Stock Assessment of Coastal Tunas Along the East Coast of India

H. Mohamed Kasim1, and E.M. Abdussamad2
Research Centre of Central Marine Fisheries Research Institute,
Chennai1, Tuticorin2, Tamil Nadu

Abstract

All India tuna landing fluctuated from 39,684 t in 1998 to 54,001 t in 2000 with an annual average of 48,042.5 t. The East coast tuna landing varied from 7,248 t in 1998 to 12,201 t in 2000 with an annual average of 9,157.6 t and it formed 19.1% of the total tuna landings of India. The percentage contribution by different maritime states towards the total tuna production along the east coast during 1998-2003 was Tamil Nadu: 67.0%, followed by Andhra Pradesh: 24.5%, Pondicherry: 5.0%, Orissa: 2.5% and West Bengal: 1.0%. They were exploited by drift gillnets and hook and lines of varying specifications. Fishery occurred round the year with peak during June-August. The species composition was Euthynus affinis: 61.3%, followed by Auxis spp.: 12.7%, Katsuwonus pelamis: 9.9%, Thunnus tonggol: 7.0% and other species: 9.1% comprising Thunnus albacares and Sarda orientalis. Detailed studies on the fishery and biology of tuna resources carried out at Tuticorin, Chennai and Kakinada are presented. Stock assessments of theses species were made. Exploitation rate of the former is 0.82 and Emax, 0.764 indicating over-exploitation of stock whereas, for latter it is 0.67 and 1.0 respectively indicating scope for increased production. Average stock of E. affinis is 6,842 t and MSY is 5,648 t and that of A. thazard it is 1,830 t and 1,292 t respectively.

Introduction

Tunas are one of the major exploited marine fishery resources of Indian seas having good domestic demand as food fishes. All published reports and observations indicate that a considerable magnitude of untapped tuna resource is available, especially in deeper waters, for exploitation (Sivaprakasam, 1995; Mitra, 1999; Pillai and Ganga, 2002). They further pointed out that there is no organised tuna fishing in the high seas of Indian Ocean except in certain pockets. Many developing countries have expanded their fishing activities in order to intensify the exploitation of tuna resource from their EEZ (Silas, 1985; James and Pillai, 1991). Consequently, fishing industry of our country also require

42
aimed transformation for exploiting this resources. However, any such measures have to be formulated based on sound knowledge on resource characteristics, their abundance in space and time and inter-relationship of fishery with the sea environment.

Tunas and related fishes dominate the oceanic pelagic resources and support a sustainable fishery all along the coast. Sirimaneetan (1985) provided valuable information on the fishery, species diversity and biometrics of different species along Gulf of Mannar coast. The present study attempts to update scientific information on fishery and population characteristics of coastal tunas. Management issues are also discussed to a limited extent.

Materials and methods

Catch, effort and species composition data of tunas by different gears and size frequency data of E. affinis and A. thazard for the period 1998-03 are used for the study. Growth parameters, mortality rates and recruitment pattern are estimated from monthly length frequency data. L∞ and K were estimated by surface response analysis of restructured length frequency histogram by ICLARM's FiSAT software (Gayanilo et. al., 1995). Probability of capture and size at first capture (Lc50) are estimated as per Pauly (1984).

Total mortality (Z) was estimated from catch curve (Pauly, 1983) and natural mortality (M) from the empirical formula proposed by Pauly (1980). Exploitation ratio (E) and rate (U) were estimated from the equations: E = F/Z and U = F/Z x (1- e^-Z) as given by Beverton and Holt (1957) and Ricker (1975). Pattern of stock exploitation was studied following virtual population analysis following FiSAT. Total stock and biomass were estimated from the formulae Y/U and Y/F respectively. Maximum sustainable yield was estimated as in Corten (1974).

Results

Fishery

Tunas are exploited by drift gillnets and hook and lines. Gillnets with 6.0-13.0 cm mesh and hook and lines of varying specifications are operating in 10-150 m depth zone and landed tunas along with other pelagic fishes. All India tuna landing fluctuated from 39684 t in 1998 to 54001 t in 2000 with an annual average of 48042.5 t. The East coast tuna landing varied from 7248 t in 1998 to 12218 t in 2000 with an annual average of 9157.6 t and it formed 19.1% of the total tuna landings of India. The percentage contribution of tuna by different maritime states to the total tuna production along the East coast during 1998-2003 was Tamil Nadu: 67.0%, followed by Andhra Pradesh: 24.5%, Pondicherry: 5.0%, Orissa: 2.5% and West Bengal: 1.0%.

