
 MARINE FISHERIES INFORMATION SERVICE

Sechnical and Exitension Series
CENTRAL MARINE FISHERIES RESEARCH INSTITUTE

No. 5
JANUAKY 1979

COCHIN, INDIA

INDIAN COUNCIL OF AGRICULTURAL RESEARCH

THE MARINE FISHERIES INFORMATION SERVICE: Technical and Extension Series envisages the rapid dissemination of information on marine and brackish water fishery resources and allied data available with the Fishery Data Centre and the Research Divisions of the Institute, results of proven researches for transfer of technology to the fish farmers and industry and of other relevant information needed for Research and Development efforts in the marine fisheries sector.

Abbreviation - Mar. Fish. Infor. Serv. T \& E Ser., No. 5: 1979

CONTENTS

1. Marine fish production in India during July to September 1978.
2. News-India and overseas.
3. Books.
4. ICAR Golden Jubilee transfer of technology programme of CMFRI.

Cover photo: Fish landing centre at versova near Bombay.

MARINE FISH PRODUCTION IN INDIA DURING JULY TO SEPTEMBER 1978*

Total prodaction for the quarter

The total marine fish production in India (excluding Andamans and Lakshadweep) during the third quarter of 1978 ie. for the period July to September, 1978 was provisionally estimated at 357,256 tonnes as against 269,617 tonnes during the same period of 1977 , showing an increase of 87,639 tonnes (32.5%). While the total landings showed an increase in the States of Orissa, Tamil Nadu, Kerala, Karnataka, Maharashtra and Gujarat, lower landings were recorded in the States of West Bengal, Andhra Pradesh, Pondicherry and Goa. The monthwise total landings of marine fish in the various maritime States of India and the specieswise details of landings for the period July to September are shown in Fig. 1 and Tables I and 2. The bulk of
the landings of the quarter was recorded in September, which accounted for 45.68% of the total catch of the quarter. The landings during July and August constituted 27.46% and 26.86% respectivaly of the total catch of the third quarter.

Statewise production

West Bengal

The total marine fish production in West Bengal declined by about 200 tonnes, as compared to the corresponding period in 1977 (Table 1). The decline in the total landings was mainly due to the poor
*Prepared by the Fishery Resources Assessment Division

Fig. 1 Total marine fish catch in differem states durtng July to September 1978

Table 1 Statewise and monthwise total marine fish landings in India (excluding Andamans and Lakshadweep) during the period July to September 1978* (in tonnes)

$\begin{aligned} & \text { Sl. } \\ & \text { No } \end{aligned}$	Name of state	July	August	Sept.	Total	Total for July to ept. 1977
1. West						
	Bengal	282	218	157	657	879
2.	Orissa	1,546	1,355	1,064	3,965	2,617
3.	Andhra					
	Pradesh	7,026	4,938	9,077	21,041	23.100
4.	Tamil Nadu	39,218	34.593	25.717	99528	56,753
5.	Pondicherr	y 734	, 263	25, 526	1,523	2,104
6.	Kerala	41,220	35,907	61,732	1,38,859	1,21,329
7.	Karnataka	245	3,349	13,439	17,033	8,692
8.	Goa	9	89	1,728	1,826	3,907
9.	Maharashtra	6,625	6,691	16,979	30,295	27,193
10.	Gujarat	1,209	8,557	32,763	42,529	23,043
	Total	98,114	95,960	1,63,182	3,57,256	2,69,617

Table 2 Statewise composition of marine fish landings in India (excluding Andamans and Lakshadweep) for the period July to September 1978* (in tonnes)

