ECOLOGY OF INTERTIDAL MOLLUSCS OF GULF OF MANNAR AND PALK BAY

By
Kotapalli Satyanarayana Rao and K. S. Sundaram

Reprinted from the Proceedings of the Indian National Science Academy
ECOLOGY OF INTERTIDAL MOLLUSCS OF GULF OF MANNAR AND PALK BAY

by KOTAPALLI SATYANARAYANA RAO and K. S. SUNDARAM, Central Marine Fisheries Research Institute, Marine Fisheries P. O.-623520, Mandapam Camp

The distribution of fauna in the intertidal zone in different stations in the Gulf of Mannar and Palk Bay in the vicinity of Mandapam Camp has been studied. Distinct zonation has been observed in the occurrence of the fauna and three sub-zones of the supralittoral fringe, midlittoral zone and infralittoral fringe were recognized in the intertidal region. In the Gulf of Mannar, *Littorina scabra*, *L. undulata*, *Tectarius* spp, *Crassostrea cucullata* and *Chthamalus stellatus stellatus* have been recorded in the supralittoral fringe. In the midlittoral zone, *C. stellatus stellatus* is usually abundant along with some *Cellana radiata*, *Modiolus triarctula*, *Tectarius* spp, *Donax* spp and *Priamospio* sp. In the infralittoral fringe, tubicolous Vermetid gastropods, prosobranchs like *Trochus radiatus* and *Turbo intercostalis*, sponges and sea-anemones have been recorded.

In Palk Bay the supralittoral fringe is mostly sandy and on some coral stones a few *Littorina scabra* and *Tectarius* spp are found. The midlittoral zone fauna includes *Planaxis sulcatus*, *Nerita maura*, *Crassostrea cucullata*, a few *Littorina* spp. and *Tectarius* spp on coral stones. In the infralittoral fringe prosobranchs like *Cerithium* spp, *Rissastra bertholleti* and *Pyrene diminuta*, bivalves (*Arca* spp, *Isognomon* spp, etc.), sponges, hydroids, polychaetes, isopods, amphipods and crabs occur. The probable factors influencing the variations in abundance of the fauna, particularly the molluscs in different stations and the habits of the molluscs in relation to low and high tides, temperature, etc. have been discussed.

INTRODUCTION

The zonation of intertidal fauna of the British, African, American and Australian coasts and elsewhere has been studied by several workers (Colman 1933; Evans 1974 a, b; Southward and Crisp 1954; Lewis 1953, 1955, 1961, 1964; Crisp and Southward 1958; Stephenson 1939, 1943, 1944, 1947; Lawson 1956; Stephenson and Stephenson 1949, 1950, 1952; Doty 1946, 1957; Dakin *et al.* 1948; Womersley and Edmonds 1952; Chapman 1943; Guiler 1950). Similar studies have received only scant attention in regard to the fauna of the Indian coasts except for a few papers (Ganapati and Lakshmana Rao 1962; Rao and Rao 1962; Nagabushanam and Rao 1969). In the present work the molluscan fauna in the intertidal region in the Gulf of Mannar and Palk Bay in the vicinity of Mandapam Camp has been investigated to find out if there is zonation in its distribution. The factors influencing the variations in abundance of fauna in different areas and the habits of the molluscs in relation to low and high tides, temperature etc. have been dealt with.

MATERIALS AND METHODS

The fauna has been studied at four stations in the Gulf of Mannar: I—the Central Marine Fisheries Research Institute’s jetty and a pier closeby (Fig. 1) II—by
the side of the Catholic Church 3/4 km away from station I, III—at the eastern extremity of the Quarantine Camp, IV—on the concrete construction east of station III, and V in Palk Bay near Manakad. The range of the tide at Mandapam Camp is about one metre. In dividing the intertidal zone into sub-zones the procedure of Stephenson and Stephenson (1949) was followed and three subzones viz., supralittoral fringe, midlittoral zone and infralittoral fringe were distinguished. The sub-zones were delimitated as follows; (i) Supralittoral fringe—from the mean high water mark of spring tides (0.7 m. C.D.) to E. H. W. S., (ii) Midlittoral zone—between the mean high water mark of spring tides (0.7 m C.D.) and mean low water mark of neap tides (near 0.4 m C.D.), and (iii) Infracotinal fringe between the mean low water mark of neap tides (near 0.4 m C.D.) and extreme low water mark exposed at the ebb of spring tides about one and half days after the new moon and full moon. The different stations although situated in close proximity are dealt with separately as they vary in physical environmental conditions.