Catch composition

The fishery was supported by seven species. The species composition was Euthynnus affinis: 61.3%, followed by Auxis spp.: 12.7%, Katsuwonus pelamis: 9.9%, Thunnus tonggol: 7.0% and other species: 9.1% comprising Thunnus albacares and Sarda orientalis.

Seasonal Pattern of Fishery

Tuna fishery occur round the year, with peak during June-August (Fig.1). Nearly 85% of the total catches were landed during the peak period. Catch rates of major species were also higher during this period. E. affinis forms continuous fishery. A. thazard, T. albacares and K. pelamis also occur almost round the year, except for short periods, whereas occurrence of other species is highly seasonal.

Population Characteristics of the Species

Euthynnus affinis

Fishery was supported by 18-83 cm class fishes with 54-56 cm as modal class (Table 1). Size at first capture (Lc50) was estimated as 50.14 cm.
aimed transformation for exploiting this resources. However, any use of these resources have to be formulated based on sound knowledge on resource characteristics, their abundance in space and time and inter-relationship of fishery with the sea environment.

Tunas and related fishes dominate the oceanic pelagic resources and support a sustainable fishery all along the coast. Siraineetan (1985) provided valuable information on the fishery, species diversity and biometrics of different species along Gulf of Mannar coast. The present study attempts to update scientific information on fishery and population characteristics of coastal tunas. Management issues are also discussed to a limited extent.

Materials and methods

Catch, effort and species composition data of tunas by different gears and size frequency data of E. affinis and A. thazard for the period 1998-03 are used for the study. Growth parameters, mortality rates and recruitment pattern are estimated from monthly length frequency data. L∞ and K were estimated by surface response analysis of restructured length frequency histogram by ICLARM's FIsAT software (Gayamilo et al., 1995). Probability of capture and size at first capture (Le50) are estimated as per Pauly (1984).

Total mortality (Z) was estimated from catch curve (Pauly, 1983) and natural mortality (M) from the empirical formula proposed by Pauly (1980). Exploitation ratio (E) and rate (U) were estimated from the equations; E = F/Z and U = F/Z x (1 - e^-Z) as given by Beverton and Holt (1957) and Ricker (1975). Pattern of stock exploitation was studied following virtual population analysis following FIsAT. Total stock and biomass were estimated from the formulae Y/U and Y/F respectively. Maximum sustainable yield was estimated as in Corten (1974).

Results

Fishery

Tunas are exploited by drift gillnets and hook and lines. Gillnets with 6.0-13.0 cm mesh and hook and lines of varying specifications are operating in 10-150 m depth zone and landed tunas along with other pelagic fishes. All India tuna landing fluctuated from 39684 t in 1998 to 54001 t in 2000 with an annual average of 48042.5 t. The East coast tuna landing varied from 7248 t in 1998 to total tuna landings of India. The percentage contribution of tuna by different maritime states to the total tuna production along the East coast during 1998-2003 was Tamil Nadu: 67.0%, followed by Andhra Pradesh: 24.5%, Pondicherry: 5.0%, Orissa: 2.5% and West Bengal: 1.0%.

Catch composition

The fishery was supported by seven species. The species composition was Euthynnus affinis: 61.3%, followed by Auxis spp.: 12.7%, Katsuwon pelamis: 9.9%, Thunnus tonggol: 7.0% and other species: 9.1% comprise Thunnus albacares and Sarda orientalis.

Seasonal Pattern of Fishery

Tuna fishery occur round the year, with peak during June-August (Fig. 1). Nearly 85% of the total catches were landed during the peak period. Catch rate of major species were also higher during this period. E. affinis forms continuous fishery. A. thazard, T. albacares and K. pelamis also occur almost round the year except for short periods, whereas occurrence of other species is highly seasonal.

