LENGTH WEIGHT RELATIONSHIP AND BIOMETRIC STUDY ON THREE SPECIES OF SCIAENIDS FROM BOMBAY WATERS

SUSHANT KUMAR CHAKRABORTY*

Bombay Research Centre of Central Marine Fisheries Research Institute, Army and Navy Building, 148 M.G. Road, Bombay-400 001.

ABSTRACT

The length-weight relationship and biometric study of three species of sciaenids viz. Otolithes cuvieri, Johnieops vogleri and Johnius macrorhynus are reported. For all the three species the regression coefficient between the sexes was found to be not significant at 5% level. Biometric study indicates that correlation among the various characters compared was fairly good while the meristic data agree well with published data.

INTRODUCTION

The length-weight relationship in exploited fish stocks is determined (1) to express mathematically the relationship between the two variables to enable calculation of length if weight is known or *vice versa* (2) to calculate the relative condition factor (K_n) (Le Cren, 1951) and (3) to use the value of regression coefficient (b) in the yield equation of Beverton and Holt (1957) or the one modified by Jones (1957). The length-weight relationship also serves as a character for distinguishing "small taxonomic units" (Le Cren, 1951). In view of its importance the relationship is calculated in three sciaenid species and the results are presented here.

The identity of fish species stock could often be ascertained by morphometric studies. Recent studies on several species like *Nemipterus japonicus* (Acharya, 1980), *Upeneus sulphureus* and *Trypauchen vagina* (Acharya and Dwivedi, 1984, 1985) and on *Megalaspis cordyla* (Jaiswar and Devaraj, 1989) have amply demostrated that the range of variation used in identification is of considerable importance. A statistical analysis gives a better idea of their relationships in the species.

In the present communication the lengthweight relationship and biometric sutdy of three species viz. *Otolithes cuvieri* (Trewavas), Johnieops vogleri (Bleeker) and Johnius macrorhynus (Mohan) is presented.

MATERIAL AND METHODS

Samples of these species were collected from New Ferry Wharf and Sassoon Docks landing centres of Bombay. The length and weight (to the nearest mm and g respectively) were recorded separarely for males and females. The length weight relationship was calculated by the method of least square using the equation of Le Cren (1951) given as

Log W = log a + b Log L

The analysis of covariance (Snedecor and Cochran, 1967) was adopted to test the significance of difference of regression at 5% level.

After bringing the fish to the laboratory they were cleaned and morphometric and meristic counts were taken. Measurements were recorded to the nearest of mm using a divider and measuring board as described by Lagler *et al.* (1962) and Laevastu (1965). Scattergram of various morphometric characters were plotted and then the relationship between the characters were worked out by the formula of linear regression.

Y = a + b X

As the compared characters indicated considerable variation from the straight line, standard error of estimates (SYX) was worked out by the formula

$$SYX = \frac{\sqrt{\Sigma Y^2 - ((\Sigma XY)^2 / \Sigma X^2))}}{n - 2}$$

The data used relates to 75 specimens of *O.cuvieri* with total length ranging from 146 to 310 mm, 88 specimens of *J.vogleri* with the length range of 171 to 276 mm and 119 specimens of *J.macrorhynus* with the length range of 140 to 242 mm.

RESULTS

Length - Weight relationship :

For *O.cuvieri* the study is based on 336 males ranging from 20 to 265 g and 326 females ranging from 41 to 298 g in weight in the length range of 25 to 324 mm.

The equations obtained were as follows

Males Log W = -5.23749985 + 3.0831 Log L ($r^2 = 0.969945$)

Females Log W = -4.71957982 + 3.0341 Log L ($r^2 = 0.968778$)

The ANOCOVA test indicated that the difference between the 'b' values of the sexes was not significant at 5% level (Table I). So data of males and females were pooled and relationship calculated for the species which could be written as

 $\log W = -5.3311 + 3.127248 \log L$ ($r^2 = 0.989378$)

For *J.vogleri* the study is based on 368 males in the length range of 124-248 mm weighing 19 to 185 g and 268 females in the length range of 22 to 267 mm weighing 20 to 248 g.