In the supralittoral fringe and midlittoral zone of station III in the Gulf of Mannar and the infralittoral fringe in Palk Bay the number of individuals of different species of molluscs present in three half metre squares has been determined during the period between October, 1969 and January, 1970. The animals living below the sand were also examined after digging up to 15 cm. The counts of individuals in the squares in different areas recognized by making marks on rocks in the neighbourhood with synthetic enamel paint, were taken at low and high tides to see if there is dispersal or aggregation of individuals of different species during the course of the day. The habits and food of the molluscs were also observed.

Data on air and water temperature and salinity at low and high tides have been recorded between October, 1969 and January, 1970.

RESULTS

Station I. (C. M. F. R. I. Jetty)

The jetty (Fig. 1, I a) is a cement concrete construction located in a sandy area. The pier (Fig. 1, I b) is also a concrete structure located near it.

Supralittoral fringe—On the pillars of the jetty the prosobranch gastropods Littorina scabra, Tectarius granularis and T. malaccamus are present. Among these, Tectarius spp are in good numbers (Fig. 2). Tectarius malaccamus is abundant in the upper portions of the pillars in the sub-zone. The barnacle Chthamalus stellatus stellatus which is found in large numbers in the sub-zone below extends into this sub-zone and exists in much smaller numbers.

Midlittoral zone—Below the supralittoral fringe the barnacle Chthamalus stellatus stellatus are abundant (Table I) and form a band 0.25–0.30 metre in height on the seaward and shoreward sides of the pillars (Fig. 2). The rock oyster Crassostrea cuscutata, the limpet Cellana radiata and Littorina scabra are found in small numbers and Tectarius granularis in good numbers. On the seaward pillars the barnacles are much more abundant than on those shoreward.

Infracotinal fringe—In this sub-zone an unidentified Vermex gastropod with a straight, narrow, tubular, brown shell the terminal portions of which project above the substratum, occurs in large numbers close together forming a continuous band.
Fig. 1. Showing the location of stations in the Gulf of Mannar and Palk Bay where the intertidal fauna has been studied. CMFRI—Central Marine Fisheries Research Institute; CC, Catholic Church; PC, Protestant Church.

(Fig. 2). The alga *Graecilaria pucillum* grows in the lower part of this subzone. Young ones of the pearl oyster *Pinctada anomiaoides*, the boring bivalve *Petricola lithophaga*, *Modiolus sritatula*, *Onchidium verruculatum* and isopods are the others represented on the pillars. The infralittoral fringe is not represented on the landward pillars as they are covered by sand at the bottom.

On the sides of the concrete pier near the C. M. F. R. I. jetty in the supralittoral fringe under exposed conditions *Littorina scabra* occurs in small numbers. *Tectarius malaccanus* and *T. granularis* are in moderate numbers in contrast to what has been observed on the pillars of the jetty. A few individuals of *C. stellatus stellatus* are also present in the subzone. There are loose granite stones below and before the pier in the midlittoral zone. *C. stellatus stellatus* is found in good numbers here on exposed granite but the abundance is much lower than on the protected surfaces of pillars of the jetty. Amidst the stones *Drupa tuberculata* and *Thais rudolphi* have been recorded. On the undersurface of stones sea anemones, amphipods, isopods (*Ligia* sp.), crabs (*Medea* sp.), opisthobranchs (*Smaragdinella* sp.) and ascidians are found.

In the infralittoral fringe *Trochus radiatus*, *Drupa tuberculata*, *Conus ebraeus*, *Discodoris rubra* and *Ligia* sp. have been recorded amidst stones near the pier.

Station II (By the side of the Catholic Church)

The intertidal region is sandy with exposed boulders having inclined surfaces on the shoreward side. There are large, flat, exposed boulders in the middle and
seaward portions. A few sheltered boulders are also present in the seaward portion.