SI. No.	Name of fish	West Bengal	Orissa	Andhra Pradesh	Tamil Nadu	Pondicherry	Kerala	$\begin{gathered} \text { Karna- } \\ \text { taka } \end{gathered}$	Goa	Maharashtra	Gujarat	Total
1.	Elasmobranchs	65	504	1,910	4,157	66	1,158	387	117	1,131	3,046	12,541
2.	Eels	-	-	43	74	-		-	\because	341	212	671
3.	Cat fishes	44	176	923	1,620	59	2,858	288	148	1,835	390	8,341
4.	Chirocentrus	40	239	410	427	29	94	106	14	94	108	1,561
5. a)	Oil sardines	-	-	-	-39		16,836	1,399	20	-	-	18,255
b)	Lesser sardines	2	28	223	2,393	263	1,949	130	212	68	-	5,268
c)	Hilsa ilisha	135	582	1	86	-	95	51	-	1	17	968
d)	Other Hilsa	28	70	49	1,101	4	29	16	1	17	346	1,661
e)	Anchoviella	6	-	231	5,478	55	8,319	26^{-}	-	37	-	14,152
f)	Thrissocles	12	116	559	435	46	1,241	483	231	146	7	3,276
g)	Other clupeids	37	493	493	589	56	579	569	18	910	109	3,853
6. a)	Harpodon nehereus	16	44	926	5	-		2	5	3,612	446	5,056
b)	Saurida \& Saurus	-	-	363	386	26	3,372	3	-	204	2	4,356
7.	Hemirhamphus \& Belone	-	-	3	154		1	1	4	30	-	193
8.	Flying fish	-	2	12	943	256	-	$-$			\cdots	1,211
9.	Perches	-	2	401	2,465	117	22,332	29	8	1,284	9,665	36,303
10.	Red mullets	$\bar{\square}$	$-$	147	1,030	43	96	25	-			1,341
11.	Polynemids	23	95	153	127	9	19		-	115	282	823
12.	Sciaenids	20	105	1,789	2,488	65	6,703	725	65	2,106	13,031	27,097
13.	Ribbon fish	16	12	1,885	44,841	17	17,984	167	11	2,011	1,026	67,970
14. a)	Caranx	-	19	417	1,448	54	2,713	21	42	133	21	4,868
b)	Chorinemus	16	198	126	152		100	2	9	163	124	890
c)	Trachynotus	-	-	-	30	-		-	-	-	-	30
d)	Other carangids	-	-	35	161	-	70	8	\cdots	-	-	274
e)	Coryphaena	-	-	19	5	3	-	-	$\overline{35}$	-	-	27
f)	Elacate	-	-	--	30	-	21	3	35	$\bar{\square}$	-	89
15. a)	Leiognathus	18	99	421	9,130	102	1,180	3,228	66	21	-	14,265
16.8	$\underset{\text { Gaczarius }}{\text { Lacta }}$	-	I	166	57 475	-	1,157	$\overline{79}$	2	77	-	57 1,957
17.	Pomfrets	100	534	349	201	5	221	15	19	910	8,055	10,409
18.	Mackerel	T	-	55	190	11	8,868	5,332	105	71	8,05	14,632
19.	Seer fish	20	214	592	1,214	18	635	255	332	327	406	4,013
20.	Tunnies	-	-	80	537	1	1,554	48	258	639	765	3,882
21.	Sphyraena	-	-	6	1,266	10	240	62	1	9	-	1,594
22.	Mugil	-	-	91	140	-	-	\cdots	2	55	157	445
23.	Bregmaceros	-	-	83	514	17	698	33		$\underline{176}$	-	
24.	Soles	$\bar{\square}$	-	83	514	27	2,698	1,336	20	176	-	4,854
25. a)	Penaeid prawns	18	211	5,080	5,178	22	27,303	1,988	21	9,475	1,670	50,966
b)	Non-penaeid prawns	-	12	391	447	-	186	12	-	1,521	138	2,707
c)	Lobsters	--	-	2	125	-	28	-	-	119	14	288
d)	Crabs \& other crustaceans	-	1	114	2,468	44	151	1	3	58	38	2,878
26.	Cephalopods	41	210	118	+623	115	3,821	5	57	51	651	5,269
27.	Miscellaneous	41	210	2,375	6,338	115	4,247	231	57	2,548	1,803	17,965
	Total	657	3,965	21,041	99,528	1,523	1,38,859	17,033	1,826	30,295	42,529	3,57,256

were comparatively higher during the period. Lesser sardines, Anchoviella, ribbon fish, Caranx and cat fishes showed poor fishery. From Table 4 it is seen that the maximum landings were recorded in July and the minimum in September.

Andhra Pradesh

The marine fish production in Andhra Pradesh showed a decline of 2,059 tonnes during the third quarter. A sharp decline in the landings of lesser sardines, Hilsa spp., ribbon fish and non-ponacid prawns was seen during the period. The catch of elasmobranchs, cat fishes, Chirocentrus, Anchoviella, other clupeids, sciaenids, Caranx, Leiognathus, Lactarius, pomfrets, seer fish, tunnies and crabs \& other crustaccoans also declined. An increase in the landings of Thrissocles, Harpodon nehereus, Saurida \& Saurus, porches, red mullets, polynemids, Chorinemus and cephalopods was also noticed. Table 5 gives the monthwise and specieswise catch details in the state during the quarter. September accounted for the maximum catch while the minimum catch was recorded in August.

Tamil Nadu

In Tamil Nadu the total landings in July to September showed a significant increase of 42,775 tonnes. This was due to higher landings of cat fishes, Hilsa, other clupeids, Saurida \& Saurus, flying fish, perches, red mullets, Leiognathus, Lactarius, Sphyraena. penaeid prawns and crabs \& other crustaceans. A bumper catch of ribbon fish was also responsible for boosting up the total catch during the period. The landings of elasmobranchs, lesser sardines, Anchoviella, sciaenids, Caranx, seer fish and tunnies were, however, poor. From Table 6 it could be seen that the catch was maximum in the month of July, the minimum being in Soptember.