The equations obtained were :

Males Log W = -5.578258 + 3.27664 Log L ($r^2 = 0.95579$)

Females Log W = -5.329690 + 3.172794Log L ($r^2 = 0.9966144$)

The ANOCOVA test indicated that the difference between the 'b' values of the sexes was not significant at 5% (Table I). So data of males and females were pooled and relationship calculated for the species which could be written as

Log W = -5.584377 + 3.27604 Log L($r^2 = 0.979386$)

For the third species *J.macrorhynus* 258 males and 288 females were examined. The length of males ranged from 130 to 296 mm and the weight ranged from 20-246 g. The same for females ranged from 135-287 mm and 28-266 g respectively.

The equations obtained were :

Males : Log W = -5.23401 + 3.0851 Log L ($r^2 = 0.983987$)

Females : Log W = -4.984396 + 3.0143 Log L ($r^2 = 0.9973981$)

In this species also the difference between regression coefficients of the sexes was found to be not significant at 5% level (Table I). So data of males and females were pooled and relationship calculated for the species which could be written as

Log W = -4.4672841 + 2.76974 Log L($r^2 = 0.9576844$)

Biometric Study :

For O.cuvieri the coefficient of correlation of total length of this species against other morphometric characters ranged from 0.4855 -0.9922666 (Table II). The same for head length against other morphometric characters ranged from 0.661302 - 0.888714 indicating a fairly good correlation except for total length against

LENGTH WEIGHT RELATIONSHIP AND BIOMETRIC STUDY ON SCIAENIDS

Table	I: Comparison	ofreqression	lines in leng	th-weight i	relationshi	v of ma	les and	femal	les of	
	three species of	of sciaenids fro	om Bombay							

	d.f.	ΣX^2	ΣY^2	ΣΧΥ	Regression coefficient	1	Deviation fron	n regression	
					57	d.f.	S.S.	M.S.	
Within	2								
Males	335	2.4759	25.0180	7.6340	3.0831	334	1.499	0.0044308	
Females	325	1.3727	13.4199	4.1651	3.0341	324	0.7819	0.00941327	
						658	2.2618	0.0034373	
Pooled	660	3.8486	38.4379	11.7991	3.1272	659	2.2640	0.00343552	
within						658	0.0022	0.00000334346	
			Diff	erence betwee	n slopes	1	0.0022	0.0022	
Between	1	1.7486	12.5937	3.8464					
Total	661	5.02346	51.0316	15.6465		660	2.303896	0.0034907515	
			Bet	ween adjusted	means	1	0.042036		

Species : O.cuvieri

Species : J.vogleri

	d.f.	ΣX^2	ΣY^2	ΣΧΥ	Regression coefficient	Deviation from		m regression
			a. •			d.f.	S.S .	M.S.
Within							6	
Males	367	1.3488	15.8536	4.4155	3.27664	366	1.3988	0.0038218
Females	267	0.9806	10.5769	3.1164	3.0341	266	0.6728	0.0025293
						632	2.0716	0.00327266
Pooled within	634	2.3294	26.4305	7.5319	3.27604	633 632	2.0768 0.0052	0.00328083 0.0000082278
			Diffe	erence betwee	n slopes	1	0.0052	0.0052
Between	1	0.3677	4.4593	1.2756				
Total	635	2.6971	30.8899	8.8075		634	2.1286	0.00335751
			Bety	ween adjusted	l means	1	0.0518	
Comparison	of slope : I	F = 0.002514	1016; d.f. 1,6	33; Not sign	ificant at 5% leve	el.		
Comparison	of Elevation	n: F = 1.023	3721 d.f. 1,6	34; Not sign	ificant at 5% leve	el.		