Supralittoral fringe—*Tectarius malaccanus* and *Littorina scabra* are found on the surface of sandstone boulders. Midlittoral zone—*C. stellatus stellatus* occurs on the surface of the flat boulders. The intensity of occurrence of the barnacle is very much lower than that on the jetty and pier (Table I). *Tectarius malaccanus* and *T. granulatis* are also represented but in small numbers. A few *Cellana radiata* and *Crassostrea cucullata* also are found. On boulders with encrusting remains of dead calcareous algae the barnacles are in low numbers the substratum appearing to be not suitable for the settlement of cirripedes. On many of the boulders in the lower portions of the zone there is a growth of the
<table>
<thead>
<tr>
<th>Station</th>
<th>Supralittoral fringe</th>
<th>Midlittoral zone</th>
<th>Infra littoral fringe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia. C.M.F.R.I. Jetty</td>
<td>Littorina scabra 1</td>
<td>C. stellatus stellatus 919</td>
<td>Verruca gastropods 619</td>
</tr>
<tr>
<td></td>
<td>Tectarius granularis 36</td>
<td>Tectarius granularis 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. stellatus stellatus 16</td>
<td>Cellana radiata 1</td>
<td></td>
</tr>
<tr>
<td>IIB. Pier near the C.M.F.R.I. Jetty</td>
<td>Littorina scabra 3</td>
<td>C. stellatus stellatus 698</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tectarius malacanus 17</td>
<td>Drupa tuberculata 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tectarius granularis 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. stellatus stellatus 1</td>
<td>Thais rudolfi 1</td>
<td></td>
</tr>
<tr>
<td>IIB. By the side of Catholic Church</td>
<td>Tectarius malacanus 156</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. stellatus stellatus 84</td>
<td>Verruca gastropods 1421</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tectarius malacanus 7</td>
<td>Cellana radiata 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tectarius granularis 43</td>
<td>Modiolus striatula 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cellana radiata 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modiolus striatula 16</td>
<td></td>
</tr>
<tr>
<td>III. At the eastern extremity of</td>
<td>Littorina scabra 2</td>
<td></td>
<td>Verruca gastropods 958</td>
</tr>
<tr>
<td>Quarantine camp</td>
<td>Littorina undulata 1</td>
<td></td>
<td>Petricola lithophaga 1</td>
</tr>
<tr>
<td></td>
<td>Tectarius granularis 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tectarius malacanus 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. stellatus stellatus 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cellana radiata 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tectarius granularis 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tectarius malacanus 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crassostrea cucullata 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modiolus striatula 1</td>
<td></td>
</tr>
<tr>
<td>IV. Concrete construction near</td>
<td>Littorina scabra 5</td>
<td></td>
<td>Thais rudolfi 1</td>
</tr>
<tr>
<td>Centre III</td>
<td>Tectarius malacanus 1</td>
<td></td>
<td>Amphipods 6</td>
</tr>
<tr>
<td></td>
<td>Tectarius granularis 15</td>
<td></td>
<td>Isopods 12</td>
</tr>
<tr>
<td></td>
<td>C. stellatus stellatus 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. stellatus stellatus 146</td>
<td></td>
</tr>
<tr>
<td>V. Near Manakad, Palk Bay</td>
<td>Littorina scabra 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tectarius malacanus 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Littorina scabra 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tectarius malacanus 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planaxis sulcatus 67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planaxis sulcatus 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cerithium trailii 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cerithium clypeomorus 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cerithium splendidus 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Balamus amphitrite communis 10</td>
<td></td>
</tr>
</tbody>
</table>
algae *Enteromorpha compressa*. The interstitial areas between the boulders are sandy and there is no molluscan fauna here.

Infralittoral fringe—The prosobranchs *Thais rudolphii*, *Pyrene zebra*, *Trochus radiatus*, *Turbo intercostalis* and *Conus coronatus* are present in moderate numbers on the surface of the sandstone boulders. The Vermetid gastropods found on the jetty are represented here also in large numbers in patches. A few individuals of *Petricola lithophaga* are also found boring into soft sandstone. The sponges *Sigmodocea pumila* and *Haliclona temuromosa* are present in large patches in a few places on the top and sheltered sides of boulders. The colonial anthozoan *Gemmaria* sp. has been recorded on the protected vertical surfaces. Besides the above fauna, there is a good growth of algae like *Centroceras* sp. *Amphiroa* sp., *Sargassum wightii*, *Gracilaria corticata* and *Caulerpa racemosa*.

Station III (At the eastern extremity of Quarantine Camp)

In this area the intertidal region is mostly sandy with large sandstone boulders on the landward edge. There are a few, small, flat boulders in the middle part and bigger ones on the seaward side.

