \ \mu g/100g$ ) was observed. A pre-monsoon maxima in SW coast (1.3  $\mu g/100g$ ) and monsoon maxima in SE coast (0.93  $\mu g/100g$ ) were observed for vitamin E content. However, vitamin K observed post-monsoon maxima along both SW and SE coasts (~  $3.5 \ \mu g/100g$ ). Apparently, vitamin C content was observed to be high during monsoon in SW and premonsoon in SE coasts (12.6 &  $11.2 \ \mu g/100g$ , respectively). In general except, vitamin E and K, all other vitamins were observed to be higher in SW coast sardines.

Table 3. Vitamin compositions of *S. longiceps* collected from south west and south east coast of India during 2008-2011 in three different seasons

|              |      | Vit A                     | Vit D <sub>3</sub>        | Vit E                     | Vit K                    | Vit C                   |
|--------------|------|---------------------------|---------------------------|---------------------------|--------------------------|-------------------------|
|              |      |                           | 5                         | SOUTH WEST COAST          |                          |                         |
| Pre-monsoon  | 2008 | $4.1 \pm 0.11^{a}$        | $458.0\pm0.22^{\rm a}$    | $1.3\pm0.52^{\rm a}$      | $0.2\pm0.005^{\rm a}$    | $11.4\pm0.52^{\rm a}$   |
|              | 2009 | $3.9\pm0.10^{a}$          | $452.0\pm1.12^{\rm a}$    | $1.3\pm0.62^{\rm a}$      | $0.2 \pm 0.001^{a}$      | $11.4 \pm 1.13^{a}$     |
|              | 2010 | $4.2\pm0.12^{\rm a}$      | $458.0\pm1.25^{\rm a}$    | $1.3\pm0.12^{\rm a}$      | $0.2\pm0.003^{\rm a}$    | $11.2\pm0.22^{\rm a}$   |
|              | 2011 | $4.2\pm0.02^{\rm a}$      | $465.0\pm0.26^{\rm a}$    | $1.3\pm0.02^{\mathrm{a}}$ | $0.2\pm0.004^{\rm a}$    | $11.6\pm0.39^{a}$       |
| Monsoon      | 2008 | $5.2\pm0.06^{\rm ac}$     | $865.0 \pm 0.22^{b}$      | $0.5\pm0.16^{\rm b}$      | $0.9\pm0.001^{\text{b}}$ | $12.7\pm0.38^{\rm a}$   |
|              | 2009 | $4.3\pm0.04^{\rm ac}$     | $864.0\pm0.36^{\text{b}}$ | $0.9\pm0.17^{ab}$         | $1.0\pm0.01^{\rm b}$     | $12.5\pm0.35^{\rm a}$   |
|              | 2010 | $5.0\pm0.06^{\rm ac}$     | $862.0 \pm 0.25^{b}$      | $0.9\pm0.09^{ab}$         | $1.0\pm0.05^{\rm b}$     | $12.6\pm0.23^{\rm a}$   |
|              | 2011 | $5.3\pm0.05^{\rm ac}$     | $878.0 \pm 0.11^{b}$      | $1.0\pm0.02^{\rm a}$      | $1.4\pm0.06^{\rm b}$     | $12.5\pm0.32^{a}$       |
| Post-monsoon | 2008 | $8.3\pm0.12^{\rm bc}$     | $325.0\pm0.12^{\rm a}$    | $0.9\pm0.12^{\rm a}$      | $3.6\pm0.02^{\rm c}$     | $6.5\pm0.36^{\rm b}$    |
|              | 2009 | $8.2 \pm 0.11^{\rm bc}$   | $312.0\pm0.16^{\rm a}$    | $0.9\pm0.05^{\rm a}$      | $3.2\pm0.16^{\rm c}$     | $6.2\pm0.06^{\text{b}}$ |
|              | 2010 | $8.2\pm0.09^{\rm bc}$     | $212.0\pm0.02^{\rm c}$    | $0.1 \pm 0.001^{\circ}$   | $3.6\pm0.13^{\rm c}$     | $5.5\pm0.22^{\rm b}$    |
|              | 2011 | $8.2\pm0.01^{\rm bc}$     | $283.0\pm1.06^{a}$        | $0.7\pm0.002^{ab}$        | $3.5\pm0.12^{\rm c}$     | $6.1\pm0.22^{\text{b}}$ |
|              |      |                           | 1                         | SOUTH EAST COAST          |                          |                         |
| Pre-monsoon  | 2008 | $3.0\pm0.06^{a}$          | $425.6 \pm 1.14^{a}$      | $0.9\pm0.0^{\mathrm{a}}$  | $0.6\pm0^{a}$            | $11.4 \pm 0.11^{a}$     |
|              | 2009 | $2.6\pm0.05^{\rm a}$      | $418.8\pm0.3^{\rm a}$     | $0.9\pm0.01^{\rm a}$      | $0.4\pm0.01^{a}$         | $13.8\pm0.17^{\rm a}$   |
|              | 2010 | $2.3\pm0.12^{\rm a}$      | $412.0\pm0.22^{\rm a}$    | $0.8\pm0.001^{\rm a}$     | $0.2\pm0.03^{a}$         | $16.2\pm0.18^{\rm a}$   |
|              | 2011 | $3.3\pm0.04^{\rm a}$      | $306.0\pm0.18^{\rm a}$    | $0.1 \pm 0^{b}$           | $0.6\pm0.04^{\rm a}$     | $3.5\pm0.12^{\text{b}}$ |
| Monsoon      | 2008 | $4.0\pm0.06^{\rm a}$      | $125.0 \pm 0.12^{b}$      | $1.0\pm0.0.03^{\rm a}$    | $1.8 \pm 0.002^{b}$      | $9.6\pm0.18^{\rm a}$    |
|              | 2009 | $4.0\pm0.09^{\rm a}$      | $306.0\pm0.13^{ac}$       | $0.9\pm0.01^{\rm a}$      | $1.5\pm0.002^{\text{b}}$ | $3.5\pm0.05^{\text{b}}$ |
|              | 2010 | $4.9\pm0.07^{\rm a}$      | $265.2 \pm 0.04^{\circ}$  | $0.9\pm0^{\mathrm{a}}$    | $1.2 \pm 0.06^{b}$       | $3.3\pm0.14^{b}$        |
|              | 2011 | $4.1\pm0.04^{\rm a}$      | $250.1\pm0.04^{\rm c}$    | $0.9\pm0^{\mathrm{a}}$    | $1.2\pm0.04^{\rm b}$     | $3.4\pm0.02^{\rm b}$    |
| Post-monsoon | 2008 | $8.2\pm0.04^{\text{b}}$   | $320.6\pm0.12^{ac}$       | $0.9\pm0.01^{\rm a}$      | $3.5\pm0.002^{\rm c}$    | $6.3\pm0.04^{ab}$       |
|              | 2009 | $8.4\pm0.06^{\text{b}}$   | $325.7\pm0.12^{ac}$       | $0.9\pm0.02^{\rm a}$      | $3.2\pm0.002^{\rm c}$    | $6.6\pm0.02^{ab}$       |
|              | 2010 | $7.2\pm0.03^{\mathrm{b}}$ | $312.0\pm0.12^{\rm ac}$   | $0.9\pm0.003^{a}$         | $3.9\pm0.002^{\rm c}$    | $6.2\pm0.02^{ab}$       |
|              | 2011 | $7.5\pm0.01^{\rm b}$      | $321.4\pm0.12^{ac}$       | $0.9\pm0^{\mathrm{a}}$    | $3.6\pm0.03^{\rm c}$     | $6.1\pm0.02^{ab}$       |

Vitamin A, D<sub>3</sub>, E, K and C are represented in  $\mu g/100g$ . Data are expressed as mean  $\pm$  standard deviation (n = 3) Different superscripts (a-c) within a column denote significant differences (p < 0.05).

Table 4. Macro and micro mineral composition of *S. longiceps* collected from south west and south east coast of India during 2008-'11 in three different seasons