Fig. 1 Seasonal pattern of tuna fishery along East coast

Population Characteristics of the Species

Euthynnus affinis

Fishery was supported by 18-83 cm class fishes with 54-56 cm as mode class (Table 1). Size at first capture (Le50) was estimated as 50.14 cm.
Table 1: Size composition of *E. affinis* in the catch along East coast during 1998-2003

<table>
<thead>
<tr>
<th>Period</th>
<th>Size range (cm)</th>
<th>Major mode</th>
<th>L<sub>50</sub> (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997-'98</td>
<td>28-81</td>
<td>51</td>
<td>49.5</td>
</tr>
<tr>
<td>1998-'99</td>
<td>22-76</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>1999-'00</td>
<td>24-81</td>
<td>55</td>
<td>49.3</td>
</tr>
<tr>
<td>2000-'01</td>
<td>20-83</td>
<td>57</td>
<td>53.21</td>
</tr>
<tr>
<td>2001-'02</td>
<td>18-76</td>
<td>53</td>
<td>46.17</td>
</tr>
<tr>
<td>2002-'03</td>
<td>18-78</td>
<td>51</td>
<td>36.87</td>
</tr>
<tr>
<td>Average</td>
<td>18-83</td>
<td>55</td>
<td>49.89</td>
</tr>
</tbody>
</table>

Growth

Growth parameters, L_∞ and K were estimated respectively as 87.5 cm and 1.50/year respectively and their growth can be described by von Bertalanffy growth equation as:

\[
L_t = L_{\infty} \left[1 - e^{-K(t-t_0)} \right]
\]

They grow fast and attain 45.0, 67.6 and 78.2 cm respectively at the end of 6, 12 and 18 months. Their size frequency distribution shows that mainly 1st year group constituted the fishery.

Recruitment pattern

The species spawn and young recruits enter the stock almost round the year with two peaks, major during November-December and minor during April-May (Fig.2).

![Fig 2 Recruitment pattern of E. affinis along the East coast](image)

Mortality

Total mortality varied between 7.7 during 2002-03 and 13.13 during 1998-99, with 9.8 as mean (Table 2). Natural mortality rate was 1.76. Fishing mortality was 8.03 during the period and it varied between 0.78 and 11.38. Mortality rate was relatively high for the stock along Tuticorin coast and low along the Chennai coast.

Table 2: Estimates of mortality rates, exploitation rates, biomass and stock of *E. affinis* along the East coast during 1998-2003

<table>
<thead>
<tr>
<th>Years</th>
<th>Mortality (Z)</th>
<th>Fishing Mortality (F)</th>
<th>Exploitation rate (E)</th>
<th>Exploitation ratio (U)</th>
<th>Yield</th>
<th>Biomass (t)</th>
<th>Stock (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-'99</td>
<td>13.13</td>
<td>11.38</td>
<td>0.87</td>
<td>0.867</td>
<td>5.562</td>
<td>489</td>
<td>6.415</td>
</tr>
<tr>
<td>1999-'00</td>
<td>9.32</td>
<td>7.56</td>
<td>0.81</td>
<td>0.811</td>
<td>5.974</td>
<td>790</td>
<td>7.366</td>
</tr>
<tr>
<td>2000-'01</td>
<td>12.31</td>
<td>10.56</td>
<td>0.86</td>
<td>0.858</td>
<td>6.118</td>
<td>579</td>
<td>7.131</td>
</tr>
<tr>
<td>2001-'02</td>
<td>7.99</td>
<td>6.24</td>
<td>0.78</td>
<td>0.761</td>
<td>4.903</td>
<td>786</td>
<td>6.278</td>
</tr>
<tr>
<td>2002-'03</td>
<td>7.7</td>
<td>5.95</td>
<td>0.77</td>
<td>0.770</td>
<td>5.501</td>
<td>925</td>
<td>7.144</td>
</tr>
<tr>
<td>Mean</td>
<td>9.79</td>
<td>8.03</td>
<td>0.82</td>
<td>0.821</td>
<td>5.612</td>
<td>699</td>
<td>6.842</td>
</tr>
<tr>
<td>Mean for Tuticorin</td>
<td>10.63</td>
<td>87</td>
<td>0.83</td>
<td>0.821</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean for Chennai</td>
<td>7.6</td>
<td>5.84</td>
<td>0.77</td>
<td>0.774</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exploitation rate

Exploitation rate varied between 0.77 and 0.87 over the years with 0.82 as mean (Table 2), whereas E(max) is 0.7641, indicating over-exploitation of the stock (Fig.3). Exploitation rate of the species along Tuticorin coast is relatively large, whereas it is small along the Chennai coast.

