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a b s t r a c t

Because of its capacity to rapidly convert superoxide to hydrogen peroxide, superoxide dismutase (SOD) is
crucial in both intracellular signalling and regulation of oxidative stress. In this paper we report the
cloning of a Cu/Zn SOD (designated as pfSOD) from the pearl oyster (Pinctada fucata) using rapid ampli-
fication of cDNA ends (RACE) PCR. The full-length cDNA of this Cu/Zn SOD contains an open reading frame
(ORF) of 471 bp coding for 156 amino acids. No signal peptide was identified at the N-terminal amino acid
sequence of Cu/Zn SOD indicating that this pfSOD encodes a cytoplasmic Cu/Zn SOD. This is supported by
the presence of conserved amino acids required for binding copper and zinc. Semi-quantitative analysis in
adult tissues showed that the pfSOD mRNAwas abundantly expressed in haemocytes and gill and scarcely
expressed in other tissues tested. After challenge with lipopolysaccharide (LPS), expression of pfSOD
mRNA in haemocytes was increased, reaching the highest level at 8 h, then dropping to basal levels at
36 h. These results suggest that Cu/Zn SOD might be used as a bioindicator of the aquatic environmental
pollution and cellular stress in pearl oyster.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The superoxide dismutases (SODs) are the first and most im-
portant of the antioxidant enzyme defense systems against reactive
oxygen species, particularly the breakdown of superoxide anion
into oxygen and hydrogen peroxide that prevents generation of
highly toxic hydroxyl radicals. Superoxide dismutase (EC 1.15.1.1) is
divided into four distinct groups according to their metal content:
iron SOD (FeSOD), manganese SOD (MnSOD), copper/zinc SOD
(Cu/Zn SOD), and nickel SOD (NiSOD). MnSOD and Cu/Zn SOD are
found in both prokaryotes and eukaryotes, FeSOD is found in pro-
karyotes and plants [1], and NiSOD has recently been purified from
several aerobic soil bacteria of Streptomyces [2]. SOD is one of the
sensitive biomarker to indicate organisms being under stress [3,4].

Cu/Zn SOD is very important because of its physiological func-
tion and therapeutic potential. This enzyme requires Cu and Zn for
its biological activity; the loss of Cu results in its complete inacti-
vation, and is the cause of multiple diseases in human and animals
[5e9]. There are two types of Cu/Zn SOD, extracellular Cu/Zn SOD
with an N-terminal signal peptide for secretion, and cytoplasmic
Cu/Zn SOD without signal peptide [10e13].
u).
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Both the transcription and enzyme activity of Cu/Zn SOD are
sensitive to stresses such as exposure to heavy metals or biocides,
like tributyltin, heat shock, and anoxia [3,4,14,15]. Cu/Zn SOD genes
have been cloned from several aquatic species including frog,
Xenopus laevis [16], grouper, Epinephelus malbaricus [17], Pacific
oyster, Crassostrea gigas [18] and the abalones Haliotis discus discus
[4]. So far, the Cu/Zn SOD from pearl oysters has not been eluci-
dated. The present study is the first report of the characterization of
Cu/Zn SOD in pearl oyster Pinctada fucata.

Pearl oyster, P. fucata is distributed along the South coast of India
and is the most important bivalve mollusc for seawater pearl pro-
duction in India. In 1972, the Central Marine Fisheries Research
Institute started pearl culture research at natural pearl oyster beds
in Tuticorin. The development of the pearl oyster hatchery tech-
nology in India in 1981 opened the way for commercial culture of
this bivalve species. Recent decline in pearl production is mainly
due to mortality of pearl oyster. The cause for high mortality is
related to ocean pollution, disease outbreaks and stock degener-
ation [19,20]. In order to control disease and enhance the yields and
quality of seawater pearls, it is necessary to study the innate im-
mune defense mechanisms of pearl oysters, which lack the adap-
tive immune system. One major strategy to combat disease
problem is to identify disease resistance genes and employ them
for genetic improvement of cultured stock. Therefore, the aims of

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:anju.moonjely@gmail.com
www.sciencedirect.com/science/journal/10504648
http://www.elsevier.com/locate/fsi
http://dx.doi.org/10.1016/j.fsi.2012.12.024
http://dx.doi.org/10.1016/j.fsi.2012.12.024
http://dx.doi.org/10.1016/j.fsi.2012.12.024


A. Anju et al. / Fish & Shellfish Immunology 34 (2013) 946e950 947
the present study were (1) to determine the nucleotide sequence of
Cu/Zn SOD from the pearl oyster P. fucata and compare its deduced
amino acid sequence to other known Cu/Zn SOD proteins; (2) to
examine the expression of pfSOD in various tissues; and (3) to
evaluate pfSOD expression after LPS challenge.