Supralittoral fringe—*Littorina scabra* and *L. undulata* are found on the surface of the sandstone boulders in moderate numbers. Some of the liitorinids occur in groups in shady places of the boulders. *Tectarius granularis* and *T. malaccanus* are found in very large numbers. *T. malaccanus* is usually more abundant in the upper portions of the subzone while *T. granularis* is in maximum numbers in lower portions of the subzone which are covered with water at M. H. W. S. The bivalves *Crassostrea cucullata* and *Modiolus striatula* are represented in small numbers. Stray individuals of *C. stellatus stellatus* also occur on a few boulders.

Midlittoral zone—The midlittoral zone is mostly sandy with a certain amount of coral sand, mud and small quantity of organic detritus. *Donax cuneatus*, *D. faba*, polychaetes of *Prionospio* sp. and crabs of *Philyra* sp. have been recorded in small numbers in this subzone. *C. stellatus stellatus* occurs in very much smaller density as compared to at stations I, II and III on the boulders of this zone. *T. granularis*, *Cellana radiata* and *Modiolus striatula* are also found.

Infralittoral fringe—The Vermetid gastropods are found in this station also in large numbers closely packed together on some sandstone boulders. The others represented in this subzone are the prosobranch gastropods *Trochus radiatus* and *Turbo intercostalis*.

Station IV (On the concrete construction east of Station III)

The concrete construction is a tall wall built with granite stones and cement.

Supralittoral fringe—*Littorina scabra* is found in moderate numbers and *T. malaccanus* and *T. granularis* in small numbers. *C. stellatus stellatus* characteristic of midlittoral zone is found in some numbers on parts of the wall in this subzone.

Midlittoral zone—The bottommost 0.3 metre portion of the concrete construction and some sandy region before it constitute this zone. On the former *C. stellatus*
stellatus is found in large numbers but their abundance is not as much as on the pillars of the jetty.

Infra littoral fringe—The prosobranch gastropod *Thais rudolphi* is found in small numbers. A few isopods and amphipods live on the undersurface of stones scattered in the sand. *Enteromorpha compressa* is present in this subzone.

Station V (In Palk Bay near Manakad)

The landward part of the intertidal region is sandy with coral stones scattered in the area. The seaward portion of the intertidal region has a good amount of coral sand, mud and organic detritus with small, dead coral pieces all over the place.

Supra littoral fringe—On the large dead coral stones a few *Littorina scabra*, *Tectarius malaccanus* and *T. granularis* are found. The very low density of *Tectarius* spp. in Palk Bay as compared to the Gulf of Mannar is a striking difference. The probable reason for this is not clear.

Mid littoral zone—*L. scabra* occurs on the coral stones but in very small numbers. Only a few *Tectarius malaccanus* are found on the coral stones. The dominant species in this subzone is *Planaxis sulcatus* which occurs in large numbers. It is a gregarious form found in groups. A few barnacles of the species *Balanus amphitrite communis* are present on dead coral. The others which occur sporadically in the subzone are *Cerithium trilobata*, *Neirla maura*, *Cellana radiata* and *Crassostrea cucullata*. *Enteromorpha compressa* is represented.

Infra littoral fringe—Members belonging to various taxonomic groups occur in this subzone on dead coral stones and in the muddy sand below. On the coral stones the prosobranchs *Planaxis sulcatus*, *Cerithium trilobata*, *C. clypeomorus* and *C. splendidus* are common. *Cerithium* spp. are also found on the undersurface of stones in good numbers and a few on the muddy sand bed. On the coral stones *Cellana radiata* occurs in small to moderate numbers and the chiton *Ischnochiton comptus* and the oyster *Crassostrea cucullata* in small numbers. The prosobranchs *Rissoina berholleti* and *Pyrene diminuta* are present in small to appreciable numbers on the undersurface of stones. *Onchidium verrucatatum* is represented on the undersurface of coral stones. The opisthobranchs *Dendrodiris rubra* and *Discodoris concinna* and the bivalves *Arca avellana* and *A. fusca* occur on the upper and lower surfaces of stones. The opisthobranch *Haminoea tenera* is found on the alga *Gelidiella acerosa*. Stray individuals of *Isognomon isognomum* var. *canina*, *I. isognomum* var. *norma* and *Modiolus striatula* are present in crevices of stones. The Vermetid gastropods which are abundant in the infra littoral fringe in Gulf of Mannar are absent here. The reason for their absence is not known. The sponges *Spongia officinalis* var. *ceylonensis*, *Callyspongia diffusa*, *Hyatella cribriformis*, *Tedania nigrescens*), hydroids, polyzoans and *Balanus amphitrite communis* and *Crassostrea cucullata* are present on the protected and exposed surfaces of coral stones. A few bivalves *Gafriartum tumidum*, *G. pectinatum* and *G. dispar* and small numbers of the polychaetes *Nerelis* sp., *Eunice antennata*, *Prionospio* sp. and *Terebellids* are found in the muddy sand of the subzone amidst coral debris. Good numbers of isopods (*Ligia exotica*) and amphipods are found on the upper and lower surfaces of stones. Moderate numbers of crabs *Metapograpsus thukkur*, *Grapsus strigogus*, *Medaeus* sp., *Thalamita crenata* and *Scylla*
serrata have also been recorded in this subzone. The crabs feed on the prosobranch molluscs Cerithium spp. in the subzone. The algae Enteromorpha compressa and Gelidiella acerosa are common in this sub-zone and Centroceras sp. Chaetomorpha, Cladophora and Sphaelaria are also found.