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |    | Na                 | K                 | Na/K               | Ca                | Р                 | Ca<br>/P | Ca+P              | Fe                | Mn                | Zn                | ∑micr<br>0       | Se<br>(µg/100<br>g) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|--------------------|-------------------|--------------------|-------------------|-------------------|----------|-------------------|-------------------|-------------------|-------------------|------------------|---------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOUTHWEST COAST |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 20 | 72.80 ±            | 158.9 ±           | 0.46 ±             | 229.5 ±           | 459.6 ±           | 0.5      | 689.2 ±           | 270 ±             | 20.0 ±            | 4450 ±            | 4740 ±           | 10 ±                |
| $ \begin{array}{c} \begin{array}{c} 0 & 08.0 \\ n & 0 \\ n & 0 \\ 0 & 1.03^{\circ} & 0.16^{\circ} & 0.01^{\circ} & 1.03^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 1.52^{\circ} & 0.01^{\circ} & 1.32^{\circ} & 0.25^{\circ} & 0.34^{\circ} & 0.02^{\circ} & 0.345^{\circ} & 0.02^{\circ} & 0.35^{\circ} & 0.01^{\circ} & 1.02^{\circ} & 0.25^{\circ} & 0.01^{\circ} & 1.02^{\circ} & 0.25^{\circ} & 0.01^{\circ} & 1.02^{\circ} & 0.25^{\circ} & 0.01^{\circ} & 0.03^{\circ} & 0.14^{\circ} & 0.02^{\circ} & 0.45^{\circ} & 0.14^{\circ} & 0.02^{\circ} & 0.45^{\circ} & 0.01^{\circ} & 1.25^{\circ} & 0.01^{\circ} & 0.03^{\circ} & 0.14^{\circ} & 0.02^{\circ} & 0.45^{\circ} & 0.14^{\circ} & 0.02^{\circ} & 0.14^{\circ} & 0.02^{\circ} & 0.14^{\circ} & 0.02^{\circ} & 0.14^{\circ} & 0.02^{\circ} & 0.15^{\circ} & 0.14^{\circ} & 0.02^{\circ} & 0.03^{\circ} &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dro             | 08 | 0.83 <sup>a</sup>  | 1.13 <sup>a</sup> | 0.02 <sup>a</sup>  |                   | 1.13 <sup>a</sup> | 0.5      | 0.25 <sup>a</sup> | 11.3 <sup>a</sup> | 0.13 <sup>a</sup> | 223 <sup>ab</sup> | 113 <sup>a</sup> | 0.25 <sup>a</sup>   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 20 |                    |                   |                    |                   |                   | 0.4      |                   |                   |                   | $3430 \pm$        | $3710 \pm$       |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 09 | 1.03 <sup>a</sup>  |                   |                    | 1.13 <sup>a</sup> |                   | 0.4      |                   | 15.2 <sup>a</sup> | 0.11 <sup>a</sup> | 116 <sup>a</sup>  | 125 <sup>a</sup> | 0.25 <sup>a</sup>   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11              |    |                    |                   |                    |                   |                   | 03       |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |    |                    |                   |                    |                   |                   | 0.5      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |    |                    |                   |                    |                   |                   | 0.8      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |    |                    |                   |                    |                   |                   | 0.0      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |    |                    |                   |                    |                   |                   | 1.3      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monsoo          |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} 09 & 0.15^{\circ} & 1.13^{\circ} & 0.02^{\circ} & 0.03^{\circ} & 1.25^{\circ} & 1.35^{\circ} & 2.35^{\circ} & 1.13^{\circ} & 116^{\circ} & 118^{\circ} & 0.02^{\circ} \\ 10 & 0.15^{\circ} & 2.13^{\circ} & 0.02^{\circ} & 0.07^{\circ} & 1.24^{\circ} & 1.3^{\circ} & 2.14^{\circ} & 1.3^{\circ} & 0.15^{\circ} & 1.13^{\circ} & 113^{\circ} & 113^{\circ} & 0.23^{\circ} \\ 11 & 2.15^{\circ} & 2.23^{\circ} & 0.04^{\circ} & 0.88^{\circ} & 1.35^{\circ} & 0.7 & 8.0.9^{\circ} & 5.750^{\circ} & 6.480^{\circ} & 1.02^{\circ} \\ 11 & 2.15^{\circ} & 2.23^{\circ} & 0.04^{\circ} & 0.88^{\circ} & 1.35^{\circ} & 0.7 & 8.0.9^{\circ} & 5.750^{\circ} & 6.480^{\circ} & 1.02^{\circ} \\ 11 & 2.15^{\circ} & 2.23^{\circ} & 0.04^{\circ} & 0.88^{\circ} & 1.35^{\circ} & 1.35^{\circ} & 0.06^{\circ} & 1.13^{\circ} & 1.09^{\circ} & 2.400^{\circ} & 3.00^{\circ} \\ 11 & 2.15^{\circ} & 2.23^{\circ} & 0.04^{\circ} & 1.23^{\circ} & 1.44^{\circ} & 1.0 & 309.6^{\circ} & 1.00^{\circ} & 1.70^{\circ} & 2.440^{\circ} & 3.610^{\circ} & 1.02^{\circ} \\ 10^{\circ} & 0.05^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 119^{\circ} & 1.24^{\circ} & 0.02^{\circ} \\ 00^{\circ} & 0.13^{\circ} & 1.13^{\circ} & 0.04^{\circ} & 1.12^{\circ} & 1.42^{\circ} & 0.9 & 1.26^{\circ} & 1.57^{\circ} & 1.03^{\circ} & 118^{\circ} & 1.03^{\circ} & 0.05^{\circ} \\ 10^{\circ} & 0.04^{\circ} & 3.53^{\circ} & 0.04^{\circ} & 1.12^{\circ} & 1.78.5^{\circ} & 1.0 & 3.65.2^{\circ} & 4.50^{\circ} & 2.0.2^{\circ} & 1.92^{\circ} & 2.02^{\circ} \\ 10^{\circ} & 0.04^{\circ} & 3.53^{\circ} & 0.08^{\circ} & 1.05^{\circ} & 1.05^{\circ} & 1.05^{\circ} & 1.03^{\circ} & 118^{\circ} & 1.03^{\circ} & 0.05^{\circ} \\ 10^{\circ} & 2.12^{\circ} & 2.05^{\circ} & 0.4^{\circ} & 1.177.4^{\circ} & 1.0 & 340.1^{\circ} & 1.02^{\circ} & 1.02^{\circ} & 0.05^{\circ} \\ 11^{\circ} & 0.14^{\circ} & 0.04^{\circ} & 1.177.4^{\circ} & 2.15^{\circ} & 1.0 & 3.130^{\circ} & 3130^{\circ} & 3430^{\circ} & 20^{\circ} \\ 10^{\circ} & 0.14^{\circ} & 0.14^{\circ} & 0.14^{\circ} & 0.14^{\circ} & 0.14^{\circ} & 1.14^{\circ} & 0.13^{\circ} & 0.15^{\circ} & 0.15^{\circ} & 0.15^{\circ} & 0.15^{\circ} & 0.05^{\circ} \\ 11^{\circ} & 0.14^{\circ} & 0.05^{\circ} & 0.01^{\circ} & 0.14^{\circ} & 0.14^{\circ} & 0.14^{\circ} & 1.14^{\circ} & 1.13^{\circ} & 0.13^{\circ} & 113^{\circ} & 0.13^{\circ} & 0.05^{\circ} & 0.02^{\circ} \\ 0.01^{\circ} & 0.14^{\circ} & 0.05^{\circ} & 0.05^{\circ} & 0.05^{\circ} & 0.15^{\circ} & 0.15^{\circ} & 1.15^{\circ} & 3.25^{\circ} & 0.02^{\circ} & 0.05^{\circ} & 0.16^{\circ} & 0.15^{\circ} & 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |    |                    |                   |                    |                   |                   | 1.3      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} 10 & 0.15^{\circ} & 2.13^{\circ} & 0.05^{\circ} & 0.74^{\circ} & 1.24^{\circ} & 1.3^{\circ} & 2.14^{\circ} & 1.0^{\circ} & 1.05^{\circ} & 1.13^{\circ} & 1.13^{\circ} & 0.23^{\circ} \\ 20 & 120.6 \pm & 389.6 \pm & 0.31 \pm & 194.3 \pm & 293.0 \pm \\ 20 & 90.56 \pm & 214.3 \pm & 0.42 \pm & 156.8 \pm & 152.8 \pm \\ 20 & 90.56 \pm & 214.3 \pm & 0.42 \pm & 156.8 \pm & 152.8 \pm \\ 20 & 90.56 \pm & 234.6 \pm & 0.41 \pm & 148.3 \pm & 164.2 \pm \\ 20 & 96.65 \pm & 234.6 \pm & 0.41 \pm & 148.3 \pm & 164.2 \pm \\ 20 & 90.65 \pm & 123.6 \pm & 0.41 \pm & 148.3 \pm & 164.2 \pm \\ 20 & 97.89 \pm & 122.9 \pm & 0.80 \pm & 186.7 \pm & 178.5 \pm \\ 10 & 0.94b^{\circ} & 3.53^{\circ} & 0.08^{\circ} & 1.05^{\circ} & 1.03^{\circ} & 1.03^{\circ} \\ 20 & 97.89 \pm & 122.9 \pm & 0.80 \pm & 186.7 \pm & 178.5 \pm \\ 10 & 0.94b^{\circ} & 3.53^{\circ} & 0.08^{\circ} & 1.05^{\circ} & 1.03^{\circ} \\ 20 & 92.52 \pm & 230.5 \pm & 0.4 \pm & 171.7 \pm & 177.7 \pm \\ 10 & 0.94b^{\circ} & 3.53^{\circ} & 0.02^{\circ} & 2.13^{\circ} & 2.15^{\circ} & 1.0 \\ 11 & 0.14^{\circ} & 1.88^{\circ} & 0.002^{\circ} & 2.13^{\circ} & 2.15^{\circ} \\ 11 & 0.14^{\circ} & 1.88^{\circ} & 0.002^{\circ} & 2.13^{\circ} & 2.15^{\circ} \\ 11 & 0.14^{\circ} & 1.88^{\circ} & 0.002^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 3130 \pm & 3430 \pm & 20 \pm \\ 10 & 0.94b^{\circ} & 3.59^{\circ} & 0.02^{\circ} & 0.01^{\circ} & 0.13^{\circ} & 1.03^{\circ} & 1.03^{\circ} \\ 20 & 92.52 \pm & 230.5 \pm & 0.4 \pm & 171.7 \pm & 177.7 \pm & 1.0 \\ 350 \pm & 1.13^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 3130 \pm & 3430 \pm & 20 \pm \\ 10 & 0.14^{\circ} & 1.88^{\circ} & 0.002^{\circ} & 0.01^{\circ} & 0.14^{\circ} & 0.4 \\ 1.2 \pm & 2.30^{\circ} & 0.15^{\circ} & 115^{\circ} & 1.5^{\circ} & 0.05^{\circ} \\ 0.13^{\circ} & 0.13^{\circ} & 0.15^{\circ} & 1.05^{\circ} & 0.06^{\circ} \\ 0.5 & 347.7 \pm & 10.0 \pm & 40.0 \pm & 3790 \pm & 4000 \pm & 30 \pm \\ 0.0 & 0.13^{\circ} & 0.56^{\circ} & 0.001^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 1.3^{\circ} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} 10 & 0.15^{\circ} & 1.21^{\circ} & 0.03^{\circ} & 0.74^{\circ} & 1.24^{\circ} & 2.14^{\circ} & 1.25^{\circ} & 0.15^{\circ} & 112^{\circ} & 1.24^{\circ} & 0.25^{\circ} \\ 10 & 12.15^{\circ} & 2.23^{\circ} & 0.04^{\circ} & 0.88^{\circ} & 1.35^{\circ} & 1.7 & 427.3 \\ 20 & 90.56 + 