![Fig.3 Relative yield/recruit of E. affinis at different levels of exploitation](image)
Virtual population analysis

Population studies indicated that up to 35 cm size the main loss in the stock was due to natural causes (Fig 4). Thereafter loss due to fishing increased and outnumbered natural losses. Fishing mortality increased sharply for fishes above 50 cm size and it declined sharply beyond 63 cm size.

![Graph showing survival and losses due to natural causes and fishing operation in different size groups of E. affinis stock along East coast during 1998-2003.]

Fig. 4 Survival and losses due to natural causes and fishing operation in different size groups of *E. affinis* stock along East coast during 1998-2003

Yield and stock

Stock fluctuated between 6,278 and 7,366 t and yield between 4,903 and 6,118 t during the period (Table 2). Biomass during the period was between 489 and 925 t. Maximum sustainable yield from the present fishing grounds of the coast is 5,648 t (Fig 3).

Auxis thazard

Size composition

Fishery was supported by 20-48 cm class fishes with 37.7 cm as mean (Table 3). 32-44 cm size groups represented major share of the catch. The size at first capture (Le50) was 35.14 cm.

![Graph showing recruitment pattern of *A. thazard* along the East coast.]

Fig. 5 Recruitment pattern of *A. thazard* along the East coast

Table 3 : Size composition of *A. thazard* in the catches along the East coast during 1998-2003

<table>
<thead>
<tr>
<th>Period</th>
<th>Size Range (cm)</th>
<th>Major mode</th>
<th>Mean size (cm)</th>
<th>Le50 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-'99</td>
<td>30-46</td>
<td>35</td>
<td>38.2</td>
<td>37.66</td>
</tr>
<tr>
<td>1999-'00</td>
<td>22-46</td>
<td>39</td>
<td>37.9</td>
<td>35.78</td>
</tr>
<tr>
<td>2000-'01</td>
<td>28-48</td>
<td>39</td>
<td>39.3</td>
<td>34.04</td>
</tr>
<tr>
<td>2001-'02</td>
<td>20-48</td>
<td>37</td>
<td>36.2</td>
<td>35.18</td>
</tr>
<tr>
<td>2002-'03</td>
<td>24-48</td>
<td>39</td>
<td>37.8</td>
<td>36.39</td>
</tr>
<tr>
<td>Mean</td>
<td>20-48</td>
<td>39</td>
<td>37.8</td>
<td>35.14</td>
</tr>
</tbody>
</table>

Growth

Growth parameters, *Loo* and *K* were estimated respectively as 53.8 cm and 1.04/year and growth can be described by von Bertalanffy growth equation as:

\[
L_t = L_{oo} \left[1 - e^{-\frac{t}{K}}\right]
\]

This equation shows that they attain 33.52 and 46.63 cm respectively at the end of 1st and 2nd year. This shows that fishes landed were mainly 1+ year group.

Recruitment pattern

Recruitment indicated that the spawn and young recruits enter the stock almost round the year with peak during May-June (Fig 5).
Mortality

Total mortality rate ranged between 4.24 and 8.18 with 4.87 as mean during 1998-2003 (Table 4). Natural mortality rate was 1.58. Fishing mortality was 3.19 for the period and it varied between 2.66 and 6.60.

Table 4: Estimates of mortalities, exploitation rates, biomass and stock of A. thazard along the East coast during 1998-2003

