APPLICATION OF DNA FINGERPRINTING FOR THE IDENTIFICATION OF FISH PATHOGENS

P.C. THOMAS
Central Marine Fisheries Research Institute,
PO Box 1603, Tarapuram, Kochi - 682 014, Kerala, India

Infectious diseases cause severe economic loss to the aquaculture. The conventional diagnostic tools like culture and histological examination, immunodiffusion, counter immunoelectrophoresis, fluorescent antibody test, etc. used for detection of the pathogens are time consuming, less sensitive and not fit for mass screening. They are not effective in detecting carriers, because of which effective control of the spread of disease become difficult. The delay in diagnosis leads to heavy mortalities and huge losses from the ever increasing out breaks of infectious diseases. Therefore, the development and use of highly specific, very sensitive and rapid detection methods is the need of the day.

DNA fingerprinting is such a technique that could be successfully used for identification and classification of the pathogens. Species/strain specific DNA fingerprint pattern of the known pathogens if worked out in advance, could be used as a frame of reference for comparing the patterns of the suspected pathogen and confirmation of its identity.

Generation of DNA fingerprint patterns can be based on restriction fragment lengths or on polymerase chain reaction. Both of them have their own advantages and limitations.
of the bands representing the restriction fragments on a uv-transilluminator.

The inherent disadvantage of this method over the PCR assisted detection techniques is that larger volumes of DNA are needed for the analysis and this in turn necessitate cultivating the pathogen isolated from the fish, prior to the extraction of DNA. Thus considerable time is involved in the procedure.

PCR ASSISTED DETECTION OF PATHOGENS

Use of PCR assisted diagnosis has many advantages over the conventional methods. Since PCR can amplify even a single strand of DNA into millions of copies within hours, even a single bacterial cell collected from the fish could be used directly for the identification. Thus considerable time can be saved.

Of the various PCR assisted diagnostics, two merit special mention. They are the DNA fingerprinting based on arbitrarily primed PCR (AP PCR) and amplification of species specific virulence gene using specific primers flanking these genes.

Before going to the details of these techniques let us examine how the PCR work.

THE POLYMERASE CHAIN REACTION

Polymerase Chain Reaction (PCR) is a technique for producing billions of copies of a specific nucleic acid sequence by performing successive rounds of in vitro nucleic acid replication. This is achieved by using two oligonucleotide primer that hybridise (annealing) to the opposite strands of the target DNA at positions that flank the region to be amplified and synthesis the intervening portions of both the strands through simultaneous extension of both primers. A repetitive series of cycles involving template denaturation, primer annealing and extension of the annealed primers by DNA polymerase results in the exponential accumulation of the DNA whose termini are defined by the 5' ends of the primers. Since the primer extension products synthesised in one cycle can serve as a template for the next, the number of target DNA copies approximately doubles at every cycle. Thus 20 cycles of PCR, yields about a million fold amplification.

The tremendous applications of PCR was possible because of the availability of nucleic acid sequence information. The components of PCR reaction viz. template (the DNA to be amplified) primers, Taq polymerase, the deoxyribonucleoside triphosphate and buffer containing magnesium are assembled in a tube and the amplification reaction carried out by cycling the temperature within the reaction tube. For any given pair of oligonucleotide primers, the optimal conditions of all the above ingredients and parameters have to be standardized. Even though there is no single set of conditions that will be optimal for the reaction, the conditions outlined below defines a common starting point from where modifications can be attempted.

The standard PCR mixture in addition to the sample (template) DNA contains 50 mM KCl, Tris HCl (pH 8.4), 1.5 mM MgCl₂, 100 μg/ml gelatin, 0.25 μM of each primer, 200 μM of each deoxynucleoside triphosphate (dATP, dCTP, dGTP and dTTP) and 2-5 units of Taq polymerase. The sample DNA generally contains 10⁶ to 10⁹ copies of template. The volume is made up to 50 or 100 μl. The amplification is performed in a DNA thermal cycler, each cycle consisting of denaturation at 94°C for 30 to 60 sec. annealing at 55°C for 30 to 90 sec., and extension at 72°C for 60 to 120 sec. for total of 30 cycles. Cycling could include a final extension at 72°C for 5 min. Reactions are stopped by chilling at 4°C or by addition of EDTA at 10mM.

Materials and reagents for a PCR

Primates

Oligonucleotide primers in the range of 18 to 30 bases are generally used for the PCR. The sequence of the primers should be complimentary to the 3' end of the target (template) DNA strands to be amplified. Primers are the most important components that determine the success of an amplification reaction. Though there is no set of rules that will ensure the synthesis of an effective primer pair. The following guidelines are useful.