214.3 \pm & 0.42 \pm 156.8 \pm 152.8 \pm \\ 08 & 0.16^{96} \pm 4.13^{96} & 0.04^{\circ} & 1.23^{9} & 1.44^{\circ} & 1.0 & 30.56^{\circ} & 0.13^{\circ} & 1.13^{9} & 118^{4} & 116^{4} & 0.02^{*} \\ 08 & 0.16^{96} \pm 4.13^{96} & 0.04^{\circ} & 1.23^{9} & 1.44^{\circ} & 1.0 & 30.56^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 119^{4} & 124^{4} & 0.02^{*} \\ 09 & 0.13^{96} \pm 1.23^{96} & 0.04^{\circ} & 1.12^{9} & 1.44^{2} & 0.9 & 312.5^{\circ} & 890^{\circ} \pm 150^{\circ} \pm 2220^{\circ} \pm 3260^{\circ} \pm 10^{\circ} \pm \\ 00 & 9.04^{36} & 5.33^{\circ} & 0.08^{\circ} & 1.05^{\circ} & 1.03^{\circ} & 1.26^{\circ} & 1.5^{\circ} & 0.13^{\circ} & 118^{6} & 156^{\circ} & 0.03^{\circ} \\ 20 & 97.89 \pm 122.9 \pm 0.80 \pm 186.7 \pm 178.5 \pm \\ 10 & 0.946^{\circ} & 5.33^{\circ} & 0.08^{\circ} & 1.05^{\circ} & 1.03^{\circ} & 1.0^{\circ} & 365.2 \pm 450^{\circ} \pm 20.0 \pm 1990^{\circ} \pm 2460^{\circ} \pm 20^{\circ} \pm \\ 20 & 92.52 \pm 230.5 \pm 0.4^{\circ} \pm 171.7 \pm 177.4^{\circ} & 1.0 & 349.1^{\circ} \pm 1000^{\circ} \pm 100^{\circ} \pm 2320^{\circ} & 3420^{\circ} \pm 20^{\circ} \pm \\ 11 & 0.14^{16} & 1.88^{\circ} & 0.002^{\circ} & 2.13^{18} & 2.15^{\circ} & 2.14^{18} & 11.3^{\circ} & 0.13^{\circ} & 115^{\circ} & 322^{\circ} & 0.05^{\circ} \\ n^{\circ} & 20 & 59.2^{\circ} & 93.6^{\circ} & 0.001^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 1.3^{\circ} & 0.06^{\circ} \\ n^{\circ} & 20 & 58.1^{\circ} & 70.5^{\circ} & 0.001^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 1.15^{\circ} & 115^{\circ} & 32.5^{\circ} & 0.001^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 1.3^{\circ} & 0.13^{\circ} & 1.3^{\circ} & 0.13^{\circ} & 1.3^{\circ} & 0.06^{\circ} \\ n^{\circ} & 0.13^{\circ} & 0.56^{\circ} & 0.001^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 1.3^{\circ} & 0.03^{\circ} & 0.3^{\circ} & 0.3^{\circ} & 0.3^{\circ} & 0.3^{\circ} & 0.3^{\circ} & 0.3^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |    |                    |                   |                    |                   |                   | 1.3      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} 11 & 2.15^{\circ} & 2.23^{\circ} & 0.04^{\circ} & 0.88^{\circ} & 1.35^{\circ} & 0.7 & 2.29^{\circ} & 60.0^{\circ} & 1.13^{\circ} & 1.13^{\circ} & 1.18^{\circ} & 1.03^{\circ} & 0.01^{\circ} \\ 08 & 0.16^{\circ} & 4.13^{\circ} & 0.06^{\circ} & 4.13^{\circ} & 1.28^{\circ} & 1.44^{\circ} & 0.56^{\circ} & 0.03^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 1.19^{\circ} & 1.24^{\circ} & 1.02^{\circ} \\ 0.013^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 1.13^{\circ} & 1.13^{\circ} & 1.02^{\circ} \\ 0.013^{\circ} & 1.13^{\circ} & 1.13^{\circ} & 0.14^{\circ} & 1.28^{\circ} & 1.44^{\circ} & 0.96^{\circ} \\ 0.013^{\circ} & 0.13^{\circ} & 0.13^{\circ} & 1.13^{\circ} & 1.13^{\circ} & 1.02^{\circ} \\ 0.09 & 0.13^{\circ} & 1.13^{\circ} & 0.13^{\circ} & 1.13^{\circ} & 1.13^{\circ} & 1.13^{\circ} \\ 0.094^{\circ} & 3.53^{\circ} & 0.08^{\circ} & 1.05^{\circ} & 1.03^{\circ} & 1.03^{\circ} & 1.24^{\circ} & 1.02^{\circ} \\ 0.9252\pm & 2.30.5\pm & 0.4\pm & 171.7\pm & 1.03^{\circ} & 1.03^{\circ} & 2.124^{\circ} & 2.04^{\circ} & 2.04^{\circ} \\ 0.9252\pm & 2.05\pm & 0.4\pm & 171.7\pm & 1.03^{\circ} & 1.03^{\circ} & 2.13^{\circ} & 0.13^{\circ} & 2.19^{\circ} & 0.05^{\circ} & 0.06^{\circ} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} 20 & 90.56 \pm & 214.3 \pm & 0.42 \pm & 156.8 \pm & 152.8 \pm & 1.0 \\ 80 & 0.16^{b_{K}} & 1.3^{b_{K}} & 0.06^{c_{1}} & 1.23^{b_{1}} & 1.44^{c_{1}} \\ 1.23^{b_{1}} & 1.44^{c_{1}} & 0.9 \\ 20 & 96.65 \pm & 234.6 \pm & 0.41 \pm & 148.5 \pm & 1.64.2 \pm \\ 0.9 & 1.25 \pm & 809 \pm & 150.4 \\ 20 & 97.89 \pm & 122.9 \pm & 0.30 \pm & 11.6^{c_{1}} \\ 20 & 97.89 \pm & 122.9 \pm & 0.30 \pm & 186.7 \pm & 178.5 \pm \\ 10 & 0.94^{c_{1}} & 3.53^{a_{1}} & 0.04^{a_{1}} & 1.17^{b_{1}} & 1.47^{c_{1}} \\ 10 & 0.94^{b_{1}} & 3.53^{a_{1}} & 0.08^{a_{1}} & 1.05^{a_{1}} & 1.03^{c_{1}} \\ 20 & 92.52 \pm & 230.5 \pm & 0.4 \pm & 171.7 \pm & 177.4 \pm \\ 11 & 0.14^{b_{1}} & 1.88^{c_{1}} & 0.002^{b_{2}} \\ 21 & 0.14^{b_{1}} & 1.88^{c_{1}} & 0.002^{b_{2}} \\ 2.13^{a_{2}} & 0.002^{b_{2}} & 2.15^{a_{2}} \\ 2.14^{b_{1}} & 1.000 \pm & 1000 \pm & 2320 \pm & 3420 \pm & 20 \pm \\ 11 & 0.14^{b_{1}} & 1.88^{c_{1}} & 0.002^{b_{2}} \\ 20 & 59.2 \pm & 93.6 \pm & 0.63 \pm & 107.8 \pm & 241.2 \pm \\ 0.01^{a_{1}} & 0.14^{a_{1}} & 1.2^{a_{1}} & 2.30^{a_{1}} & 0.15^{a_{1}} & 1.13^{c_{1}} \\ 20 & 58.1 \pm & 70.7 \pm & 0.62^{a_{1}} & 10.78 \pm & 251.3 \pm \\ 10 & 0.14^{a_{1}} & 1.25^{b_{1}} & 0.03^{a_{1}} & 0.13^{a_{1}} & 0.14^{a_{1}} \\ 20 & 58.1 \pm & 70.7 \pm & 0.82^{a_{1}} & 117.7 \pm & 230.2 \pm \\ 10 & 0.14^{a_{1}} & 1.25^{b_{1}} & 0.03^{a_{1}} & 0.13^{a_{1}} & 0.13^{a_{1}} \\ 20 & 58.1 \pm & 70.7 \pm & 0.82^{a_{1}} & 117.8 \pm 251.3 \pm \\ 10 & 0.14^{a_{1}} & 1.25^{b_{1}} & 0.04^{a_{1}} & 1.3^{a_{1}} & 0.13^{a_{1}} \\ 20 & 158.1 \pm & 70.7 \pm & 0.82^{a_{1}} & 117.7 \pm 230.2 \pm \\ 20 & 125.56 \pm & 460.6 \pm & 0.27 \pm & 725.56 \pm & 495.66 \pm \\ 11 & 0.13^{a_{1}} & 0.13^{a_{1}} & 0.02^{a_{1}} & 0.23^{a_{1}} & 0.13^{a_{1}} & 1.35^{a_{1}} & 1.05^{a_{1}} & 1.13^{b_{1}} & 0.13^{a_{1}} & 1.65^{b_{1}} & 1.13^{a_{1}} & 1.65^{b_{1}} & 0.13^{a_{1}} & 1.14^{a_{1}} & 214^{b_{1}} & 0.01^{c_{1}} \\ 20 & 126.56 \pm & 446.6 \pm & 0.07 \pm & 72.56 \pm & 4485.2 \pm \\ 10 & 0.13^{a_{1}} & 0.13^{a_{1}} & 0.02^{a_{1}} & 0.13^{b_{1}} & 0.23^{b_{1}} & 1.25^{b_{1}} & 1.13^{a_{1}} & 1.25^{b_{1}} & 0.03^{c_{1}} & 1.13^{b_{1}} & 1.24^{b_{1}} & 1.19^{b_{1}} & 0.02^{c_{1}} & 1.13^{b_{1}} & 0.03^{c_{1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |    |                    |                   |                    |                   |                   | 0.7      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \operatorname{Post-monso}\\ \operatorname{n} \\ 0 \\ n \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} Post \\ monso \\ n \end{array} \\ \hline 0 \\ n \end{array} \\ \begin{array}{c} \begin{array}{c} 20 \\ 0 \\ 0 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 0 \end{array} \\ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \\ \begin{array}{c} 0 \end{array} \\ \begin{array}{c} 0 \\ 0 \end{array} \\ \begin{array}{c} 0 \end{array} \\ \end{array} \\ \begin{array}{c} 0 \end{array} \\ \end{array} \\ \begin{array}{c} 0 \end{array} \\ \begin{array}{c} 0 \end{array} \\ \begin{array}{c} 0 \end{array} \\ \begin{array}{c} 0 \end{array} \\ \begin{array}{$ |                 |    |                    |                   |                    |                   |                   | 1.0      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Post-           |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | monsoo          |    |                    |                   |                    |                   |                   | 0.9      |                   |                   |                   |                   |                  |                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n               |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |    |                    |                   |                    |                   |                   | 1.0      |                   |                   |                   |                   |                  |                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \textbf{SOUTHEAST COAST} \\ \hline \textbf{Pre-} & \begin{matrix} 20 & 61.6 \pm & 110.2 \pm & 0.56 \pm & 105.3 \pm & 241.2 \pm & 0.4 & 346.5 \pm & 270 \pm & 30.0 \pm & 3130 \pm & 3430 \pm & 20 \pm \\ \hline \textbf{monsoo} & \textbf{n} & 20 & 59.2 \pm & 93.6 \pm & 0.63 \pm & 107.8 \pm & 251.3 \pm & 0.4 & 358.8 \pm & 170 \pm & 40.0 \pm & 3790 \pm & 4000 \pm & 30 \pm \\ \hline \textbf{n} & 20 & 58.1 \pm & 70.7 \pm & 0.82 \pm & 117.7 \pm & 230.2 \pm & 0.56^{\circ} & 0.13^{\circ} & 11.5^{\circ} & 0.13^{\circ} & 114^{\circ} & 214^{\circ} & 0.05^{\circ} & 2.13^{\circ} & 0.05^{\circ} & 0.06^{\circ} & 0.5^{\circ} & 0.06^{\circ} & 0.5^{\circ} & 2.13^{\circ} & 2.54^{\circ} & 0.13^{\circ} & 114^{\circ} & 214^{\circ} & 0.06^{\circ} & 0.5^{\circ} & 2.13^{\circ} & 0.15^{\circ} & 114^{\circ} & 214^{\circ} & 0.06^{\circ} & 0.5^{\circ} & 2.13^{\circ} & 2.54^{\circ} & 0.16^{\circ} & 114^{\circ} & 214^{\circ} & 0.01^{\circ} & 2.056 \pm & 2.566 \pm & 0.5 & 347.7 \pm & 160 \pm & 40.0 \pm & 4260 \pm & 4460 \pm & 10 \pm & 10 \pm & 10 & 0.14^{\circ} & 1.25^{\circ} & 0.02^{\circ} & 0.56^{\circ} & 2.566 \pm & 0.5 & 377.2 \pm & 570 \pm & 40.0 \pm & 3810 \pm & 4420 \pm & 10 \pm & 11 & 0.13^{\circ} & 0.13^{\circ} & 0.02^{\circ} & 0.26^{\circ} & 2.566 \pm & 0.5 & 377.2 \pm & 570 \pm & 40.0 \pm & 3810 \pm & 4420 \pm & 10 \pm & 11 & 0.13^{\circ} & 0.01^{\circ} & 0.24^{\circ} & 2.54^{\circ} & 0.5 & 0.96^{\circ} & 