2. Materials & methods

2.1. Animal culture

Live individuals of adult P. fucata (about 4.5e5.5 cm in shell
length and body weight 20e30 g) were collected from the Pearl
Farm in Tuticurin, and maintained at 25 �C in tanks containing
static aerated seawater (0.5 L/oyster) in the laboratory. The sea-
water was changed every day and the pearl oysters were fed with
Isochrysis galbana twice daily. Animals were kept 2 weeks for
acclimatization before they were used.

2.2. RNA isolation and cDNA cloning

Total RNA was extracted from the haemocytes of the adductor
muscles using NucleoSpin RNA II reagent (MACHEREY-NAGEL
GmbH & Co, Germany) as per the manufacturer’s instructions and
stored at �80 �C until further use. cDNA was synthesized with
iScript cDNA synthesis (Bio-rad) in accordance with the manufac-
turer’s protocols. Finally, synthesized cDNA was diluted 10 fold
(total 200 ml) and stored at �20 �C. Primers were designed using
Beacon designer (Bio-rad) from the sequence information of Pacific
oyster C. gigas available in the data base (GenBank accession
AJ496219). Polymerase chain reactions (PCR) were carried out us-
ing sense and antisense primers (Table 1) to obtain the open
reading frame (ORF) of pfSOD. The reaction volume of 25 ml con-
sisted of 2.5 ml of 10� PCR buffer, 0.5 ml of dNTP (10 mM), 1 ml of
each primer (10 mM), 18.7 ml of PCR-grade water, 0.3 ml (1 U) of Taq
polymerase (Sigma Aldrich) and 1 ml of cDNA. The PCR program
consisted of an initial denaturation of 94 �C for 5 min, followed by
30 cycles of 94 �C for 30 s, 60 �C for 30 s, 72 �C for 45 s and the final
extension step of 72 �C for 7 min. PCR products were electro-
phoresed on a 1.5% agarose gel stainedwith ethidium bromide (EB).
The PCR product was then eluted and cloned into the pJET vector
(Fermentas, EU) and transformed into competent Escherichia coli
TOP10 cells. Positive clones were identified as white colonies on LB
(Luria broth) agar and were used for sequencing in both directions.

The full-length Cu/Zn SOD cDNA of P. fucatawas obtained by the
reverse-transcription polymerase chain reaction (RT-PCR) and
RACE methods. The 50 region of the transcript was obtained in
50-RACE reactions using the SMARTScribe� Reverse Transcriptase
(Clontech) according to the manufacturer’s instructions. The
primers were the pfSOD-specific antisense primer GSP1in combi-
nation with the universal primer mix (UPM) (Table 1) for RACE to
Table 1
Primers used in this study.

Primer Sequence (50e30)

For conventional PCR
Sense primer ATGTCATCTGCTCTGAAGGCCGT
Antisense primer CTACTTGGTGATACCGATCACTCCACA

For RACE PCR
GSP1 GGTGATCCTGGAGCCTCTTGG
GSP2 AATCAGCATCACCGACAA
UPM mix AAGCAGTGGTATCAACGCAGAGTe

CTAATACGACTCACTATAGGGC
For RT-PCR
pfSOD-F AATCAGCATCACCGACAA
pfSOD-R TTGGTGATACCGATCACTCCACA
derive the 50-terminal untranslated region (UTR). For 30-RACE, the
pfSOD-specific sense primerGSP2and the universal primer mix
(UPM) (Table 1) were used for amplification of the target cDNA. The
PCR fragments were subjected to electrophoresis on 1.5% agarose
gels to determine length differences. The amplified cDNA frag-
ments were cloned into the pJET vector (Fermentas, EU) following
the manufacturer’s instructions. Recombinant clones were identi-
fied as white colonies on LB (Luria broth) agar and confirmed by
colony PCR. Plasmids containing the inserted fragment were used
as a template for DNA sequencing.

2.3. Homology analysis

The sequence was analysed for identity and similarity to known
sequences by BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) and
multiple sequence alignment was generated using the CLUSTAL W
program (http://www.ebi.ac.uk/clustalw/index.html). Signal pep-
tide prediction was performed by SignalP 3.0 (http://www.cbs.dtu.
dk/services/SignalP/) [21] Protein family signatures were identified
using InterPro program (http://www.ebi.ac.uk/InterProScan/).

