Mitochondrial DNA (Cytochrome c oxidase I) sequencing of Indian marine mussels

P. R. DIVYA, A. GOPALAKRISHNAN, LIJO JOHN, P. C. THOMAS1, AND W. S. LAKRA2
National Bureau of Fish Genetic Resources, Cochin Unit, CMFRI Campus, Cochin - 682 018, India
1Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin - 682 018, India
2National Bureau of Fish Genetic Resources, Lucknow - 226 002, India
e-mail: divyanbfgr@gmail.com

ABSTRACT

Two species of marine mussels, the green mussel *Perna viridis* (Linnaeus, 1758) and the brown mussel *Perna indica* (Kuriakose and Nair, 1976) are found along the Indian coast. It had been suggested that *P. indica*, which occurs only along the Indian coast, is a synonym of the globally distributed *Perna perna*. Along the south-west coast of India, where both *P. viridis* and *P. indica* co-exist, a third type referred to as parrot mussel, which has shell shape of brown mussel and color of green mussel (suspected to be their hybrid/morphotype) also occurs. The present investigation is a preliminary attempt for resolving the taxonomic ambiguity among Indian marine mussel species using the mitochondrial cytochrome oxidase I (COI) gene. *P. indica* revealed 95% sequence similarity to *P. perna*. The sequence divergence between *P. indica* and parrot mussel was negligibly low (< 2%). Green mussel *P. viridis* showed 20.87% of sequence divergence with brown mussel *P. indica* as well as with the parrot mussel.

Keywords: Brown mussel, Cytochrome oxidase I (COI) gene, Green mussel, *Perna indica*, *Perna viridis*
between the green mussel, *P. viridis* and brown mussel, *P. indica*. Padhi (1998) has also reported the existence of intermediate morphotypes of mussels from Indian coast.

DNA markers are currently being used widely to detect differences among species, populations or individuals. Because of the fast sequence evolution and maternal non-recombining nature of inheritance in animals, mitochondrial genes are being widely used as a powerful tool in phylogenetic studies and species identification. Moreover, COI sequence is reasonably well conserved within species and is therefore now being widely used in invertebrate taxonomy (Baldwin, 1996; Yu et al., 2003; An et al., 2005). In fact, COI appears to possess a greater range of phylogenetic signal than any other mitochondrial gene and the evolution of this gene is rapid enough to allow discrimination of closely allied species (Hebert et al., 2003). In the present study, the mitochondrial DNA (Mt DNA) COI gene fragments from green mussel, brown mussel and the suspected hybrid/morphotype (parrot mussel) distributed along the Indian coasts were sequenced and compared to resolve the taxonomic ambiguity among them. Proper taxonomic identification of Indian mussels will assist their management, including conservation and sustainable use of these resources. This study is a preliminary attempt to use COI sequences for resolving the taxonomic ambiguity existing among the Indian marine mussels.

The mantle tissues (1 g each) were dissected from the three types of mussels: the green mussel, brown mussel and parrot mussel and were preserved in 1.25 ml of 95% ethyl alcohol and stored at 4°C until further analysis. Extracting DNA of sufficient purity was difficult at the initial stage of work when conventional phenol-chloroform method of Sokolov et al. (2000). Saturated KCl was added to the clear lysate of digested tissue and the suspected hybrid/morphotype (parrot mussel) distributed along the Indian coasts were sequenced and compared to resolve the taxonomic ambiguity among them. Proper taxonomic identification of Indian mussels will assist their management, including conservation and sustainable use of these resources. This study is a preliminary attempt to use COI sequences for resolving the taxonomic ambiguity existing among the Indian marine mussels.

The mantle tissues (1 g each) were dissected from the three types of mussels: the green mussel, brown mussel and parrot mussel and were preserved in 1.25 ml of 95% ethyl alcohol and stored at 4°C until further analysis. Extracting DNA of sufficient purity was difficult at the initial stage of work when conventional phenol-chloroform method of extraction was attempted. This was due to the presence of large amount of polysaccharides in mussel’s mantle tissue, which are usually isolated along with DNA. The polysaccharide can inhibit the activity of polymerases and ligases. Hence, genomic DNA was isolated following the modified phenol chloroform method of Sokolov et al. (2000). Saturated KCl was added to the clear lysate of digested tissue samples, mixed well and incubated in ice for 5 min. At this stage, most of the polysaccharides and proteins are precipitated along with the insoluble sodium dodecyl sulphate.

An internal fragment of the COI gene was amplified using a pair of metazoan invertebrate COI primer viz., LCO1490/HCO2198: 5'-GGTCAACAAATCATAAAGATATTGG-3' / 5'-TAAACTTCAGGGTGACCAAAAAATCA -3' (Folmer et al., 1994). The PCR amplifications were performed in 25 µl assay volume containing 2.5 µl 10x assay buffer (100 mM Tris, 500 mM KCl, 0.1% gelatin, pH 9.0) with 1.5 mM MgCl₂, (Genei, Bangalore, India), 5 p moles of each primer, 200 µM dNTPs (Genei, Bangalore, India), and 1.5 U Taq DNA polymerase, 18 ml de-ionized water and 20 ng of template DNA. The reaction mixture was initially denatured at 95°C for 5 min followed by 29 cycles (94°C for 45 s, 58°C for 30 s and 72°C for 45 s). The reaction was then subjected to a final extension at 72°C for 5 min.