11.3^{\circ} & 0.13^{\circ} & 1.13^{\circ} & 0.03^{\circ} & 0.02^{\circ} & 0.22^{\circ} & 1.25^{\circ} & 1.5 & 1221 \pm & 130 \pm & 10.0 \pm & 2110 \pm & 2250 \pm & 10 \pm & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |    |                    |                   |                    |                   |                   | 1.0      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 20 & 61.6 \pm & 110.2 \pm & 0.56 \pm & 105.3 \pm & 241.2 \pm \\ 0.8 & 0.13^a & 0.59^a & 0.02^a & 0.01^a & 0.14^a & 0.4 & 12^a & 23.0^a & 0.15^a & 115^a & 325^a & 0.02^a \\ 20 & 59.2 \pm & 93.6 \pm & 0.63 \pm & 107.8 \pm & 251.3 \pm \\ 0.9 & 0.13^b & 0.56^a & 0.001^a & 0.13^a & 0.13^a & 0.4 & 358.8 \pm & 170 \pm & 40.0 \pm & 3790 \pm & 4000 \pm & 30 \pm \\ 10 & 0.14^a & 1.25^b & 0.08^{ab} & 0.05^a & 0.66^a & 0.5 & 347.7 \pm & 160 \pm & 40.0 \pm & 3790 \pm & 4000 \pm & 113^b & 0.06^b \\ 20 & 58.1 \pm & 70.7 \pm & 0.82 \pm & 117.7 \pm & 230.2 \pm \\ 10 & 0.14^a & 1.25^b & 0.08^{ab} & 0.05^a & 0.66^a & 0.5 & 347.7 \pm & 160 \pm & 40.0 \pm & 4260 \pm & 4460 \pm & 10 \pm \\ 10 & 0.14^a & 1.25^b & 0.08^{ab} & 0.05^a & 0.66^a & 0.5 & 377.2 \pm & 570 \pm & 40.0 \pm & 3810 \pm & 4420 \pm & 10 \pm \\ 11 & 0.13^c & 0.13^c & 0.02^{ab} & 0.24^a & 2.566 \pm \\ 11 & 0.13^c & 0.13^c & 0.02^a & 0.22^b & 1.25^b & 1.5 & 2.13^b & 12.1^b & 0.22^b & 113^d & 106^b & 0.02^c \\ 20 & 125.56 \pm & 460.6 \pm & 0.27 \pm & 725.56 \pm & 495.6 \pm \\ 10 & 0.13^b & 0.13^d & 0.02^a & 0.22^b & 1.25^b & 1.5 & 2.13^b & 12.1^b & 0.22^b & 113^d & 196^b & 0.02^c \\ 20 & 126.36 \pm & 463.8 \pm & 0.27 \pm & 725.48 \pm & 488.5 \pm \\ 10 & 0.13^b & 0.13^b & 0.13^b & 0.13^b & 0.13^b & 1.14^c & 124b & 110 \pm \\ 10 & 0.13^b & 1.25^d & 0.05 & 0.13^b & 2.35^b & 1.5 & 1221\pm & 130 \pm & 10.0 \pm & 2180 \pm & 2400 \pm 10 \pm \\ 10 & 0.13^b & 1.25^d & 0.05 & 0.13^b & 2.35^b & 1.5 & 1207 \pm & 10.0 \pm & 2130 \pm & 2260 \pm & 10 \pm \\ 11 & 0.22^b & 0.13^d & 0.02^a & 0.13^b & 0.13^b & 1.5 & 1207 \pm & 10.0 \pm & 2130 \pm & 2260 \pm & 10 \pm \\ 11 & 0.22^b & 0.13^d & 0.02^a & 0.13^b & 0.13^b & 1.5 & 1207 \pm & 10.0 \pm & 2130 \pm & 2260 \pm & 10 \pm \\ 11 & 0.22^b & 0.13^d & 0.02^a & 0.13^b & 0.13^b & 1.5 & 1207 \pm & 12.0^b \pm & 10.0 \pm & 235^d & 125^b & 0.06^c \\ 20 & 130.25 \pm & 414.21 \pm & 0.09 \pm & 556.2 \pm & 352.6 \pm & 1.5 & 1211 \pm & 100 \pm & 30.0 \pm & 1110 \pm & 1240 \pm & 10 \pm \\ 11 & 0.22^b & 0.13^d & 0.02^a & 0.13^b & 0.13^b & 1.5 & 2.13^b & 12.5^b & 1.13^a & 123^c & 325^c & 0.01^c \\ 20 & 100.25 \pm & 115.2 \pm & 0.91 \pm & 582.4 \pm & 361.2 \pm & 16^b & 914.7 \pm & 260 \pm & 20.0 \pm & 3560 \pm & 3840 \pm & 10 \pm \\ 10 & 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |    | 0.14               | 1.00              | 0.002              |                   |                   |          |                   | 11.5              | 0.15              | 21)               | 105              | 0.00                |
| $ \begin{array}{c} \Pr_{monsoo} & 08 & 0.13^{a} & 0.59^{a} & 0.02^{a} & 0.01^{a} & 0.14^{a} & 0.4^{a} & 1.2^{a} & 23.0^{a} & 0.15^{a} & 115^{a} & 325^{a} & 0.02^{a} \\ 09 & 0.13^{b} & 0.56^{a} & 0.001^{a} & 0.13^{a} & 0.13^{a} & 0.4 & 358.8 \pm 170 \pm 40.0 \pm 3790 \pm 4000 \pm 30 \pm 30 \pm 30 \pm 30 \pm 30 \pm 30 \pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |    |                    |                   |                    | SO                | UTHEAS'           | I COA    | ST                |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 20 |                    |                   |                    |                   |                   | 0.4      |                   | $270 \pm$         | $30.0 \pm$        | $3130 \pm$        | $3430 \pm$       |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dro             | 08 | 0.13 <sup>a</sup>  | 0.59 <sup>a</sup> | $0.02^{a}$         | 0.01 <sup>a</sup> | $0.14^{a}$        | 0.4      | 1.2 <sup>a</sup>  | 23.0 <sup>a</sup> | 0.15 <sup>a</sup> | 115 <sup>a</sup>  | 325 <sup>a</sup> | $0.02^{a}$          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 20 |                    | $93.6 \pm$        | $0.63 \pm$         |                   |                   | 0.4      |                   | $170 \pm$         | $40.0 \pm$        |                   | $4000 \pm$       |                     |
| $ \begin{array}{c} \text{Monsoo} \\ \text{n} \\ \begin{array}{c} \text{Post-} \\ \text{monsoo} \\ \text{n} \end{array} \begin{array}{c} 20 \\ \text{n} \\ \text{Post-} \\ \text{monsoo} \\ \text{n} \end{array} \begin{array}{c} 20 \\ \text{n} \\ \begin{array}{c} 38.1 \pm \\ 10 \\ 0.14^{a} \\ 1.25^{b} \\ 0.08^{ab} \\ 0.08^{ab} \\ 0.05^{a} \\ 0.05^{a} \\ 0.24^{a} \\ 2.54^{a} \\ 2.54^{a} \\ 0.5 \\ 377.2 \pm \\ 0.5 \\ 377.2 \pm \\ 0.5 \\ 377.2 \pm \\ 0.5 \\ 0.96^{a} \\ 1.13^{c} \\ 0.13^{a} \\ 10.0 \pm \\ 1100 \pm \\ 20.13^{a} \\ 100 \pm \\ 100 \pm \\ 2110 \pm \\ 2250 \pm \\ 113^{d} \\ 196^{b} \\ 0.02^{c} \\ 105 \\ 220 \\ 126.36 \pm \\ 463.8 \pm \\ 0.27 \pm \\ 725.56 \pm \\ 460.6 \pm \\ 0.27 \pm \\ 725.56 \pm \\ 495.6 \pm \\ 1.25^{b} \\ 1.25^{b} \\ 1.25^{b} \\ 1.5 \\ \begin{array}{c} 1221 \pm \\ 130 \pm \\ 100 \pm \\ 2.13^{b} \\ 12.1^{b} \\ 0.22^{b} \\ 113^{d} \\ 196^{b} \\ 20.0 \pm \\ 2110 \pm \\ 2250 \pm \\ 113^{d} \\ 196^{b} \\ 0.02^{c} \\ 100 \\ 20 \\ 136.54 \pm \\ 445.5 \pm \\ 0.31 \pm \\ 720.14 \pm \\ 487.2 \pm \\ 10 \\ 0.13^{b} \\ 1.25^{b} \\ 1.13^{a} \\ 120^{c} \\ 120 \pm \\ 1100 \pm \\ 2260 \pm \\ 1100 \pm \\ 2260 \pm \\ 1100 \pm \\ 2260 \pm \\ 105 \pm \\ 1100 \pm \\ 2260 \pm \\ 105 \pm \\ 1100 \pm \\ 2260 \pm \\ 100 \pm \\ 20 \\ 100.25 \pm \\ 110.2 \pm \\ 0.91 \pm \\ 562.1 \pm \\ 352.6 \pm \\ 1.5 \\ 1.25^{b} \\ 1.25^{b} \\ 1.25^{b} \\ 1.13^{a} \\ 123^{b} \\ 123^{b} \\ 1.3^{b} \\ 125^{b} \\ 1.10 \\ 1240 \pm \\ 100 \\ 103^{c} \\ 214^{a} \\ 125^{b} \\ 1.35^{b} \\ 213^{b} \\ 2260 \pm \\ 100 \\ 20 \\ 100.25 \pm \\ 110.2 \pm \\ 0.91 \pm \\ 562.1 \pm \\ 352.6 \pm \\ 1.5 \\ 1.25^{b} \\ 1.25^{b} \\ 1.25^{b} \\ 1.13^{a} \\ 123^{c} \\ 123^{b} \\ 100 \\ 30.0 \pm \\ 1110 \pm \\ 1240 \pm \\ 10 \pm \\ 10 \\ 0.3^{c} \\ 124^{a} \\ 1.25^{a} \\ 135^{b} \\ 213^{b} \\ 213^{b} \\ 0.08^{c} \\ 0.13^{c} \\ 124^{b} \\ 1.7 \\ 881.4 \pm \\ 350 \\ 300 \\ 300 \\ \pm \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | 09 |                    |                   |                    | 0.13 <sup>a</sup> |                   | 0.4      |                   | 16.5 <sup>b</sup> | 0.13 <sup>a</sup> | 112 <sup>b</sup>  | 113 <sup>b</sup> |                     |
| $ \begin{array}{c} \text{Monsoo} \\ \text{n} \\ \begin{array}{c} 10 \\ \text{o} \\ 0.14^{\circ} \\ 11 \\ 0.13^{\circ} \\ 0.22^{\circ} \\ 1.25^{\circ} \\ 1.25^{\circ} \\ 1.25^{\circ} \\ 1.25^{\circ} \\ 1.25^{\circ} \\ 1.5 \\ 1.21^{\circ} \\ 1.21^{\circ} \\ 1.30^{\circ} \\ 1.30^{\circ} \\ 1.13^{\circ} \\ 1.21^{\circ} \\ 0.13^{\circ} \\ 1.13^{\circ} \\ 1.13^{\circ} \\ 1.13^{\circ} \\ 1.21^{\circ} \\ 0.13^{\circ} \\ 1.13^{\circ} \\ 1.21^{\circ} \\ 0.13^{\circ} \\ 1.25^{\circ} \\ 1.13^{\circ} \\ 1.25^{\circ} \\ 1.13^{\circ} \\ 1.25^{\circ} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11              |    |                    |                   |                    |                   |                   | 0.5      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \mbox{Monsoo}\\ n \\ \mbox{Monsoo}\\ n \\ \begin{tabular}{lllll} \label{eq:Monsoo}\\ n \\ \end{tabular} \begin{array}{c} 11 & 0.13^c & 0.13^c & 0.02^{ab} & 0.24^a & 2.54^a & 0.5 & 0.96^a & 11.3^c & 0.13^a & 165^b & 213^b & 0.03^c \\ 20 & 125.56 \pm & 460.6 \pm & 0.27 \pm & 725.56 \pm & 495.6 \pm \\ 20 & 126.36 \pm & 463.8 \pm & 0.27 \pm & 705.89 \pm & 488.5 \pm \\ 09 & 0.25^b & 0.54^d & 0.02^a & 0.13^b & 0.13^b & 1.4 \\ 120 & 136.54 \pm & 445.5 \pm & 0.31 \pm & 720.14 \pm & 487.2 \pm \\ 10 & 0.13^b & 1.25^d & 0.05 & 0.13^b & 0.13^b & 0.13^b & 1.4 \\ 120 & 130.25 \pm & 444.21 \pm & 0.29 \pm & 726.36 \pm & 485.2 \pm \\ 10 & 0.13^b & 1.25^d & 0.05 & 0.13^b & 0.13^b & 0.13^b & 1.5 \\ 20 & 130.25 \pm & 444.21 \pm & 0.29 \pm & 726.36 \pm & 485.2 \pm \\ 11 & 0.22^b & 0.13^d & 0.02^a & 0.13^b & 0.13^b & 1.5 \\ 20 & 130.25 \pm & 444.21 \pm & 0.29 \pm & 726.36 \pm & 485.2 \pm \\ 11 & 0.22^b & 0.13^d & 0.02^a & 0.13^b & 0.13^b & 1.5 \\ 20 & 130.25 \pm & 110.2 \pm & 0.91 \pm & 562.1 \pm & 352.6 \pm \\ 11 & 0.22^b & 0.13^d & 0.04 & 0.04^c & 2.15^c & 1.6 \\ 20 & 100.25 \pm & 110.2 \pm & 0.91 \pm & 562.1 \pm & 352.6 \pm \\ 1.6 & 0.13^c & 21.4^a & 1.25^a & 153^b & 213^a & 0.08^c \\ 20 & 105.25 \pm & 115.2 \pm & 0.91 \pm & 582.4 \pm & 361.2 \pm \\ 20 & 105.25 \pm & 115.2 \pm & 0.91 \pm & 582.4 \pm & 361.2 \pm \\ 10 & 0.03^c & 0.3^a & 0.02^{ab} & 0.05^c & 1.13^c & 1.6 \\ 20 & 105.65 \pm & 115.8 \pm & 0.91 \pm & 556.9 \pm & 324.5 \pm \\ 1.7 & 881.4 \pm & 350 \pm & 30.0 \pm & 4860 \pm & 5240 \pm & 30.4 \pm \\ 1.24^d & 0.33^a & 133^c & 125^b & 0.09^b \pm \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 1.7 \\ 900.8 \pm & 300 \pm & 300 \pm & 30.0 \pm & 4872 \pm & 5202 \pm & 20 \pm \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |    |                    |                   |                    |                   |                   | 0.5      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \text{Monsoo} \\ \text{n} \\ \begin{array}{c} \text{Monsoo} \\ \text{n} \\ \begin{array}{c} 0 \\ \text{n} \\ \text{n} \\ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |    |                    |                   |                    |                   |                   | 0.5      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \mbox{Monsoo}\\ n \end{array} \left( \begin{array}{c} 08 & 0.13^b & 0.13^d & 0.02^a & 0.22^b & 1.25^b & 1.5 \\ 20 & 126.36 \pm & 463.8 \pm & 0.27 \pm & 705.89 \pm & 488.5 \pm \\ 09 & 0.25^b & 0.54^d & 0.02^a & 0.13^b & 0.13^b \\ 20 & 136.54 \pm & 445.5 \pm & 0.31 \pm & 720.14 \pm & 487.2 \pm \\ 10 & 0.13^b & 1.25^d & 0.05 & 0.13^b & 2.35^b \\ 20 & 130.25 \pm & 444.21 \pm & 0.29 \pm & 726.36 \pm & 485.2 \pm \\ 11 & 0.22^b & 0.13^d & 0.02^a & 0.13^b & 0.13^b \\ 20 & 130.25 \pm & 444.21 \pm & 0.29 \pm & 726.36 \pm & 485.2 \pm \\ 11 & 0.22^b & 0.13^d & 0.02^a & 0.13^b & 0.13^b \\ 20 & 100.25 \pm & 110.2 \pm & 0.91 \pm & 562.1 \pm & 352.6 \pm \\ 20 & 100.25 \pm & 110.2 \pm & 0.91 \pm & 562.1 \pm & 352.6 \pm \\ 20 & 100.25 \pm & 115.2 \pm & 0.91 \pm & 582.4 \pm & 361.2 \pm \\ 20 & 105.55 \pm & 115.8 \pm & 0.91 \pm & 582.4 \pm & 361.2 \pm \\ 10 & 0.03^c & 0.3a^a & 0.01^b & 0.08^c & 0.13^c \\ 20 & 105.65 \pm & 115.8 \pm & 0.91 \pm & 556.9 \pm & 324.5 \pm \\ 10 & 0.03^c & 0.3^a & 0.01^b & 0.08^c & 0.13^c \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm \\ 17 & 900.8 \pm & 300 \pm & 300 \pm & 300 \pm & 4872 \pm & 5202 \pm & 20 \pm \\ 10 & 0.03^c & 0.3^a & 0.01^b & 0.08^c & 0.13^c \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm \\ 17 & 900.8 \pm & 300 \pm & 300 \pm & 300 \pm & 4872 \pm & 5202 \pm & 20 \pm \\ 10 & 0.03^c & 0.3^a & 0.01^b & 0.08^c & 0.13^c \\ 10 & 0.03^c & 0.3^a & 0.01^b & 0.08^c & 0.13^c \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 17 \\ 20 & 20 & 300 \pm & 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |    |                    |                   |                    |                   |                   | 0.0      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \text{Monsoo} \\ \text{n} \\ \begin{array}{c} 08 \\ \text{n} \\ 09 \\ 0.25^{\text{b}} \\ 0.25^{\text{b}} \\ 0.54^{\text{d}} \\ 0.02^{\text{d}} \\ 0.02^{\text{d}} \\ 0.02^{\text{d}} \\ 0.02^{\text{d}} \\ 0.13^{\text{b}} \\ 0.13^{\text{b}} \\ 0.13^{\text{b}} \\ 1.25^{\text{d}} \\ 0.02^{\text{d}} \\ 0.13^{\text{b}} \\ 0.13^{\text{b}} \\ 0.13^{\text{b}} \\ 1.25^{\text{d}} \\ 0.02^{\text{d}} \\ 0.13^{\text{b}} \\ 0.13^{\text{b}} \\ 0.13^{\text{b}} \\ 1.25^{\text{d}} \\ 0.05 \\ 0.13^{\text{b}} \\ 0.13^{\text{b}} \\ 0.13^{\text{b}} \\ 2.35^{\text{b}} \\ 1.5 \\ 1.25^{\text{b}} \\ 1.27^{\text{b}} \\ 1.27^{\text{b}} \\ 1.23^{\text{b}} \\ 1.23^{\text{b}} \\ 2.13^{\text{b}} \\ 1.25^{\text{c}} \\ 1.10 \pm \\ 110 \pm \\ 1240 \pm \\ 110 \pm \\ 1240 \pm \\ 110 \pm \\ 1240 \pm \\ 100 \pm \\ 1240 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |    |                    |                   |                    |                   |                   | 1.5      |                   |                   |                   |                   |                  |                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monsoo          |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |    |                    |                   |                    |                   |                   | 1.4      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \begin{array}{cccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |    |                    |                   |                    |                   |                   | 1.5      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \text{Post-} \\ \text{monsoo} \\ \text{n} \end{array} \begin{array}{c} 11 & 0.22^{\text{b}} & 0.13^{\text{d}} & 0.02^{\text{a}} & 0.13^{\text{b}} & 0.13^{\text{b}} & 0.13^{\text{b}} & 1.5 \\ 20 & 100.25 \pm & 110.2 \pm & 0.91 \pm & 562.1 \pm & 352.6 \pm \\ 20 & 103.2^{\text{c}} & 0.13^{\text{a}} & 0.04 & 0.04^{\text{c}} & 2.15^{\text{c}} \\ 20 & 105.25 \pm & 115.2 \pm & 0.91 \pm & 582.4 \pm & 361.2 \pm \\ 09 & 0.16^{\text{c}} & 0.32^{\text{a}} & 0.02^{\text{ab}} & 0.05^{\text{c}} & 1.13^{\text{c}} \\ 20 & 105.65 \pm & 115.8 \pm & 0.91 \pm & 556.9 \pm & 324.5 \pm \\ 10 & 0.03^{\text{c}} & 0.3^{\text{a}} & 0.01^{\text{b}} & 0.08^{\text{c}} \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm \\ \end{array} \begin{array}{c} 1.5 \\ 2.13^{\text{b}} & 12.5^{\text{b}} & 1.13^{\text{a}} & 123^{\text{c}} & 325^{\text{c}} & 0.01^{\text{c}} \\ 20.0 \pm & 3560 \pm & 3840 \pm & 10 \pm \\ 0.13^{\text{c}} & 21.4^{\text{a}} & 1.25^{\text{a}} & 153^{\text{b}} & 213^{\text{a}} & 0.08^{\text{c}} \\ 0.13^{\text{c}} & 21.4^{\text{a}} & 1.25^{\text{a}} & 153^{\text{b}} & 213^{\text{a}} & 0.08^{\text{c}} \\ 1.93^{\text{c}} & 32.5^{\text{ad}} & 0.13^{\text{a}} & 113^{\text{c}} & 231^{\text{b}} & 0.07^{\text{c}} \\ 1.93^{\text{c}} & 32.5^{\text{ad}} & 0.13^{\text{a}} & 113^{\text{c}} & 231^{\text{b}} & 0.07^{\text{c}} \\ 1.93^{\text{c}} & 32.5^{\text{ad}} & 0.13^{\text{a}} & 113^{\text{c}} & 231^{\text{b}} & 0.07^{\text{c}} \\ 10 & 0.03^{\text{c}} & 0.3^{\text{a}} & 0.01^{\text{b}} & 0.08^{\text{c}} & 0.13^{\text{c}} & 1.7 \\ 1.24^{\text{c}} & 12.4^{\text{d}} & 0.33^{\text{a}} & 133^{\text{c}} & 125^{\text{b}} & 0.09^{\text{b}} \\ 20 & 109.65 \pm & 113.7 \pm & 0.96 \pm & 567.1 \pm & 333.7 \pm & 1.7 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \begin{array}{c} \text{Post-monsoo} \\ \text{m} \end{array} \begin{array}{c} \begin{array}{c} 20 \\ 08 \\ 0.13^{\text{c}} \\ 0.13^{\text{c}} \\ 0.13^{\text{c}} \\ 0.13^{\text{a}} \\ 0.04 \end{array} \begin{array}{c} 0.04 \\ 0.04^{\text{c}} \\ 0.04^{\text{c}} \\ 2.15^{\text{c}} \\ 2.15^{\text{c}} \\ 1.6 \end{array} \begin{array}{c} 914.7 \pm \\ 0.13^{\text{c}} \\ 21.4^{\text{a}} \\ 1.25^{\text{a}} \\ 1.25^{\text{a}} \\ 1.53^{\text{b}} \\ 21.4^{\text{a}} \\ 1.25^{\text{a}} \\ 1.25^{\text{a}} \\ 1.53^{\text{b}} \\ 213^{\text{a}} \\ 0.08^{\text{c}} \\ 0.08^{\text{c}} \\ 0.08^{\text{c}} \\ 1.13^{\text{c}} \\ 1.13^{\text{c}} \\ 1.13^{\text{c}} \\ 1.13^{\text{c}} \\ 1.0 \end{array} \begin{array}{c} 943.6 \pm \\ 290 \pm \\ 32.5^{\text{ad}} \\ 0.13^{\text{a}} \\ 0.13^{\text{a}} \\ 1.25^{\text{a}} \\ 1.13^{\text{c}} \\ 1.33^{\text{c}} \\ 1.33^{\text{c}} \\ 1.24^{\text{c}} \\ 30.0 \pm \\ 30.0 \pm \\ 30.0 \pm \\ 4872 \pm \\ 5202 \pm \\ 20 \pm \end{array} \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |    |                    |                   |                    |                   |                   | 1.5      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c} \begin{array}{c} \text{Post-}\\ \text{monsoo}\\ \text{n} \end{array} \\ \begin{array}{c} 20\\ \text{n} \end{array} \\ \begin{array}{c} 20\\ 0\\ 0\\ 20\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |    |                    |                   |                    |                   |                   | 1.6      |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Post-           |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | monsoo          |    |                    |                   |                    |                   |                   | 1.6      |                   |                   |                   |                   |                  |                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n               |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
| $20  109.65 \pm  113.7 \pm  0.96 \pm  567.1 \pm  333.7 \pm  _{1.7}  900.8 \pm  300 \pm  30.0 \pm  4872 \pm  5202 \pm  20 \pm \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |    |                    |                   |                    |                   |                   | 1.7      |                   |                   |                   |                   |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |    |                    |                   |                    |                   |                   |          |                   |                   |                   |                   |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 11 | 0.35 <sup>bc</sup> | 0.13 <sup>a</sup> | 0.00 <sup>ab</sup> | 0.09 <sup>c</sup> | 0.13°             | 1.7      | 1.25 <sup>b</sup> | 5.6 <sup>ad</sup> | 0.22 <sup>a</sup> | 122°              | 213 <sup>b</sup> | 0.09 <sup>a</sup>   |