Pondicherry

The catch in Pondicherry showed a decrease of 581 tonnes during July to September. While the landings of elasmobranchs, cat fishes, lesser sardines, Thrissocles, perches, Caranx, Lactarius, mackerel, penaeid prawns and cephalopods were comparatively poor, a better fishery was seen in respect of Anchoviella, other clupeids, fiying fish, red mullets, Leiognathus and crabs \& other crustaceans. The specieswise catch particulars are shown in Table 7 from which it is seen that July recorded the maximum catch, the minimum being in the month of August.

Table 3 Composition of marime fish landings in West Bengal during the period July to September 1978 (in tomes)

SI. Name No. of fish	July	August	Sept.	Total	$\begin{gathered} \text { Total } \\ \text { for III }{ }^{1977} \end{gathered}$
1. Elasmo					
branchs	32	32	1	65	33
2. Eels	24		-		
3. Cat fishes	24	18	2	44	28
centrus	14	10	16	40	28
5. a) Oil					28
sardine b) Lesser	-	-	-	-	-
sardines	-	-	2	2	-
c) Hilsa					
d) $\begin{aligned} & \text { Ilisho } \\ & \text { Other }\end{aligned}$	102	32	1	135	82
Hilsa	16	12	-	28	-
e) Ancho-	-	4	2	6	
f) Thris-				6	-
socles	-	4	8	12	20
g) Other	12	14	11	7	14
6. a) Harpodon					14
nehereus	-	6	10	16	99
b) Saurida \&					
7. Hemir-	-	-	\cdots	-	-
hamphus \&	-	-	-	-	
8. Flying fish	-	-	-	-	
9. Perches	-	-	-	-	
10. Red muilets					
11. Polynemids	8	10	5	23	9
12. Sciaenids	\cdots	10	10	20	38
13. Ribbon fish	-	-	16	16	32
14. a) Caranx	-	-	-	-	
b) Chari-	8	4	4	16	10
c) Trachy-					
notus	-	-	-	-	-
d) Other				-	
e) Cory-	-	-	-		-
phaena	-	-	-	-	
f) Elacate		-	-	-	
15. a) Lelog-	-	2	16	18	7
b) Gazza		-	-		
16. Lactartus					
17. Pomfrets	60	34	6	100	59
18. Mackerel	\cdots				
19. Seer fish	-	16	4	20	23
20. Tunnies			-		
21. Sphyraena	-		-	-	
22. Mugl		-	-	-	-
23. Breg-					
24. ${ }^{\text {macreras }}$	-	-	二	-	
25. a) Penaeid					
prawns	-	-	18	18	115
b) Nonpenacid					
prawns	-	-	-	-	19
c) Other					
crusta-					
26. Cepha-					
${ }^{\text {l }}$ lopods	-	-	-	-	-
laneous	6	10	25	41	163
Total	282	218	157	657	879

Table 4 Composition of marine fish landings in Orissa during the period July to September 1978 (in tonnes)

Table 5 Composition of marine fish landings in Andhra. Pradesh during the period July to September 1978 (in tomes)