Electrophoresis of 3 ml of the PCR product along with a marker (100 bp DNA ladder, Genei, Bangalore, India) was performed using 1% agarose gel, followed by staining with ethidium bromide in 1x TBE buffer for 30 min. The gel was visualized under UV transilluminator and documented using Image Master VDS (Pharmacia Biotech, USA). All PCR products were purified using the QIAquick PCR purification kit (Qiagen) and directly sequenced following the protocol outlined in the ABI Prism BigDye sequencing kit (PE Applied Biosystems) using the light strand primers on an ABI 3730 automated DNA sequencer following the manufacturer’s instructions.

The DNA sequences were aligned and edited using the Clustal W software in the BIOEDIT sequence alignment editor version 7.0.5.2 (Hall, 1999). Exploratory data analysis including the phylogenetic analyses of sequences were performed using MEGA Version 3.1 (Kumar et al., 2004) and a final adjustment was done manually. Estimates of mean pair wise sequence diversity (± SE) were made using 1000 bootstraps of the data. MegAlign was used to create phylogenetic trees based on two phylogenetic methods, Neighbor Joining- NJ (Saitou and Nei, 1987) and Maximum Parsimony-MP (Eck and DayHoff, 1966) using estimated pair-wise genetic distances (based on Kimuras’ 2- parameter model).

A total of 477 bp of aligned sequence of COI gene from two individuals each of green, brown and parrot mussel were used for the comparative study. The sequences obtained in this study have been deposited in GenBank (NCBI) with accession numbers EU543992- EU543997. COI sequences of 3 haplotypes detected among the 6 specimens, along with published sequences of *P. perna* (NCBI Accession: DQ 917617, DQ 917618), *P. canaliculus* (DQ 917613, DQ 917609) and *Mytilus edulis* (DQ 917606) reported by Wood et al. (2007) were aligned. In the present study, *P. viridis* and parrot mussel revealed only single haplotype each, while *P. indica* had 2 haplotypes. There were no insertions and deletions in the sequence. Of the 477 bp unambiguous sequence resolved, 431 bases were constant and 46 bases (10%) exhibited variation. The transition: transversion substitution ratio was 1.4.

The pair-wise sequence divergence and mean genetic distances computed among the three Indian mussel haplotypes with the published sequences for *P. perna*, *P. canaliculus* and *M. edulis* (Wood et al., 2007) are given in Table 1. The sequence divergence between *P. indica* and parrot mussel was negligibly low (< 2%). *P. viridis* (green mussel) showed 20.87% sequence divergence with *P. indica* (brown mussel) as well as parrot mussel. *M. edulis* formed...
Table 1. Pair wise sequence divergence and mean genetic distances computed among the three Indian mussel haplotypes with the published sequences for *P. perna*, *P. canaliculus* and *M. edulis* (Wood *et al.*, 2007)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2087</td>
<td>0.2087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.2087</td>
<td>0.2087</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2117</td>
<td>0.2117</td>
<td>0.0021</td>
<td>0.0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.2087</td>
<td>0.2087</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2233</td>
<td>0.2233</td>
<td>0.0552</td>
<td>0.0552</td>
<td>0.0576</td>
<td>0.0552</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.2203</td>
<td>0.2203</td>
<td>0.0552</td>
<td>0.0552</td>
<td>0.0576</td>
<td>0.0552</td>
<td>0.0042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.2447</td>
<td>0.2447</td>
<td>0.1953</td>
<td>0.1953</td>
<td>0.1982</td>
<td>0.1953</td>
<td>0.2044</td>
<td>0.2044</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.2447</td>
<td>0.2447</td>
<td>0.1953</td>
<td>0.1953</td>
<td>0.1982</td>
<td>0.1953</td>
<td>0.2163</td>
<td>0.2163</td>
<td>0.0106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.3967</td>
<td>0.3967</td>
<td>0.4161</td>
<td>0.4161</td>
<td>0.4121</td>
<td>0.4161</td>
<td>0.4317</td>
<td>0.4276</td>
<td>0.4300</td>
<td>0.4340</td>
<td></td>
</tr>
</tbody>
</table>

** Number indicates : (1&2) *P. vindis*, (3&4) Parrot mussel, (5&6) *P. indica*, (7&8) *P. perna*, (9&10) *P. canaliculatus*, (11) *M. edulis*

The published reports on Indian marine mussels’ phylogeny and systematics are limited, except few (Kuriakose and Nair, 1976; Siddall, 1980). In our study, the indication is that *P. indica* is a distinct species and not to be relegated as a synonym of *P. perna*. According to Ward *et al*. (2008), majority of within-species divergence values show less than 2%. The COI sequence divergence between *P. indica* and parrot mussel was also <2%. Parrot mussel may be a morphotype of *P. indica* and it is suggested that inclusion of nuclear genes in the study can confirm the genetic identity of parrot mussel. The phylogenetic results of the present study are based on data from a single mitochondrial gene. Inclusion of other markers, both nuclear and mitochondrial, is also required to resolve phylogenetic ambiguities. Further studies involving more number of individuals and more number of species-specific regions in the nuclear and mt DNA are essential, to confirm the taxonomic identity of *P. indica* and parrot mussel.
Acknowledgements

The authors thank the Director NBFGR, Lucknow for providing necessary facilities for completing the work. The first author also acknowledges CIFE/ICAR for the financial assistance received during the tenure of this work.

References

Date of Receipt : 02/08/08
Date of Acceptance : 23/03/09