Data are expressed as mean  $\pm$  standard deviation (n = 3); Different superscripts (a-d) within a column denote significant differences (p < 0.05). Macro minerals (mg/100g wet sample) are Na, K, Ca and P; Micro minerals (µg/100g wet sample) are Fe, Mn, and Zn.

# **3.4.** Inter Annual and Seasonal Variability of Macro and Micro Mineral Content in *S. longiceps* Collected from the South West and South East Coast of India

The macro (Na, K, Ca and P) and micro (Fe, Mn, Zn, Se) mineral concentrations during the three seasons over four years from SW and SE coast of India are depicted in Table 4. No remarkable variations in mineral compositions were observed between the samples collected from SW and SE coasts over four years (2008 - 2011) during pre-monsoon, monsoon and post-monsoon. A high Na/K ratio was observed during post-monsoon for samples collected from both SW and SE coasts (1.4 & 1.0,

respectively). The mean concentrations of alkaline metals (Na, K, Ca) and phosphorus were significantly higher during monsoon in the SE coast. The values of Ca+P ratio obtained in all the samples from SW coast were in the range 310 - 776 mg/100g in SW and 347 - 1221 mg/100g in SE coast. Fe (260 - 10000 µg/100g), Mn (20 -170 µg/100g) and Zn (1990 - 6130 µg/100g) are more abundant in the samples collected from the SW coasts. Se concentration ranged from 10 - 20 µg/100g in SW coast and 10 -30 µg/100g in SE coast and was high during the post-monsoon along both the coasts.