2.4. Phylogenetic analysis

A phylogenetic tree was constructed based on the amino acid
sequences of the selected Cu/Zn SODs (Fig. 2) using the WAG þ G
method with MEGA, version 5 [22]. To derive the confidence value
for the phylogeny analysis, bootstrap trials were replicated 1000
times.

2.5. Immune challenge

For stimulationwith LPS, animals were injectedwith 50 ml of LPS
(E. coli 055:B5, #62326, SigmaeAldrich, Munich, Germany) dis-
solved in PBS (LPS 10 mg ml�1) into the adductor muscles of each
pearl oyster. The control groups were injected with 50 ml of PBS. At
each time point (0, 4, 8, 12, 24 and 36 h), haemolymph was col-
lected from the control group and the LPS stimulation group.
Haemolymph samples were withdrawn from the adductor muscles
using a syringe and immediately centrifuged at 5000� g at 4 �C for
10 min to harvest the haemocytes. At each time point, five control
and five LPS injected individuals were sampled. The haemocyte
pellets were immediately used for RNA extraction. The tissues
including adductor muscle, gill filaments, mantle, digestive gland,
gonad, heart and haemocytes were collected from five healthy in-
dividuals to investigate the tissue-specific expression of pfSOD.

2.6. Semi-quantitative PCR

Semi-quantitative PCR was conducted to determine the relative
expression of pfSOD in P. fucata. At defined time points pfSOD in the
challenged oysters and vehicle controls were processed and
quantified based on the gel band intensity using ImageJ analysis
software [23]. Primers for semi-quantitative PCR were designed
from the pfSOD cDNA sequence and are shown in Table 1. The PCR
condition for pfSOD and glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) were as follows: initial denaturation at 94 �C for
3 min, then different cycles of amplification of 94 �C for 30 s, 58 �C
for 30 s, and 72 �C for 30 s. The GAPDH was amplified in PCR re-
action as a loading control. The products were analysed on 2.0%
agarose gel containing ethidium bromide. The cycle numbers at
half-maximal amplification were used for subsequent quantitative
analysis of gene expression. The PCR cycles, 28 cycles for pfSOD and
25 cycles for GAPDH were optimized as such that the target gene
and house-keeping gene amplification were in logarithmic phase.
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Fig. 1. (A) Nucleotide sequence of pfSOD cDNA from P. fucata and its deduced amino acid sequence. Two Cu/Zn SOD family signatures are underlined (_). The start codon is in bold
and termination codon is indicated with asterisk (⃰). The amino acids required for binding of copper (His-49, -51, -66, and -123) and zinc (His-66, -74, and -83 and Asp-86) are
shaded. Two cysteines (Cys 60 and Cys 149) predicted to be engaged in the disulfide bond formation were boxed. (B) The alignment of deduced amino acid sequence of pfSOD.
Conserved regions are represented in box.



Fig. 3. Distribution of Cu/Zn SOD mRNA in different adult tissues of pearl oyster.
Expression analysis of Cu/Zn SOD mRNA in different adult tissues of pearl oyster by
RT-PCR.GAPDH was used as an internal control. Lane 1: adductor muscle. Lane 2: gill.
Lane 3: mantle. Lane 4: haemocytes. Lane 5: gonad. Lane 6: heart. Lane 7: digestive
gland. Lane 8: 100 bp ladder. The values are showed as mean � S.E (N ¼ 5).
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2.7. Statistical analysis

Multiple comparisons using Duncan’s test were made to check
the differences between the gene expression in the control and
challenged oysters using SPSS13.0 software.

3. Results and discussion

RT-PCR was used to clone the open reading frame of SOD using
total RNA extracted from haemocytes of P. fucata. A single PCR
product of 471 bp was obtained. The size of this segment correlated
well with SOD genes from other species. This partial cDNA
sequence provided the necessary information to obtain an addi-
tional 368 bp sequence by 30RACE, and an additional 87 bp
sequence by 50RACE. Finally, the full-length sequence information
of the Cu/Zn SOD cDNA was obtained by overlapping the three
cDNA sequences. The nucleotide sequence and the deduced amino
acid sequence are shown in Fig. 1A. The full-length SOD cDNA is
comprised of 924 bp, containing 87 bp in the 50-terminal un-
translated region (UTR), 471 bp in the ORF, 366 bp in 30-terminal
UTR with a poly(A) tail of 30 bp and a putative polyadenylation
consensus signal (AATAAA). The ORF encodes a polypeptide of 156
amino acids. The SOD cDNA sequence and its deduced amino acid
sequence were submitted to the NCBI GenBank under accession no
(JX013537). No signal peptide was identified in the deduced amino
acid sequence of Cu/Zn SOD by the signal P program, indicating that
this pfSOD is a cytoplasmic Cu/Zn SOD.