<table>
<thead>
<tr>
<th>Years</th>
<th>Total Mortality (Z)</th>
<th>Natural Mortality (M)</th>
<th>Fishing Mortality (F)</th>
<th>Exploitation rate (E)</th>
<th>Exploitation ratio (E)</th>
<th>Yield (t)</th>
<th>Biomass (t)</th>
<th>Stock (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-'99</td>
<td>7.71</td>
<td>1.58</td>
<td>6.13</td>
<td>0.79</td>
<td>0.795</td>
<td>1,340</td>
<td>219</td>
<td>1,686</td>
</tr>
<tr>
<td>1999-'00</td>
<td>8.18</td>
<td>1.58</td>
<td>6.6</td>
<td>0.81</td>
<td>0.807</td>
<td>916</td>
<td>138</td>
<td>1,135</td>
</tr>
<tr>
<td>2000-'01</td>
<td>4.73</td>
<td>1.58</td>
<td>3.14</td>
<td>0.67</td>
<td>0.658</td>
<td>1,098</td>
<td>350</td>
<td>1,669</td>
</tr>
<tr>
<td>2001-'02</td>
<td>4.42</td>
<td>1.58</td>
<td>2.84</td>
<td>0.64</td>
<td>0.655</td>
<td>697</td>
<td>245</td>
<td>1,098</td>
</tr>
<tr>
<td>2002-'03</td>
<td>4.24</td>
<td>1.58</td>
<td>2.66</td>
<td>0.63</td>
<td>0.618</td>
<td>1,748</td>
<td>657</td>
<td>2,828</td>
</tr>
<tr>
<td>Mean</td>
<td>4.87</td>
<td>1.58</td>
<td>3.19</td>
<td>0.67</td>
<td>0.664</td>
<td>1,160</td>
<td>364</td>
<td>1,830</td>
</tr>
</tbody>
</table>

Exploitation rate

Exploitation rate varied between 0.63 and 0.81 during 1998-2002 with 0.67 as mean (Table 4). Emax is large (1.0), indicating that stock is under-exploited and have scope for increased production (Fig 6).

Fig.6 Relative yield/recruit of A. thazard at different levels of exploitation

Virtual population analysis

Population analysis indicate that up to 31 cm size, the main loss in the stock was due to natural causes (Fig 7.). Thereafter the loss due to fishing increased and outnumbered natural losses from 37 cm. Mortality due to fishing increased sharply for fishes above 35 cm size and it declined sharply for fishes above 45 cm size.

Fig.7 Survival and losses due to natural causes and fishing operating in different size groups of A. thazard stock along East coast during 1998-2003

Yield and stock

Stock fluctuated between 1,098 and 2,828 t and yield between 697 and 1,748 t during the period (Table 4). Biomass during the period varied between 138 and 657 t. Maximum sustainable yield from the present fishing grounds of East coast is 1,292 t (Fig 6).

Discussion

Tuna fishery along the East coast remained steady during the period, but with wide annual fluctuation. The exploitation rate, Emax and MSY of E. affinis suggested that the resource is slightly over-exploited, whereas A. thazard remain under-exploited.

James et al. (1993) estimated size at first maturity of E. affinis and A. thazard as 44 and 32 cm respectively. Present estimate of their length at first
Tunas are reported to be abundant in deeper waters. Increased effort in these areas with continuous monitoring and timely implementation of appropriate measures to maintain stock and production is advocated. Diverting large surplus trawlers after due modification, for exploiting this resource from the present fishing grounds and from deeper waters seems to be promising. Such an attempt at Tuticorin and Visakhapatnam is yielding encouraging results, as it enables year round operation and better catches. By considering the socio-economic implications large factory vessels should not be permitted in our EEZ, as it may over-exploit the stock and also obstruct their immigration to the present fishing grounds.

Acknowledgement

We sincerely acknowledge the encouragement shown by Dr. N.G.K. Pillai, Head, Pelagic Fisheries Division, CMFRI, Kochi throughout the period of this study. Encouragement and guidance in the study by Dr. Mohan Joseph, Director, CMFRI, is also gratefully acknowledged.

References

Mitra, G.N. 1999. Tuna is the mainstay of fishing in deep sea zone of Indian EEZ. Fishing Chimes, Vol. 19 (1) : 77-79.

Pauly, D. 1983. Some simple methods for the assessment of tropical fish stocks. FAO.

Pauly, D. 1984. Length-converted catch curves: A powerful tool for fisheries research in

In: (N.G.K.Pillai, N.G.Menon, P.P.Pillai and U.Ganga (Eds) Management of
Scombroid Fishes. CMFRI, Kochi, India: 14-23.

Silas, E.G., P.P. Pillai, M.Srinath, A.A. Jayaprakash, C.Muthiah, V.Balan,
T.M.Yohannan, Pon Siraimeetan, Madan Mohan, P.Livingston, K.K.Kunhikoya,

Res. Inst., 36: 86-103

on Fisheries-A Multibillion Dollar Industry, August 17 – 19, 1985,