# **3.5. Interannual and Variability in Chlorophyll-a Concentration and Sea Surface**

# Temperature (SST) Along South West and South East Coast of India

The variance in the spatial distribution of chlorophyll-a during 2008- 2011 during pre-monsoon, monsoon and post-monsoon seasons have been computed to examine the uniformity in the distribution of chlorophyll-a over SW coast and SE coast of India and recorded in Figure 3A. On SW coast, chlorophyll-a showed relatively low values in pre-monsoon (4-year pre-monsoon average  $0.3 \pm 0.02$ mg/m<sup>3</sup>), reached monsoon maxima  $(1.2 \pm 0.34 \text{ mg/m}^3)$ , subsequently decreased throughout the post-monsoon season ( $0.5 \pm 0.07 \text{ mg/m}^3$ ). On SE coast, along monsoon and post-monsoon, similar value in chlorophyll-a was observed (~  $0.8 \text{ mg/m}^3$ ) and exhibited pre-monsoon minima  $(0.7 \pm 0.17 \text{ mg/m}^3)$ . Though insignificant, some anomalies are found in the chlorophyll-a content over the years; for eg. on SW coast, 1.58 mg/m<sup>3</sup> during 2008 monsoon, 0.76 mg/m<sup>3</sup> during 2009 monsoon, in SE coast,  $> 0.8 \text{ mg/m}^3$  during 2008, 2009 and 2011 in postmonsoon but 0.6 mg/m<sup>3</sup> in 2010 post-monsoon. In the SW and SE coasts, the area-averaged SST Figure. 3B during pre-monsoon was the highest observed in all the studied years (> 30°C), which decreased in monsoon (29.5  $\pm$  0.61 and 29.4  $\pm$  0.48°C in SW & SE coast, respectively) and showed a gradual decrease by post-monsoon ( $< 29^{\circ}$ C) in both the coasts.

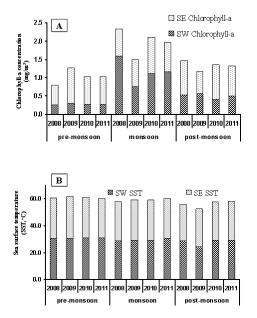



Figure 3. (A) Seasonal variability in SeaWiFS chlorophyll-a concentration  $(mg/m^3)$  for the study period, 2008 - 2011 (B) Variability in sea surface temperature (SST) for the four years (2008 -2011).

## **3.6. Principal Component Analyses**

Principal component analyses (PCA) were performed to determine similarities between the Protein, TEAA, TNEAA, TAA, TAAA, TSAA with chlorophyll-a and SST during pre-monsoon season were shown in Figure 4A. The PC1 explains 42.9% variance which accounts for similarities between the protein content, TNEAA and TArAA in the SE coast. The PC2 axis which explained 36.9% variance gives the highest percentages of TEAA and TSAA along SW coast and PC3 explained 2.15% variance gives the highest percentages of chlorophyll-a along both coasts. PCA were performed to determine

similarities between the Protein, TEAA, TNEAA, TAA, TArAA, TSAA with chlorophyll-a and SST during monsoon season were shown in Figure 4B. The PC1 explains 55.6% variance which accounts for similarities between the SST, TNEAA and TArAA in the SE coast and the PC2 axis which explained 22.5% variance gives the highest percentages of protein, chlorophyll-a, EAA, EAA/NEAA along SW coast. PC3 explained 19.9% of the variance which accounts for similarities between the TNEAA, TSAA and TArAA in the SW coast. Similarly, PCA were performed to determine similarities between the Protein, TEAA, TNEAA, TAA, TArAA, TSAA with chlorophyll-a and SST during post-monsoon season were shown in Figure 4C. The PC1 explains 41.0% variance which accounts for similarities between the chlorophyll-a, TNEAA, TSAA in SW coast; EAA/NEAA and TSAA in SE coast and the PC2 (38.1%) related mainly to the SST and TEAA along the SW coast with high positive factor loadings. PC3 explained 21% of the variance which accounts for similarities between the TNEAA, TEAA and TArAA in the SE coast.

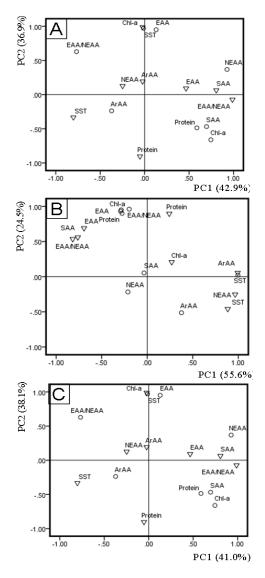



Figure 4. The correlation plots between (A) Protein, amino acids., TEAA, TNEAA, EAA/NEAA, TArAA, TSAA, chlorophyll-a and SST during pre-monsoon, (B) Protein, amino acids., TEAA, TNEAA, EAA/NEAA, TArAA, TSAA, chlorophyll-a and SST during monsoon, (C) Protein, amino acids., TEAA, TNEAA, EAA/NEAA, TArAA, TSAA, chlorophyll-a and SST during post-monsoon.

# 4. Discussion

Proteins are an essential nutritional component of S. longiceps, and are essentially required by the human beings for growth and survival. The high protein content in both coasts was in pre-monsoon and the lowest was in post-monsoon that was in agreement with previously reported results by Chandrashekhar et al. [14] and Jan et al. [3]. This variation in the total protein content can be attributed to the feeding of different protein rich marine phytoplanktons and to climatic changes, which influence the general biochemical composition of the fish [15]. The significantly higher protein content irrespective of the low chlorophyll-a content in pre-monsoon can be due to a higher intake of food than other seasons. In addition, as no gonadal elements are present in pre-monsoon, the food that is consumed is used in the building up of the muscle. During the peak spawning season, i.e., during monsoon in both coasts the protein content was low compared to premonsoon because during spawning period the fishes has been found to be active and agile and this results in the utilization of some of the muscle reserves of energy results in decline of muscle protein [3]. Apparently the chlorophyll- a concentration in monsoon showed high correlation with the protein content, especially in SW coast. The low protein content in post-monsoon within both coasts may be due to the fact that amino acid related to depletion select materials for building up of the latent gonads in this season [3]. In general, the seasonal profile of the protein from oil sardines collected from both the coasts illustrated the active growing phase during monsoon and a decrease after spawning, in post-monsoon.

The amino acid profile of oil sardines from both coasts showed that all the essential amino acids were significantly higher in concentrations, when compared with the reference pattern [2], which implied that the proteins present had a high biological value, and are therefore called complete proteins. The increase of TEAA in monsoon was mainly due to the significant increase of valine and phenyl alanine in this season (p < 0.05) along SW coast. Likewise, the high content of TEAA in monsoon compared with pre-monsoon and post-monsoon along the SE coast was due to the considerable increase of valine, leucine and isoleucine in this season (p < 0.05). These essential amino acids are called branched chain amino acids (BCAA) which are critical to human life and are particularly involved in stress, energy and muscle metabolism. A high correlation between chlorophyll-a and TEAA ( $r^2 = > 0.92$ ) during the monsoon clearly showed the outcome of the planktonic diet in the composition of EAAs Figure 4B. On both the coasts, an increase in the serine level, an amino acid in the human body which assists the function of the central nervous system (CNS) was observed during monsoon. Interestingly, oil sardines collected from the SE coast (monsoon and post-monsoon) and SW coast (during pre-monsoon and monsoon) possess high lysine content which is severely restricted in cereals, the most important staple food in the world. In diets based mainly on cereals, a supplement of fish can, therefore, significantly raise the biological value. A reduced supply of lysine in the diet may lead to mental and physical handicaps because it is an important precursor for the de novo synthesis of glutamate, the most significant neurotransmitter in the mammalian central nervous system [1].

The percentage ratios of TEAA to TAA (TEAA/TAA) in the samples were higher than 50% which are well above the 39% considered to be adequate for ideal protein food for infants, 26% for children and 11% for adults [6]. The EAA/NEAA ratio which observed more than 1.0 during the monsoon (> 1.2) of SW and monsoon & post-monsoon off SE coast (> 1.6) samples indicated that oil sardine in these seasons could provide high quality proteins or wellbalanced protein deposition. Any ratio of EAA/NEAA amino acids higher than 1.0 is considered to be excellent, and therefore it can be concluded that oil sardines from both coasts, especially SE coast are sources of well balanced proteins and high-quality protein source in respect of EAA/NEAA ratio. The EAA/NEAA ratio observed by Iwasaki and Harada [16] was considerably lower for other marine species like *Pagrus major* (0.77), Scomber japonicus (0.77), O. keta and Paralichthys olivaceus (0.77) compared to the present study. The amount of total aromatic amino acids (TArAA) was observed to be high during monsoon in both the coasts. The sulfur-containing amino acid, methionine cannot be synthesized de novo in humans. Likewise, cysteine can be made from homocysteine but cannot be synthesized on its own. Arg:Lys ratio is the most objective index to identify the cholesterolemic properties of a protein presenting an intermediate ratio between vegetables and meat [17]. The leucine/isoleucine ratios of all the sardines from both the coasts were typical, of the ideal ratio suggested by FAO/ WHO [10]. Deosthale et al. [18] showed that excess leucine in foods interfered with the utilization of isoleucine and lysine. The amino acid score is indicative of the maximum percentage of protein that may be retained for growth, these results coincide with the hypothesis proposed by Garcia and Valverde [19]. The PCA plot Figure 4A clearly showed that no correlation was observed between chlorophyll-a, SST and any of the amino acid indices. However, SST showed similarity with TArAA and NEAA, while chlorophyll-a showed similarity with TEAA along the SE coast Figure 4B. Apparently, chlorophyll-a showed similarity with protein content, TEAA and EAA/NEAA along SW coast Figure 4B. During pre-monsoon along SW coast chlorophyll-a showed high similarity with TNEAA and TSAA.

The high macro minerals in the SE coast suggest that the samples from this coast could be used as good sources of these minerals. The variations recorded in the concentration of the different mineral components in the fish examined could have been as a result of the rate in which these components are available in the water body [20], and the ability of the fish to absorb and convert the essential minerals from the diet or the water bodies where they live. Erkan and Ozden [21] also reported significantly higher values of K content compared to the current findings (158 - 310 mg/100g); at the mean average of 459.7 mg/100g (sea bass) and 393.8 mg/100g (sea bream). Both Na and K are required to maintain osmotic balance of body fluid and the pH of the body regulate muscle and nerve irritability, control glucose absorption and enhance normal retention of protein during growth. A high Na/K ratio observed during post-monsoon in both SW and SE coasts seems to be important because physiological and epidemiological data suggest that a high Na/K ratio intake

can be associated with an increased risk of developing high blood pressure and cardiovascular diseases. Phosphorus has been generally associated with the phospholipid content and the presence of phosphoprotein. The high content of Ca and phosphorus were observed in all samples due to the presence of the bones present in them. Food is considered "good" if the Ca/P ratio  $\geq 1.0$  and "poor" if the ratio  $\leq 0.5$  while Ca/P ratio  $\geq 2.0$  helps to increase the absorption of calcium on the small intestine. Oil sardines from both SW and SE coasts during monsoon and post-monsoon seasons would help to increase the absorption of calcium in the small intestine.