SI. Name No. of fish	July	August	Sept.	Total	Total for III qr. 1977	SI. Name No. of fish	July	August	Sept.	Total	Total for III qr. 1977
1. Elasmobranchs	177	148	179	504	384	1. Elasmobranchs	635	160	1,115	1,910	2,063
2. Eels		-	1	-	-	2. Eels		38	5	43	54
3. Cat fishes	57	85	34	176	183	3. Cat fishes	364	177	382	923	1,415
4. Chirocentrus	119	79	41	239	178	4. Chirocentrus	102	58	250	410	586
5. a) Oil						5. a) Oil					
sardine	-	-	-	-	-	sardine	-	-	-	\cdots	-
b) Lesser sardines	-	28	-	28	135	b) Lesser sardines	144	64	15	223	1,185
c) Hiisa						c) Hilsa					
Ilisha	272	239	71	582	531	Iilisha	-	I	-	1	12
d) Other						d) Other					
Hilsa	27	35	8	70	66	Hilsa	14	11	24	49	1,103
e) Ancho-						e) Ancho-					
viella	-	-	-	-	25	viella	28	128	75	231	347
f) Thris-						f) Thris-					
g) Socles	35	21	60	116	13	g) $\stackrel{\text { socles }}{\text { Other }}$	218	99	242	559	399
g) Other clupeids	87	120	286	493	286	g) Other	260	117	116	493	737
6. a) Harpodon						6. a) Harpodon					
nehereus b) Saurida	28	16	-	44	6	nehereus b) Saurida \boldsymbol{k}	14	801	111	926	262
Saurus	-	-	-	-	-	Saurus	101	104	158	363	69
7. Hemir-						7. Hemir-					
hamphus						hamphus \&					
8. Flying fish	-	-	-	--	-	8. Flying fish	12	-	2	3	
8. Flying fish	$\overline{1}$	-	-		1	8. Flying fish	12		-	12	32
9. Perches	1	-	1	2	1	9. Perches	221	72	108	401	321
10. Red mullets	-	-	-	-	-	10. Red					
11. Poly-						mullets	32	63	52	147	29
nemids	73	18	4	95	52	11. Polynemids	105	17	31	153	83
12. Sciaenids	40	28	37	105	55	12. Sciaenids	746	387	656	1,789	1,886
13. Ribbon fish	6	6	-	12	24	13. Ribbon fish	276	299	1,310	1,885	3,867
14. a) Caranx	8	7	4	19	45	14. a) Caranx	110	100	, 207	1417	783
b) Chori-						b) Chori-					
nemus	66	89	43	198	68	nemus	73	31	22	126	52
c) Trachy-						c) Trachy-					
norus	-	-	-	-	-	notus	-	--	-	\cdots	-
d) Other						d) Other					
carangids	-	-	-	-	-	carangids	-	22	13	35	1
e) Cory-						e) Cory-					
() phaena	-	-	-	-	7	phaena	19	-	-	19	
I) Elacate	--	-	-	-	7	f) Elacate	-	-	-	-	6
15. a) Leiog.						15. a) Leiog-					
navhus	52	26	21	99	10	nathus	170	149	102	421	928
b) Gazza	\cdots	-	-		-	b) Gazza					
16. Lactarius			1	1	4	16. Lactarius	60	12	94	166	578
17. Pomfrets	269	192	73	\$34	191	17. Pomfrets	74	122	153	349	614
18. Mackerel	7	-	-	-	-	18. Mackerel	34	6	15	55	32
19. Seer fish	75	97	42	214	144	19. Seer fish	208	121	263	592	1,150
20. Tunnies	-	-	--.	-	-	20. Tunnies	80	-	-	80	153
21. Sphyraena	-	-	-	-	-	21. Sphyraena	6	$\underline{\square}$	6	6	14
22. Mugil	-	-	-	\cdots	-	22. Mugil	63	20	8	91	3
23. Breg-						23. Breg-					
maceros	-	-	\cdots	-	--	maceros	$\bar{\square}$	-	$\overline{32}$		-
24. Soles	-	\cdots	\cdots	-	-	24. Soles	33	18	32	83	49
25. a) Penaeid prawns	85	\$1	75	211	87	25. a) Penaeid prawns	782			5,080	1,179
b) Non-						b) Non-	782	1,417	2,881	5,080	1,179
penajed prawns						penaeid					
c) Lobsters	6	-	6	12	2	c) Lrawns	232	56	103	391	2,002
d) Crabs \&			-	-		d) Crabs \&	-	1	1		-
other crustaceans	1	-	-	1	6	other crustaceans	46	10	58	114	209
26. Cepha-						26. Cepha-					
27. lopods	-	-	-	-	-	lopods	23	34	61	118	34
27. Miscellaneous	62	70	78	210	114	27. Miscellaneous	1,746	223	406	2,375	863
Total	1,546	1,355	1,064	3,965	2,617	Total	7,026	4,938	9,077	21,041	23,100

Toble 6 Composition of marine fish landings in Tamil Nadu during the period July to September 1978 (in tonnes)

SI. Name No. of fish	July	August	Sept.	Total	Total or III r. 1977
1. Elasmo- Qr. 1977					
branchs	863	1,997	1,297	4,157	6,927
2. Eels	49		25	74	50
3. Cat fishes	347	717	556	1,620	1,094
4. Chirocentrus	92	86	249	427	629
5. a) Oil					
	-	-	-	-	617
b) Le	245	294	1,854	2,393	7,465
c) Hils					
	70	-	16	86	102
d) Other					
	143	363	595	1,101	414
c) A	143	2,010	3.325	5,478	8.865
f) Thris-soclesg) Otherclupeid			3,325	5,478	8,865
	142	146	147	435	583
	162	183	244	589	263
	-	-	5	5	-
	218	118	50	386	245
7. Hemir-					
hamphus \&					
Belone	25	106	23	154	116
8. Flying fish	943			943	
9. Perches	1,287	818	360	2,465	1,424
10. Red mulle	174	495	361	1,030	340
11. Poly					
	109	12	6	127	843
12.	711	1,119	658	2,488	3,137
13. Ribbon fish	26,872	13,286	4,683	44,841	2,348
14. a) Caranx	497	439	\$12	1,448	2,882
b) Chorlnemus	55	27	70	152	52
c) Trachy-					
	-	30	-	30	30
d) Other					
	1	106	54	161	21
e) Cory-					
	5	$\bar{\square}$	6	5	19
f) Elacate	2	22	6	30	67
15. a) Leiog-					
nathus	2,166	5,187	1,777	9,130	3,616
b) Gazza	32	17	8	57	20
16. Lactarlus	40	166	269	475	201
17. Pomfrets	165	10	26	201	158
18. Mackerel	86	59	45	190	394
19. Seer fish	182	184	848	1,214	3,857
20. Tunnies	215	76	246	537	1,383
21. Sphyraena	87	660	519	1,266	808
22. Mug ${ }^{\text {a }}$	6	64	70	140	104
23. Breg-					
maceros	-	-	-	-	
24. Soles	91	304	119	514	302
25. a) Penaeid					
b) Nonpenaeid prawns	1,041	1,518	2,619	5,178	1,293
	369	44	34	447	21
c) Lobsters	16	101	8	125	95
crustaceans	\$ 230	1,314	924	2,468	1,430
26. Cepha-					
	45	338	240	623	585
27. Miscedlaneous	1,292	2,177	2,869	6,338	3,953
Total	39,218	34,593	25,717	99,528	56,753