Habits of Intertidal Molluscs

The bivalves Donax cuneatus, Crassostrea cuchallata, Arca spp., Gaffrarium spp., and Modiolus striatula are suspension feeders feeding on fine suspended organic materials in the sea water. The prosobranch gastropods Littorina scabra, L. undulata, Planaxis sulcatus, Cerithium spp. and Cellana radiata have been found to feed on algae like Chaetomorpha and Enteromorpha compressa. Feeding was more intensive at noon and in the afternoons as compared to morning and has not been observed at the time of storms. P. sulcatus, Cerithium spp., Rissoina bertholletii, Pyrene diminuta and Cellana radiata have been found to feed on organic detritus. In Gulf of Mannar, Turbo intercostalis feeds on the algae Caulerpa racemosa, Gracilaria and Centroceras, Trochus radiatus on Centroceras and Trochus pustulosus on Chaetomorpha and organic detritus; Comus coronatus is carnivorous and eats Terebellid polychaetes. Onchidium verruculatum subsists on organic detritus present in the muddy sand.

Prasad (1957) has studied the variations in air and surface temperatures close to the shore in the Gulf of Mannar and found that surface temperature follows very closely the atmospheric temperature though it has not always been so. He has observed that water temperature increases between January and April and again between August and October and falls in the periods June-July and November-December. In the present work also during the period October-January the air temperature and surface water temperature in the intertidal zone in the intertidal zone in the Gulf of Mannar and Palk Bay have shown similar trends but for some exceptions which may be ascribed to the prevalence of strong winds during the monsoon as mentioned by Prasad (loc. cit.). In the present study the water temperature in the intertidal region has varied between 26° and 31°C in the Gulf of Mannar and between 24.8° and 35.8°C in Palk Bay (readings taken at different periods of the day included). The extent of increase in water temperature in the intertidal zone during daytime is more marked in Palk Bay (2.8–7°) than in the Gulf of Mannar (1.5–2.8°). This is explained by the fact that in Palk Bay the intertidal region is shallow as compared to the Gulf of Mannar. Planaxis sulcatus, Cerithium traulii, Trochus spp., Rissoina bertholletii, Pyrene zebra, Pyrene diminuta and Cellana radiata are more active towards noon and in the afternoon and feed intensively as the water temperature increases. However, even on cloudy days when there was no appreciable increase in temperature there been greater activity of these gastropods towards noon. It is of interest to note that on days when there is a depression in the bay followed by rough sea and rains and chill weather the above gastropods have shown little movement and feeding has not been observed. When the water temperature is low on stormy days Planaxis sulcatus cling firmly in large numbers on the stones above water level to where they are transported by wave action.

The salinity of the sea-water varied between 29.9 and 34.99 %/oo in the Gulf of Mannar and between 22.28 and 35.82 %/oo in the period October-January in
Palk Bay. The minimum value in Palk Bay is much lower than that in the Gulf of Mannar. As mentioned by Jayaraman (1954) in the case of inshore waters of this area there has been a fall in salinity in the period December-January. No well-defined differences have been observed in salinity at low and high tides. Crisp and Southward (1958) working on the intertidal fauna of the English Channel have pointed out that shore organisms are exposed to wide changes in salinity through rainfall and stream water. The marked decrease in salinity in Palk Bay in January does not appear to affect the density of the molluscan fauna.