Species : J.macrorhynus

	d .f.	ΣX^2	ΣY^2	ΣΧΥ	Regression coefficient	Deviation from		regression
						d.f.	S.S.	M.S.
Within	0				19 30 A 10 C C C C C C C C C C C C C C C C C C			pi
Males	257	0.7901	8.0092	2.4381	3.0851	256	0.4857	0.0018972
Females	287	0.7783	8.0780	2.3461	3.0143	286	1.0059	0.0035173
						542	1.4916	0.0027469
Pooled within	544	1.5684	16.0872	4.7842	2.76894	543 542	1.4936 0.002	0.0027506 0.00000369
			Diffe	rence betwee	n slopes	1	0.002	0.002
Between	1	0.5772	1.6907	0.9879				
Total	545	2.1456	17.779	5.7721		544	2.2498	0.00413566
			Bety	veen adjusted	means	1	0.7562	

Measurement Code	Numbers	Coefficient of correlation	Intercept	Slope	Syx
Total length vs Standard lenght	75	0.992276	-6.70813	0.999106	9.074382
Total length vs Head length	75	0.957170	1.45428	0.239764	3.257257
Total length vs Body depth	75	0.908812	7.46986	0.243928	8.973581
Total length vs	75	0.485511	18.61054	0.192549	58.47376
Pre ventral length Total length vs	75	0.919992	-3.02860	0.282264	8.870367
Pre dorsal length Total length vs	75	0.973220	-8.74131	0.535747	15.95359
Pre anal length Head length vs	75	0.661302	3.594478	0.178870	1.579622
Snout length Head length VS	75	0.768027	3.001495	0.175852	0.949408
Eye diameter Head length vs	75	0.821282	0.249306	0.554832	4.584338
Post orbital Head length VS Body depth	75	0.888714	-5.24077	0.999468	9.936104
Head length vs Inter orbital	75	0.682838	2.389318	0.232083	1.993683
Maximum depth vs Minimum depth	75	0.868644	1.634349	0.314836	1.330862

 Table II : Linear regession statistics of various measurements against total length and head length
 Species : O.cuvieri

Numbers	Coefficient of correlation	Intercept	Slope	Syx
88	0.921356	-8.62051	0.885776	60.34313
88	0.930899	-7.41794	0.273290	5.971658
88	0.937442	-10.8609	0.298721	7.589764
88	0.942848	-1.83642	0.298326	4.808639
			1. 	
88	0.895662	0.418051	0.283820	8.250737
				ā
88	0.97420	-13.5474	0.551263	13.59245
88	0.586980	2.392445	0.238299	2.975807
88	0.518889	4.985962	0.156548	2.299926
88	0.878130	1.929596	0.547129	3.031403
88	0.9357	-1.36930	1.1063304	5.204279
				14
88	0.710362	-1.170005	0.246625	1.335177
88	0.797753	1.566308	0.272564	1.651648
	Numbers	Numbers Coefficient of correlation 88 0.921356 88 0.930899 88 0.937442 88 0.942848 88 0.942848 88 0.97420 88 0.97420 88 0.518889 88 0.878130 88 0.9357 88 0.710362 88 0.797753	Numbers Coefficient of correlation Intercept 88 0.921356 -8.62051 88 0.930899 -7.41794 88 0.937442 -10.8609 88 0.937442 -10.8609 88 0.937442 -10.8609 88 0.942848 -1,83642 88 0.895662 0.418051 88 0.97420 -13.5474 88 0.586980 2.392445 88 0.518889 4.985962 88 0.878130 1.929596 88 0.9357 -1.36930 88 0.710362 -1.170005 88 0.797753 1.566308	NumbersCoefficient of correlationInterceptSlope880.921356-8.620510.885776880.930899-7.417940.273290880.937442-10.86090.298721880.942848-1.836420.298326880.8956620.4180510.283820880.97420-13.54740.551263880.5869802.3924450.238299880.5188894.9859620.156548880.8781301.9295960.547129880.710362-1.1700050.246625880.7977531.5663080.272564