(a) Wherever possible, select primers with a random base distribution and with a GC content similar to that of the fragment being amplified. Avoid primers with stretches of polyurines, polypyrimidines or other unusual sequences.

(b) Check the primers against each other for complementarity. Use primers with low complementarity to each other. Avoid primers with 3' end overlaps in particular. This will reduce incidence of “primer dimers”.

Most primers are generally 18 to 30 bases in length and the optimal length to be used in an amplification will vary. Longer primer may be synthesised, but are seldom necessary.

If shorter primers or degenerate primers are used, the thermal profile should be modified considering the lower stability of the prime target. However, the 3' end of the primer should match the template exactly. Generally, concentrations ranging from 0.05 to 0.5 μm of each oligonucleotide should be used.

The reaction buffer

The components of PCR buffer, particularly the concentration of MgCl₂, have a profound effect on the specificity and yield of the amplification product. Concentration of about 1.5 mM is usually optimal (when 200 μM each of dNTPs are used). Excess MgCl₂ will result in the accumulation of non-specific amplification products and insufficient MgCl₂ will reduce the yield. Though several buffer formulations have been published, a consensus is beginning to emerge.

The recommended PCR buffer should contain 10mM Tris-HCl (pH 8.4) also. KCl up to 50nmM can be included in the reaction mixture to facilitate primer annealing. Excess KCl inhibits Taq polymerase activity.

Gelatin or bovine serum albumin (100μg/ml) and nonionic detergents such as Tween 20 and NP40 (0.05 - 0.1%) are included to help stabilize the enzyme. The nonionic detergents can be replaced by 0.1% Triton X-100, but some detergent is essential.

Deoxynucleoside triphosphate

The deoxynucleoside triphosphate (dATP, dCTP, dGTP and dTTP) are generally used at concentrations of 200 μM each. Higher concentrations may lead to mismatches. Low dNTP concentration reduces mispriming at non target sites. The lowest dNTP concentrations appropriate for the length and composition of the target must be standardised.

As a thumb rule, 20 μM of each dNTP in a 100
...in the standard reaction, all four triphosphates were added to a final concentration of 0.8 μM; this leaves 0.7 μM of the original 1.5 μM MgCl₂, not complexed with dNTP. Therefore, if dNTP concentration is changed significantly, a compensatory change in MgCl₂ may be necessary.

Taq polymerase

The required concentration of Taq DNA polymerase concentration is between 1 and 2.5 units per 100 μl reaction when other parameters are optimum. When optimising a PCR, enzyme concentrations ranging from 0.5 to 5 units/100 μl are tested and results assayed by agarose gel electrophoresis. If the enzyme concentration is too high, non-specific background products may accumulate and if too low, an insufficient amount of desired product is made.

Thermal cycle for PCR

Primer annealing

The temperature and length of time required for primer annealing depends upon the base composition, length and concentration of the primers. As a rule of the thumb annealing temperature of 5°C below the true Tm of the amplification primers can be attempted. Annealing temperature in the range of 55 to 72°C generally yield the best results. At the optimal primer concentration (0.2 μM) annealing will require only a few seconds.

Increasing the annealing temperature enhances discrimination against incorrectly annealed primers and reduces misextension of incorrect nucleotides at the 3' end of the primers. Therefore, stringent annealing temperature, especially during initial few cycles will help to increase specificity.

Primer extension

Extension time depends on the length, concentration of the target sequence and temperature. Primer extensions is usually performed at 72°C. The rate of nucleotide incorporation at 72°C vary from 35 to 100 nucleotides per second depending upon the buffer, pH, salt concentration and the nature of the DNA template. An extension time of one minute at 72°C is considered sufficient for products up to 2 Kb in length.

Denaturation

Typical denaturation temperature is 95°C for 15 sec. Higher temperatures e.g. 97°C for 15 sec may be necessary for G+C rich targets. Denaturation steps that are too long or too high lead to unnecessary loss of enzyme activity.

Cycle number

The optimum number of cycles will depend mainly upon the starting concentration of target DNA when other parameters are optimum. Too many cycles may increase the amount and complexity of non specific background products. Too few cycles give a raw product yield.

Detection and analysis of PCR product

The PCR product will be a fragment or fragments of DNA of defined length. The simplest way to check this is to load a portion of the PCR product and molecular weight markers into an agarose gel containing ethidium bromide and carry out an electrophoresis. The DNA fragments generated by the PCR should be readily visible over an ultraviolet transilluminator.