Multiple alignment of the deduced amino acid sequences
(Fig. 1B) with other closely related cytoplasmic Cu/Zn SOD se-
quences showed that three cysteines (Cys 9, Cys 60 and Cys 149) are
present in themature pfSOD. Cys 60 and Cys 149 are conserved in all
Cu/Zn SODs and it is believed that those form an intramolecular
disulfide bond. The amino acids required for binding of copper
(His-49, -51, -66, and -123) and zinc (His-66, -74 and -83 and Asp-
86) are also conserved. Two Cu/Zn SOD family signature sequ-
ences were found in the deduced amino acid sequence of pfSOD;
signature 1 (consensus sequences: [GA]-[IMFAT]-H-[LIVF]-H-{S}-x-
[GP]-[SDG]-x-[STAGDE].) and signature 2 (consensus sequences:
G-[GNHD]-[SGA]-[GR]-x-R-x-[SGAWRV]-C-x(2)-[IV]). These family
signature sequences are conserved in all Cu/Zn SODs. Several reports
have shown that copper and zinc ions have critical functions in
stabilizing the quaternary structure and therefore in the kinetic
properties of Cu/Zn SOD [24e26]. BLAST analysis shows that the
deduced amino acid sequence of pfSOD has extremely high identity
with the Cu/Zn SOD of Crassostrea hongkongensis, C. gigas and
Mytilus chilensis (99%). Similarly, it has high identity with Cu/Zn SOD
of Candida ariakensis (98%) and H. discus discus (97%).

Phylogenetic relationships of Cu/Zn SOD from pearl oyster and
other invertebrates and vertebrates were estimated. Cu/Zn SOD of
Fig. 2. Neighbour-joining phylogentic tree of pfSOD amino acid sequences from 7 specie
phylogenetic tree are shown in Fig. 1B.
Candida albicans was used as the out-group. As shown in Fig. 2,
Cu/Zn SODs of pfSOD formed a separate cluster with cytoplasmic
Cu/Zn SODs from oyster C. gigas and musselMytilus edulis indicative
of the closer evolutionary relationship of P. fucatawith other aquatic
invertebrates. Vertebrates are evolutionarily distinctly separated.

RT-PCR was carried out to analyse the distribution of pfSOD
mRNA in the adult tissues of the pearl oyster. RT-PCR analyses
revealed that pfSOD mRNA is abundantly expressed in the gill and
haemocytes. Levels are up to 3 fold higher than the moderately
expressed pfSOD in the adductor muscle, mantle, gonad, heart and
digestive gland (Fig. 3). Hence, haemocytes are considered as the
most suitable tissue to analyse the pearl oysters immune function.
This is in agreement with the report by Kuchel et al. [27] who found
haemocytes defense enzyme expression in Pinctada impricata. As
histological studies have revealed the presence of a large amount of
haemocytes in bivalve gill tissues [28e30], a high expression level
in gill is more likely associated with haemocyte abundance.

In order to investigate the immunological function of pfSOD in
pearl oyster, P. fucata we determined the levels of pfSOD cDNA in
haemocytes after challenge with lipopolysaccharides (LPS). LPS
stimulation significantly increased pfSOD mRNA expression in the
haemocytes in a time-dependent manner (Fig. 4). Over time pfSOD
mRNA expression reached a significant increase 4 h after exposure
to LPS. pfSODmRNA levels further increased to reach amaximum at
8 h post treatment and then dropped to basal levels at 36 h. At the
maximum the relative mRNA expression of pfSOD increased to
s. Note: Numbers represent the bootstrap values. The amino acid sequences for the



Fig. 4. Temporal expression pattern analysis of Cu/Zn SOD mRNA in haemolymph of
the pearl oyster challenged with LPS. Vertical bars represent the mean � S.E (N ¼ 5).
Significant differences (P < 0.05) are indicated with the asterisk (*).
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2-fold over control. The high level of expression in haemocytes and
gill suggest that pfSOD could be involved in the innate immune
response.

In conclusion, the full-length cDNA of Cu/Zn pfSOD contains an
open reading frame (ORF) of 471 bp coding for 156 amino acids.
Semi-quantitative analysis in adult tissues showed that the pfSOD
mRNA was abundantly expressed in haemocytes and gill. After
challenge with lipopolysaccharide (LPS), expression of pfSOD
mRNA in haemocytes was increased, reaching the highest level at
8 h, then dropping to basal levels at 36 h. These results suggest that
Cu/Zn SOD could be used as a bioindicator of the aquatic environ-
mental pollution and cellular stress in pearl oyster.
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