 Table III : Linear regession statistics of various measurements against total length and head length
 Species : J.vogleri

Measurement Code	Numbers	Coefficient of correlation	Intercept	Slope	Syx
Total length vs Standard lenght	119	0.974502	-5.509757	0.8991709	11.85704
Total length VS	119	0.134955	25.90413	0.099389	41.51627
Total length vs	119	0.007473	40.97416	0.02556	66.79276
Total length	119	0.815633	-9.60759	0.327488	13.75364
Pre ventral length					
Total length vs	119	0.425289	12.16292	0.218590	35.35851
Pre dorsal length					
Total length vs	119	0.801891	-13.8643	0.646000	55.88491
Pre anal length					
Head length VS	119	0.368912	-5.766766	0.1164301	3.969015
Shout length	110	0.5201//	1 005(11	0 152205	1 000000
vs Eve diameter	119	0.329400	4.233044	0.152395	1.290808
Head length vs	119	0.001573	22.04201	0.02335	25.38462
Head length	119	0.668547	6.409401	0.849223	16.87747
Body depth					
Head length vs	119	0.73542	8.113697	0.067720	3.930649
Inter orbital					
Maximum depth vs Minimum depth	119	0.653450	2.931243	0.249559	1.716481

Table IV : Linear regession statistics of various measurements against total length and head length Species : J.macrorhynus

preventral length which is rather poor.

For *J.vogleri* the coefficient of correlation for morphometric characters plotted against total length ranged from 0.895662 - 0.9742 (Table III) and the same for head length against other morphometric characters ranged from 0.518857 - 0.9357. Head length vs snout length and eye diameter exhibited relatively poor relationship.

J.macrorhynus exhibited relatively poor correlation of total length against body depth and head length while head length against post orbital and snout length gave poor correlation (Table IV). The details of meristic characters coounted are presented in Table V. gleri from Kakinada were not significant at 5% level. Rao (1983) and Vivekanandan (1985) did not observe significant differences in the regression coefficient at 5% level for *J.carutta* from Andhra/Orissa and Madras coasts respectively. In the present study also the same was observed for all the three species and the length-weight relationship compares well with the results obtained elsewhere on the Indian coast on lesser sciaenids.

The morphometric study indicates that correlation among various characters of *O.cuvieri* and *J.vogleri* is fairly good but the same is not true for *J.macrorhynus*.

Tuolo V, menone dalla of milee bollenta opecies from Domouy	Table	V	: 1	Aeristic	data o	fthree	sciaenid	species	from	Bombay
---	-------	---	-----	-----------------	--------	--------	----------	---------	------	--------

Meristic Charecters	O. cuvieri	J. vogleri	J. macrorhynus
No. of specimens	75	88	119
Dorsal spine	X + I	X + I	X + I
Dorsal rays	28 - 32	27 - 29	25 - 27
Anal spines	II	II	II
Anal rays	7	7	7
Lower gill rakers	12 - 16	4 - 6	5 - 7
Pectoral rays	16 - 18	16 - 18	16 - 19
Pelvic rays	7 - 9	6 - 7	7 - 9
Caudal rays	16 - 20	18 -20	16 - 20

DISCUSSION

The 'b' value of 3 indicates isometric growth and a fair number of species seem to approach this 'ideal' value (Ricker, 1958). The length - weight relationship of *J.vogleri* from Bombay waters has been studied by Muthiah (1982) but the ANOCOVA test was not performed by him. The value of regression coefficient b = 3.2861 for males and 3.22808 for females hawever, appears to be very close to the 'b' values of *J.vogleri* obtained in the present study. Murty (1979) and Murty and Ramalingam (1986) reported that the differences in the regression coefficients between the sexes of *Johnius dussumieri*, *Johnius carutta* and *Pennahia macropthalamus* and *Johnieops vo*- The various meristic characters agree well with the range given by Trewavas (1977) and Mohan (1984).