DNA fingerprinting based on arbitrarily primed PCR

Of the different DNA techniques that can be employed for distinguishing species and strains of bacteria, DNA fingerprinting based on randomly primed PCR is the most rapid and sensitive technique. This rapid method for fingerprinting of genomic DNA described in 1990 simultaneously by Welsh & McClelland and as well as by Williams and coworkers involves the use of random primers for DNA amplification. It is a modified form of PCR. It varies from the standard PCR in the primers being used. While in the standard PCR the two primers used are those known to flank the desired portion of the target DNA, in the AP PCR method, the primers used are those not known to be flanking any particular portion of the template DNA. It therefore, tries to utilize the chance occurrence of sequences on the target DNA which are complimentary to the randomly selected primers. If the primers locate complementary sequences on the target DNA, then they anneal at the sites and under appropriate PCR conditions amplify the portion lying between two annealed sequences. The number of amplified segments depend on the number of complementary sites on the target DNA for the primer. The arbitrarily primed PCR products display differences in band patterns if the two genomic DNAs used as templates are different. This is the underlying principle in the use of arbitrarily primed PCR for fingerprinting to distinguish strains and species of pathogens. The band patterns resulting from AP PCR against an array of different primers are prepared for each species and strain of a known pathogen to be later used as a frame of reference for comparing the patterns obtained with PCR of suspected pathogens.

One major advantage of this type of fingerprinting is that the previous knowledge of the sequence of the template DNA is not at all required. Other advantage are, the rapidity, high sensitivity and cheapness compared to other techniques like southern blotting and probes. Use of this method for identification of species and strains of bacteria viz. Staphylococcus and Streptococcus (Welsh & McClelland, 1990) Listeria (Mazurier & Wernars, 1992) Borrelia (Welsh et al., 1992) and Vibrio (Martinez et al., 1994) has been demonstrated.

Identification of Pathogens through PCR Amplification of Species Specific Genes

All the pathogens possess certain genes mainly related to its virulence factors or toxins which are specific to that pathogen. The core sequence of these genes are usually highly conserved. Therefore, an ideal approach for the identification of the suspected pathogen is to amplify such genes through PCR, using primers synthesised to have complementarity to the conserved regions of these genes. This implies that, previous knowledge of the sequence of the species specific gene should be available. With the increasing availability of information on the sequences of such genes of the common bacterial pathogens, application of this method shall become more common.

Given below is the list of specific genes of certain bacterial species that could be utilized for species identification.
Martinez, Fields, Fluit, A.C., R. Torcmen, M.J.C. Visser, AAA TC and 5’ GTT AGT two 20 bp primers viz. 5’CTAATCAAGACAATA monocytogenes, demonstrated by different workers. For example a identification of the bacterial species have been Luminous bacteria Yersinia enterocolitica Vibrio cholerae V. cholerae parahaemolyticus Lteile potential application of these genes for the species and strains of vibrio by amplification J. M. McClelland 1994. Fast identification of from the Latin American cholera epidemic. dth (Thermostable direct haemoysin gene) ctxB hly plcA plcB lmrA YedA (Virulence associated outer - membrane protein) LuxA (Luxiferase gene) ListB The potential application of these genes for the identification of the bacterial species have been demonstrated by different workers. For example a 300 bp fragment of dth-18 gene of Listeria monocytogenes, amplified by Fluit et al., (1993) using two 20 bp primers viz. 5’CTAATCAAGACAATA AAA TC and 5’ GTT AGT TCT ACA TCA CTC GA was found to be useful for identifying L. monocytogenes. Similarly, a 564 bp fragment of the ctxA gene for Vibrio cholerae amplified by Fields et al., (1992) using two primers of 21 bp each, was claimed to be useful in identifying V. cholerae bacteria. The sensitivity and specificity of the PCR can be further enhanced manifodd by carrying out nested PCR instead of a standard PCR. The process utilizes two consecutive PCRs each usually involving 25 cycles of amplification. The first PCR utilizes a pair of primers flanking the gene in question while the second PCR uses another pair of primers having complementarity to an internal segment of the gene which was amplified in the first PCR. The larger fragment produced in the first reaction is used as the template for the second PCR. The nested PCR can be 1000 times more sensitive than 50 cycles of standard PCR. Therefore, when information on the sequence species specific genes are available, amplification and visualization of that gene using a nested PCR is the method of choice when viewed from the point of sensitivity and reliability.

References