Most of the micro minerals were found in higher concentrations in oil sardines, including those important as enzyme substrate activators (Mn and Zn) and as metalloenyzme (Fe). Zn was the most abundant micro element followed by Fe in sardines studied. These discrepancies might be explained in part by seasonal changes in metal concentrations, or the different stages of maturity of the specimens and differences in the annual reproductive cycle of the specimens [22]. In addition, differences in the metal concentrations of the surrounding seawater could influence the metal levels. Increased dietary intake of selenium has been linked to protection against various cancers [23]. Saadettin et al. [24] reported that the most abundant microelements in fish were Zn and Fe followed by Cu with the remaining elements present in amounts below toxic levels. The mean weight and length of the samples (data not shown) varied significantly during sampling periods, which may influence the mineral and trace element concentrations. The content of Mn in all samples was found to be lower than the permissible limit set by FAO/WHO [25], 5.4 ppm or 540 µg/100 g food. Similarly, the oil sardines collected from both coasts contained Zn lower than the limit set by FAO/WHO [25] (150 ppm or 15000 µg/100g). The Se content in oil sardine obtained in oil sardines were significantly higher than cereals (<10  $\mu$ g/100g), fruits and vegetables (<10 µg/100g) [26]. The abundance of Fe, Mn and Zn among the samples collected from the SW coasts was likely to be due to high bioavailability of these elements arising in the fishes by a high metal absorption from the food chain as a consequence of high feeding activity.

Sardine lipid is a rich source of fat soluble vitamins including A, D, E and K which must be taken on a regular basis because of their key roles in human health and metabolism. The spatio-seasonal disparity observed in these vitamin levels could be the result of the season, life stage, age or availability of nutrition in the ocean. Vitamin D is essential for the maintenance of normal blood levels of Ca and phosphate [27]. Vitamin E acts as an antioxidant against peroxidation of fatty acid contained in the cellular and sub cellular membrane phospho lipids leading to the formation of phenoxy free radicals. These free radicals formed may react with vitamin C to regenerate tocopherol. Vitamin C and E are potent free radical scavengers. Vitamin C is an essential nutrient for humans, but an additional external dietary source is required because it is not synthesized by human metabolism [28]. Vitamin K plays an important role in blood clotting and bone metabolism pertaining to the prevention of osteoporosis and carotid artery elasticity.

The present work has elucidated more on the importance of *Sardinella longiceps* as good sources of

protein, amino acids, minerals and vitamins. The present study also indicated a reasonably good ratio of essential to nonessential amino acids for sardines from SE coast, and therefore it can be concluded that they are excellent sources of well balanced proteins with high-biological value, and are therefore called as complete proteins. The variation of the protein content is due to the planktonic feed and to climatic changes in the year which influence the general biochemical composition of the fish. Therefore, it is recommended to consume fish and shellfish regularly as it could provide most of minerals needed by the human body.

## Acknowledgement

This work was supported by the funding from Indian Council of Agricultural Research, New Delhi, India. The authors are thankful to the Director, CMFRI, Cochin for providing necessary facilities and encouragements. The technical assistance rendered by Mrs. G. Shylaja for amino acid analyses is gratefully acknowledged.

## List of Abbreviations

TEAA - Total essential amino acids; TNEAA - Total non-essential amino acids; TAA- Total amino acid; TarAA - Total aromatic amino acids; TSAA - Total sulfur containing amino acids; HPLC – High performance liquid chromatography

### **Statement of Competing Interests**

The authors declare that they have no competing interests including any financial, personal or other relationships with other people or organizations that could inappropriately influence, or be perceived to influence, the present work.

## References

- Usydus, Z., Szlinder-Richert, J. and Adamczyk, M. "Protein quality and amino acid profiles of fish products available in Poland" *Food Chemistry*, **112**, 139-145, 2009.
- [2] FAO/WHO. Report of the joint FAO/WHO Expert consultation on protein quality evaluation Bethesda, MD, 1990.
- [3] Jan, U., Shah, M., Manzoor, T. and Ganie, S.A. "Variations of protein content in the muscle of fish *Schizothorax niger*" *American Eurasian Journal of Scientific Research*, 7(1), 1-4, 2012.
- [4] Deshmukh, A.R., Kovale, S.R., Sawant, M.S., Shirdhankar, M.M. and Funde, A.B. "Reproductive biology of *Sardinella longiceps* along Ratnagiri coast of Maharashtra" *Indian Journal Marine Sciences*, **39**(2), 274-279, 2010.
- [5] FAO/WHO/UNU. Energy and protein requirements Report of a joint FAO/WHO/ UNU Expert Consultation, World Health Organization technical report series 724. Geneva: WHO. 1985, 121-123.
- [6] Lowry, O.H., Roserrough, N.J., Farr, A.L. and Randall, R.J. "Protein measurement with the Folin phenol reagent" *Journal of Biological Chemistry*, **193**, 265-275, 1951.
- [7] Heinrikson, L. and Meredith, S.C. "Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate" *Analytical Biochemistry*, **136**, 65-74, 1984.
- [8] FAO/WHO. Protein quality evaluation Report of the joint FAO/WHO Expert Consultation, FAO Food and Nutrition Paper

51, Food and Agriculture Organization of the United Nations, Rome, Italy, 1991.

- [9] FAO/WHO/UNU. WHO Technical Report Series 935. Protein and amino acid requirements in human nutrition Report of a Joint FAO/WHO/UNU Expert Consultation, 2007.
- [10] Salo-Vaananen, P., Mattila, P., Lehikoinen, K., Salmela-Molsa, E. and Piironen, V. "Simultaneous HPLC analysis of fat-soluble vitamins in selected animal products after small-scale extraction" *Journal of Agriculture and Food Chemistry*, **71**, S 535-543, 2000.
- [11] Bligh, E.G. and Dyer, W. J. "A rapid method for total lipid extraction and purification" *Canadian Journal of Biochemistry* and Physiology, 37, 911-917, 1959.
- [12] AOAC, In: Latimer GW, Horwitz W (ed), Official methods of Analysis of the Association of Official Analytical Chemists International. 18th edn. AOAC, Gaithersburg, MD, 473, 2005.
- [13] Astorga-Espana, M.S., Rodriguez-Rodriguez, E.M. and Diaz-Romero, C. "Comparison of mineral and trace element concentrations in two mollusks form the Srait of Magellan (Chile)" *Journal of Food Composition and Analysis*, **20** (3-4), 273-279, 2007.
- [14] Chandrashekhar, A., Rao, P. and Abidi, A.B. "Changes in muscle biochemical composition of *Labeo rehita* (Ham) in relation to season" *Indian Journal of Fisheries*, **51** (3), 319-323, 2004.
- [15] Njinkoue, J.M., Barnathan, G., Miralles, J., Gaydoud, E.M. and Sambe, A. "Lipids and fatty acids in muscle, liver and skin of three edible fish from the Senegalese coast: Sardinella maderensis, Sardinella aurita and Cephalopholis taeniops" Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 131, 395-402, 2002.
- [16] Iwasaki, M. and Harada, R. "Proximate and amino acid composition of the roe and muscle of selected marine species" *Journal of Food Sciences*, 50, 1585-1587, 1985.
- [17] Unusan, N. "Change in proximate, amino acid and fatty acid contents in muscle tissue of rainbow trout (*Oncorhynchus mykiss*) after cooking" *International Journal of Food Science and Technology*, **42**, 1087-1093, 2007.
- [18] Deosthale, Y.G., Mohan, V.S. and Rao, K.V. "Varietal deficiencies in protein lysine and leucine content of gram

sorghum" Journal of Agriculture and Food Chemistry, 18, 644-646, 1970.

- [19] García, G.B. and Valverde, C.J. "Optimal proportions of crabs and fish in diet for common octopus (*Octopus vulgaris*) ongrowing" *Aquaculture*, 253, 502-511, 2006.
- [20] Yeannes, I. M. and Almandos, M.E. "Estimation of fish proximate composition starting from water content" *Journal of Food Composition and Analysis*, 16, 81-92, 2003.
- [21] Erkan, N. and Ozden, O. "Proximate composition and mineral contents in aqua cultured sea bass (*Dicentrarchus labrax*), sea bream (*Sparus aurata*) analyzed by ICP-MS" *Food Chemistry*, **102** (3), 721-725, 2007.
- [22] Chafik, A., Cheggour, M., Cossa, D. and Sifeddine, S.B.M. "Quality of Moroccan Atlantic coastal waters: water monitoring and mussel watching" *Aquatic Living Resources*, 14, 239-249, 2001.
- [23] Jackson, M.I. and Combs, J.G.F. "Selenium and anticarcinogenesis: underlying mechanisms" *Current Opinion in Clinical Nutrition and Metabolic Care*, **11**, 718-26, 2008.
- [24] Saadettin, G., Barbaros, D., Nigar, A., Ahmet, C. and Mehmet, T. "Proximate composition and selected mineral content of commercial fish species from the Black Sea" *Journal of the Science of Food and Agriculture*, 55, 110-116, 1999.
- [25] FAO/WHO. List of maximum levels recommended for contaminants by the Joint FAO/ WHO Codex Alimentarius Commission Second Series. CAC/FAL, Rome, 3, 1-8, 1984.
- [26] Levander, O.A. and Burk, R.F. Selenium in Ziegler, E.E. Filer, J. J. (ed). Present knowledge in nutrition, 7<sup>th</sup> Edition. Washington, AC: ILSI press, 320-328, 1994.
- [27] Trivedi, D. P., Doll, R. and Khaw, K. T. "Effect of four monthly oral vitamin D<sub>3</sub> (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial" *British Medical Journal*, **326**, 469-475, 2003.
- [28] Jeevitha, M., Athiperumalsami, T. and Kumar, V. "Dietary fibre, mineral, vitamin, amino acid and fatty acid content of seagrasses from Tuticorin Bay, Southeast coast of India" *Phytochemistry*, 90, 135-146, 2013.