Table 7 Composition of marine fish landings in Pondicherry during the period July to September 1978 (in tomnes)

Table 8 Composition of marine fish landings in Kerala during the period July to September 1978 (m tonnes)

Table 10 Composition of marine fish landings in Goa during the period July to September 1978 (in tomnes)

Kerala

In this State the catch increased by 17,530 tonnes during the period July to September, as compared to the corresponding period in 1977. The increase in total catch was due to higher landings of Anchoviella, perches, sciaenids, ribbon fish, Lactarius, mackerel, tunnies, penaeid prawns and cephalopods. The landings of elasmobranchs, cat fishes, oil sardines, lesser sardines, Caranx, Leiognathus, pomfrets, seer fish and soles, however, were comparatively poor. From Table 8 it is noticed that the maximum landings were in September, forming 44.46% of the total catch of the quarter, the percentages of the catch for July and August being 29.68 and 25.86 respectively.

Karnataka

The catch in Karnataka during the quarter almost doubled when compared to that of the corresponding quarter of 1977. The successful fishery in respect of oil sardine, Thrissocles, other clupeids, sciaenids, ribbon fish, Leiognathus, mackerel, soles and penaeid prawns contributed to this increase in catch. The landings of Anchoviella, perches, pomfrets and tunnies, however, showed a decline. The specieswise catch details are shown in Table 9 from which it is seen that the landings in September were the maxinum, the minimum being in the month of July.

Goa

The marine fish production in Goadeclined by 2,081 tonnes in this quarter. While the landings of elasmobranchs, cat fishes, Thrissocles, Elacate, seer fish and tunnies showed some increase, oil sardine, lesser sardines, other clupeids, sciaenids, Caranx, Leiognathus, mackerel, penaeid prawns and cephalopods recorded poor landings. From table 10 it is seen that the maximum landings were recorded in September and the minimum in July.

Maharashtra

The total Jandings in Maharashtra showed an increase of 3,102 tonnes as compared to the corresponding period in 1977. A substantial increase in the landings of elasmobranchs, eels, cat fishes, Thrissocles, perches, Saurida \& Saurus, ribbon fish, Caranx, Chorinemus, tunnies, soles, penaeid prawns, lobsters, crabs \& other crustaceans and cephalopods was noticed. The catch of Chirocentrus, Hilsa, Anchoviella, other clupeids Harpodon nehereus, sciaenids, pomfrets, seer fish and non-penaeid prawns, however, showed some decline.

Table 12 Composition of marine fish landings in Gujarat during the period July to September 1978 (in tonnes)

SI. Name No. of fish	July	August	Sept.	Total	Total for III Or. 1977
1. Elasmobranchs	167	422	2,457	3,046	1,371
2. Eels			212	212	40
3. Cat fishes	100	78	212	390	313
4. Chirocentrus	3	5	100	108	103
5. a) Oil					
sardine	-	-	-	-	-
b) Lesser sardines	-	-	-	-	-
c) H/fsa					
illsha	6	2	9	17	-
d) Other	91	79	176	346	340
e) Ancho-					
f) Thris-	-	-	-	-	-
socles	2	-	5	7	6
b) Other					
clupeids	35	25	49	109	298
6. a) Harpodon nehereus	58	42	346	446	491
b) Saurida \&					4
Saurus	2	-	-	2	36
7. Hemir					
hamphus \& Belone					
8. Flying fish					
9. Perches	1	11	9,653	9,665	0
10. Red mullets	-	-	-	-	38
11. Poly-					
nemids	130	80	72	282	7
12. Sciaenids	147	12	12,872	13,031	13,161
13. Ribbon fish	1	28	997	1,026	745
14. a) Caranx	2	17	2	21	20
b) Chort-	I	-	123	124	224
c) Trachy-					
notus	-	-	-	-	-
d) Other					
e) Cora- ${ }_{\text {corang }}$	-	-	-	-	-
phaena					
f) Elacate		-	-	-	
15. a) Leiog.					
nathus	--	-	-	-	-
6) Gazza					
18. Mackerel				8,035	1,581
19. Seer fish	22	3	381	406	118
20. Tunnies		1	764	765	40
21. Sphyraena					
22. Mugil	54	28	75	157	209
23. Breg-					
24. Maceros		-			
24. Soles	-	-	-	-	27
25. a) Penaeid prawns	19	27	1,624	1,670	2,326
b) Non-					
prawns	21	29	88	138	30
c) Lobsters	-	-	14	14	6
d) Crabs \&					
ceans	30	8	-	38	17
26. Cepha-					
lopods	-	-	651	651	-
27. Miscel-	132	57	1,614	1,803	373
Total	1,209	8,557	32,763	42,529	23,043

Table II gives the catch particulars of this quarter. The bulk of the landings was recorded in September when about 56% of the totalcatch of the quarter was obtained. The minimum landings were recorded in the months of July and August during which months the landings remained almost the same.