ACKNOWLEDGEMENTS

The author is grateful to Dr.(Mrs.) P.V. Kagwade, Retired Principal Scientist for her guidance during the course of study. Thanks are also due to Dr.E.G.Silas and Dr.P.S.B.R. James, former and present Directors of the CMFRI for providing the necessary facilities.

REFFERENCES

Acharya, P. 19980. Morphometry and biology of *Nemipterus japonicus* (Bloch) off Bombay coast. M.Sc. Thesis, Bombay University.

- Acharya, P. and Dwivedi, S.N. 1984. A study of morphometire relationship and age and growth of *Upenus sulphurus* Cuvier of the Bombay Coast *Proc. Indian Nat.Sci.Acad.*, B 50 (30):310-316
- Acharya, P. and Dwivedi, S.N. 1985. Some aspects of the biology of *Tripauchen vagina* Bloch and Schneider off Bonibay coast. *J.Indian Fish. Asso.*, 19:1-6.
- Beverton, R.J.H. and Holt, S.J. 1957. On the dynamics of exploited fish populations, *Fish.Invest.Minist.Agric Fish.Food* G.B. (2 Sea Fish), 19:533p.
- Jaiswar, A.K. and Devaraj, M. 1989. Morphometric study of *Megalaspis cordyla* (Linnacus) along the northwest coast of India. *J.Indian. Fish.Asso.*, **19** : 1-6.
- Jones, R. 1957. A much simplistic version of the fish yield equation. Countribution to the Joint Scientific meeting of the IN-CAF/ICES and FAO. Document No.28:8p.
- Laevastu, T., 1965. Manual of Methods in Fishery Biology Fascicules 1,2,9 and 10. FAO, Rome.
- Lagler, K.F., Bardach, J.E. and Miller, R.R., 1962. Ichthyology (The Study of Fishes). John Wiley, New York. 545p.
- Le Cren, E.D. 1951. The length-weight and condition in perch (*Perca fluviatilis*). J.Anim.Ecol., 20:201-219.
- Mohan, R.S.Lal. 1984. In FAO Species Identification Sheets for Fishery Purposes. Western Indian Ocean. (Fishing area 51) Fisher, W. and Bianchi, G. (Eds.) Fam.

Sciaenidae in Vol IV : pag.var.

- Murthy, V. Sriramachandra, 1979. Observation on some aspects of biology of croakers *Johnius (Johnieops) dussumieri* (Cuvier) and *Johnius (Johnius) carutta* Bloch. from Kakinada waters. *J.mar.biol.Ass. of India*, 21 (1 and 2) : 77-85.
- Murty, V. Sriramanchandra and Ramalingam, P. 1986. Observation on some aspect of biology of *Johnius (Johnieops) vogleri* (Bleeker) and *Pennahia macrophthalamus* (Bleeker) in the Kakinada region. *J.mar.biol.Ass. of India.*, 28 (1 and 2) : 57-62.
- Muthiah, C. 1982. Study on the biology of *Johnieops vogleri* (Blecker) of Bombay waters. *Indian J.Fish.*, 29 (1 and 2) : 118-133.
- Rao, T. 1983. Length-weight relationship of *Pennahia macropthalamus* (Blecker) and *Johnius carutta* (Bloch.) *Indian J.Fish.*, 29 (1 and 2) : 263-266.
- Ricker, W.E. 1958. Handbook of computation for biological statistics of fish populations. *Bull.Fish.Res.Board, Canada*, 119:300 p.
- Snedecor, G.W. and Cochran, W.G. 1967. Statistical methods. Sixth Edition. Oxford and IBH Publishing Co., Now Delhi : 533p.
- Trewavas, E. 1977. The sciaenid fishes (croakers and drums) of the Indo-West Pacific. *Trans.of Zool.Soc.Lond.*, **33** : part 4 : 253-541.
- Vivekanandan, E. 1985. The sciacnid fishery and some biological aspects of *Johnius* carutta from Madras. J.mar.biol.Ass. of India., 27 (1 and 2): 9-14.