Gajarat

In Gujarat an increase of about 19,500 tonnes in
the landings was noticed during July to September as compared to the same period in 1977. The increase was due to higher landings of elasmobranchs, eels, cat fishes, perches, polynemids, ribbon fish, pomfrets, seer fish, tunnies, lobsters, crabs \& other crustaceans and cephalopods. The landings of clupeids, Harpodon nehereus, red mullets, sciaenids, Chorinemus, Lactarius, Mugil and penaeid prawns wero poor. The maximum landings were recorded in September and the minimum in July (Table 12).

NEWS - INDIA AND OVERSEAS

Krish Vigyan Kendra trains farm women in prawn/fish seed collection

Under the various training programmes of the Krishi Vigyan Kendra for mariculture established at Narakkal near Cochin by the Central Marine Fisheries Research Institute, farm women are given training in prawn/fish seed collection. Several prawn farmers engaged in the traditional prawn filtration in paddy fields are slowly adopting selective stocking of fast and larger growing prawns like naran chemmeen (Penaeus indicus) and culturing for varying periods. This would

Trabing in collection of prawn seed from canal using special nets.
require a regular supply of prawn seed of the correct variety in large quantities and the collection of these has become a very lucrative job in these areas.

In this connection the Krishi Vigyan Kendra is regularly training farmers in the collection of seed from the surf region and backwater canals. Farm women also are given training in this field so that they could use their leisure time in this work and at the same time earn an extra income. Under this programme 101 women belonging to small, marginal as well as landless farmers' families have been trained. Many of them

Women trainees Jearn to sort the collection
are now employed by prawn culturists in seed collection of naran chemmeen and it is reported that each individual earns about Rs. 10/- per day.

Aids to fish catching

The Information Planning and Analysis Group (IPAG) of the Electronics Commission of the Government of India has identified two electronic aids as indispensible for increasing the country's offshore catch of fish, namely, the echo sounder and the radio telephone. IPAG has recommended that for a start India should manufacture 1000 pieces of these equipments of 110 watt output yearly. The report says that the stateowned Bharat Electronics Ltd., Bangalore has the know-how to produce these instruments with a range of 50 fathoms. According to the Commission report modernisation of the fishing fleet would increase the yearly catch from the continental shelf alone tenfold.

Fishing harbour planned for Goa

The Department of Agriculture is proposing to construct a fishing harbour in Goa. The project is estimated to cost Rs. 28.9 million. There would be facilities to handle 250 mechanised boats ranging in length from 11 to 16 m . Among the harbour works to be undertaken are the construction of breakwaters, 440 m of wharfs, a slipway with slide slipping arrangements and onshore facilities such as an auction hall, water supply, roads and buildings.

$\mathbf{2 0} \%$ rise in marine products exports

Exports of marine products from India in the first eight months of the current financial year (April to November 1978) touched a record level of Rs. 143.75 crores against 118.29 crores in the corresponding period of the previous year, thereby registering an increase of nearly 20%. At the present rate, the exports for the full year might well cross Rs. 200 crores. In terms of quantity, however, the rise was not very conspicuous, increasing from 41,074 tonnes during April-November 1977 to 47,019 tonnes in April-November 1978, an increase of 13 per cent. Evidently the unit price realisation has been picking up in the recent past.

Mussels take to Arctic

Mussels farmed in the warm waters of the Black Sea and off the coast of California are now being grown on a sea farm in the Arctic conditions of the northern coast of the Soviet Union. A pilot scale commercial farm consisting of 80 rafts has been established
at western Zelenetskaya inlet. Feasibility studies conducted earlier have shown that nearly 5 to 6 kg of edibie fish a year can be harvested from each square metre of the rafts. The first year's harvest from the pilot installation is estimated at two and a half tonnes.

The mussels will be used for providing protein rich additives to various food stuffs in Arctic regions, particularly around Murmansk.

Fish Farming International: June 1977

Shrimp farming by restocking the sea in Japan

Production of seeds in culture fisheries is quite high in Japan and farming by restocking, as opposed to farming by culture in captivity, is gaining importance. The techniques of production of seedlings by laboratory spawning and rearing of larvae of shrimps has been so much streamlined that the production of these seeds has reached a very high level. Because such a high level of seedling production was far beyond the capacity of traditional culture in ponds, researchers began looking for a new method of using the seed production capacity on a large scale. As early as in 1964 they started experiments for releasing fish and shrimp seedlings in large quantities using the Seto Inland Sea as a large semi-enclosed sea area. Following the successful results of these experiments, the concept of restocking has been enlarged to include all suitable coastal areas around the Japanese islands. Species for restocking are chosen according to their suitability for the local coastal ecology.

Subsequently there has been considerable improvement in releasing and recapture technology. From an economic point of view it is too expensive to rear the seedling to the early adolescent stage (body length $25-30 \mathrm{~mm}$) in tanks on shore on a large scale. So it was necessary to find a method for moving the seedlings into the sea at the early juvenile stage (body length $7-9 \mathrm{~mm}$). The difficulty was to protect the small seedlings from natural predators until they were big enough to swim away and escape, which they are capable of doing only at the adolescent stage. By experimentation a solution for this has been found by constructing an artificial beach for the juvenile shrimp, preventing the predators to inhabit the initial restocking area. At the same time the seedlings are enabled to move down the beach naturally as they grow and eventually move offshore when they reach the sub adult stage. By using artificial beaches for releasing post larvae, the recapture rate has increased from less than one percent to about 30 percent, thus assuring a high survival rate.

World Fishing: August 1977

Vast area set aside as a crab reserve

The USSR claims to have established the world's first crab reserve. Situated in the Sovier Far East off the Kamchatka shores, around Ptichy Island in the Okhotsk Sea, it covers an area of more than 4500 square miles.

During an expedition in 1976 Soviet scientists found large accumulations of young crabs in an area near the planned reserve. Trawling is already prihobited there. This protection would provide conditions to increase the stock of crabs in these areas. The Pacific Institute of Fisheries and Oceanography is now investigating the artificial breeding of crabs.

FNI. 16 (4):April 1977.

Low cost oil dispersant

A new low cost oil dispersant and solvent, Fleetex BD/3, with particular application at sea and on waterways has been developed by lubricant specialists Isaac Bentley \& Co. Ltd., a subsidiary of Marston Lubricants Ltd., of Liverpool, England. The solvent is claimed to be significant in that it will not damage aquatic life when used to clear oil spillages at sea or in waterways and thus biologically acceptable.

According to the manufacturers, when applied to spillages of oil or grease Fleetex BD/3 renders them emulsifiable with seawater and disperses them immediately. The product has the approval of the UK Department of Industry's Warron spring Laboratory as an oil dispersant suitable for oil spill clean up operations at sea, on coastal waters and beaches.

Development of marine fish farms in desert

The Government of Israel has planned for a major development scheme in which water from the Mediterranean will be syphoned off and channelled more than 80 km to the Dead Sea. While supplying muchneeded water to maintain a viable level of the Dead Sea, this will also provide means of generating electricity on a large scale as well as helping to set up fish farms in desert areas on the sides of the channel.

The flow of water by gravitation will be about 70 tonnes per second. The water will be channelled through an open channel initially from the Mediterranean and then tunnelled through the mountians of Judea to a reservoir which will collect the water before it falls about 390 m to the Dead Sea. The electricity to be generated will provide about 15% of the power requirements of Israel.

About 1500 ha of fish ponds are to be developed in depressions in the desert adjacent to the channel of the water way. The saline water in these ponds will be used for culture of sole, grey mullet, sea bream, sea bass and shrimp with estimated yields ranging from 1000 to 3000 tonnes per year. The construction of the waterway will take many years and this will give the aquaculturist ample time to choose the fish to cultivate in the ponds.

The scheme is expected to lead to great changes in the areas through which the waterway will pass. In addition to the ponds, facilities such as roads, power, services etc. will have to be provided. Economic expansion and growth will take place throughout the adjacent territory as a result of movement of large numbers of people into these aroas and establishment of industries, leading to the blooming of the desert.

Shrimp and prawn farming in the western hemisphere. Edited by Joe A. Hanson and Harold L. Goodwin. Dowden, Hutchinson and Ross. Inc., Stroudsburg, Pennsylvania, pp 439 ,1977.

This book is in two parts, the first part containing the proceedings of the workshop on the culture of penaeid shrimp held in Galveston, Texas, October 8-11, 1975 and the second part containing the proceedings of the second workshop on the culture of the freshwater prawn Macrobrachium sp. held in Charleston, South Carolina, July 14-15, 1976. It is a compilation of the contributions of the participants on state-of-the-art reviews and status assessments concerning shrimp and prawn culture and presents a comprehensive picture of the culture of the marine penaeid shrimps as well as the fresh water prawn in America up to the present time. In the case of the penaeid shrimp, since some of the most advanced research and development work is currently under way at AQUACOP, Centre Oceanologique du Pacifique (COP), Tahiti, work at this centre also is included in the report which is otherwise concerned with the Americas. The state-of-the-aquaculture art with reference to shrimp and prawn is reviewed under various heads such as life cycle control, hatchery systems, grow-out systoms and systems engineering, diseases and disease control, nutrition and feeds, production economics and processing and marketing, legal and regulatory issues and research priorities. Details concerning the people and orgranisations involved in shrimp and prawn culture along with extensive bibliography, listing 1019 references, enhances the value of the publication.

Fish population dynamics. Edited by John Gulland. John Wiley \& Sons, New York, pp 372, 1977.

The book describes how the dynamics of fish populations can be analysed in terms of the factors affecting their rates of growth, mortality and reproduction, with particular emphasis on the effects of fishing. Drawing on the expertise of recognised authorities in the different fields from the world over, it gives a comprehensive picture of the present state of these studies. A thorough knowledge concerning the dynamics of fish populations is necessary for proper fishery managoment and the contributions of the various authors present a review of what has been accomplished and of problems currently being attacked. It should be of interest and of practical value to all who are concerned with the management of aquatic resources.

Aquacultural Engineering. By Frederick W. Wheaton. John Wiley \& Sons, New York, pp 708, 1977.

Physical, biological and design data which are useful to practising aquacultural engineers, biologists, hatchery managers, aquaculturists and others concerned with the culture of aquatic organisms or with fisheries are summarised in this book. It provides a hand book that will save hundreds of hours of literature searching, since most available design concepts and data are assembled in this single volume. It is divided into two parts, of which the first one deals with the interaction of the environment with aquatic organisms. The second part emphasises the engineering considerations of different aspects of aquaculture. An attempt has been mado in this vlume to summarise current knowledge and to give design information where possible.

Submersibles and their uses in oceanography and ocean engineering. Edited by Richard A. Geyer. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, pp 383, 1977.

This is the 17th volume of the Elsevier Oceanography Series. The book gives a series of case histories describing the results of the most recent developments in the use of submersibles to solve diversified problems in the ocean for a wide variety of scientific and engineering disciplines. These case histories are taken from diversified scientific disciplines as geological, geophysical and biological ocoanography. It is useful for scientists, ongineors, management personnel in tho academic, industrial and governmental sectors as well as lawyers, bankers and insurance companies.

Fundamentals of marine acoustics. By Jerald W. Caruthers. Elsevier Scientific Publishing company, Amsterdam, Oxford, New York, pp 153, 1977.

This is the 18th volume of the Elsevier Oceanography Series intended for those graduate and upper level undergraduate students in technical fields who wish to know something about how sound is propagated in the ocean. It is also useful for the practising engineor and scientist.

Oceanography and Marine Biology-An annual Review Vol. 15. Edited by Harold Barnes. Aberdeen University Press, Scotland, pp 600, 1977.

The volume consists of contributions by different authors on chemical equilibrium in the oceans, recent Japanese contributions to marine chemistry, marine lipids, anaerobic energy metabolism in bivalve molluscs, algal calcification, inorganic particulate suspensions
in the sea and their effects on marine animals, radionticlides in marine fish and the physiology and behaviour of chitons (Mollusca: Polyplacophora). This would be an essential reference text for research workers and students.

ICAR GOLDEN JUBILEE TRANSFER OF TECHNOLOGY PROGRAMME OF CMFRI

The Indian Council of Agricultural Research has launched its Golden Jubilee celebrations in 1979 with the LAB TO LAND programme as the major highlight. The ICAR has taken up an ambitious programme of reaching 50,000 farming families belonging to the marginal and small farmer groups and landless labour with appropriate agricultural technologies for the improvement of their lot and for bringing in integrated rural development. The ICAR Institutes, Agricultural Universities and Voluntary Agencies are involved in this programme.

Under this programme, the Central Marine Fisheries Research Institute is transferring the technologies developed at the Institute in (1) marine prawn culture. (2) mixed farming of fishes and prawns, (3) mussel culture, (4) oyster culture and (5) seaweed culture.

Farmers having small holdings of suitable water area have been selected in Ketamangalam, Ezhikara, Valappu and Puthuvypu villages in Ernakulam District and Thekkumbhagom and Ayiramthengu villages in Quilon District for the programme on marine prawn culture
and in some cases polyculture. Ten families have been selected from Elathur in Calicut District for the transfer of mussel culture technology. Karikadu Kuppam, a village near Madras with over 100 families has been adopted for a large-scale mussel culture programme. Oyster culture has been taken up at Tuticorin and scaweed culture at Mandapam Camp.

The Institute provides all technical inputs and also conducts training programmes for these farmers. Right from the preparation and stocking of ponds upto harvest and marketing, the scientists monitor the fields. With this assistance from the Institute during the Golden Jubilee Year the farmers can be expected to continue intensive farming practices in a scientific manner in future for increasing the production.

The programme of the Institute also includes organising an Extension Fortnight when technical exhibitions will be conducted, Krishi Melas will be organised and the scientists and technicians will reach the villages with the message of science.