At low tide Littorina scabra and L. undulata are mostly passive and at high tide they move actively when splashed by waves. These movements are feeding migrations in search of food. The counts of L. scabra and L. undulata taken at fixed areas at successive low tides and high tides showed that changes occurred in numbers following movement of the periwinkles. Such changes take place in other mobile forms like Tectarius spp., Planaxis sulcatus, Cerithium spp., Trochus pustulosus and Cellana radiata also. However, the fluctuations are irregular.

Vertical migration was not perceptible in Littorina spp. in relation to tides. Such a migration has been observed in the case of Planaxis sulcatus which descended by a height of 0.14 metre between high tide and low tide. Like Littorina spp., Planaxis sulcatus, Cerithium trulli, C. epyeomorus and Onchidium fed actively at high tide as the waves splashed. Cellana radiata, Pyrene diminuta and Rissoina bertholleti also showed similar habits.

DISCUSSION

The results obtained in this work clearly show that there is distinct zonation in the occurrence of fauna in the intertidal region in Gulf of Mannar and Palk Bay which is primarily influenced by tides. The three subzones recognized by Stephenson and Stephenson (1949) are discernible in the Mandapam area. In the Gulf of Mannar Littorina spp. and Tectarius spp. characterize the supralittoral fringe, Chthamalus stellatus stellatus, Cellana radiata and Crassostrea cucullata the midlittoral zone and Vermetid gastropods, sponges, and the prosobranchs Drupa tuberculata, Trochus radiatus and Turbo intercostalis along with a good growth of different species of algae Centroceras sp., Amphiroa sp., Gracillaria corticata, Sargassum wightii and Caulerpa racemosa the infralittoral fringe. In the Palk Bay Littorina and Tectarius are the indicator organisms in the supralittoral fringe, Planaxis sulcatus, Crassostrea cucullata and Cellana radiata in the midlittoral zone and Trochus sp., Cerithium spp., Rissoina sp., Pyrene sp., and bivalves (Gafurarium sp., and Arca sp.,) in the infralittoral fringe.

In a few places the rock oyster Crassostrea cucullata a member of the midlittoral zone is found in small numbers in the supralittoral fringe. This is due to the existence of suitable substratum (sandstone boulders) which is an important factor in distribution. Chapman (1943) has termed this factor the presence or absence factors. The same explanation will hold for the midlittoral zone form, Chthamalus stellatus stellatus occurring in the supralittoral fringe on the pillars of the jetty and station IV concrete construction in the Gulf of Mannar. The lower portions of the supralittoral fringe here receive splash and water spray at high tide which enables the barnacles to thrive there.
Stephenson and Stephenson (1952) have further subdivided the mid littoral zone at Marineland into two subzones (an upper one with barnacles, limpets, bivalves and some algae and a lower one with a luxuriant growth of algae) and in Beaufort region into three subzones (Chthamalus, oyster and muddy zones). On the Waltair coast, Rao and Rao (1962) have distinguished three subzones in the mid littoral zone viz. (i) the upper littoral including Littorina, Ostrea, Chthamalus and Chaetomorpha, (ii) the mid littoral with Chthamalus, Cellana, Thais, Drupa, Ulva, Jania and Caulerpa and (iii) the lower littoral with Gemmarea, Balanus tinctumbulum, Drupa, Nerita, Cerithium, Stomopneustes, Gracilaria and Sargassum. However, Umamaheswararao and Sreeramulu (1964) have held that the mid littoral zone of Waltair coast is not further divisible into subzones. In the Mandapam area the mid littoral zone is very narrow and inhabited by C. stellatus stellatus, Cellana, Tectarius spp., Modiolus, Crassostrea and Chaetomorpha in the Gulf of Mannar and Planaxis sulcatus, Littorina sp., Tectarius sp., Nerita, Cellana and Enteromorpha in Palk Bay. There is no vertical stratification in the occurrence of these forms and hence subdivision of the zone is not possible.

The density of the population in any habitat is determined by the prevalence of favourable conditions. The restricted density of Littorina spp. in supralittoral fringe in Gulf of Mannar area may be ascribed to the unfavourable conditions under which they live, the substratum (sandstone boulders) getting heated up very much on most days during day time. In Palk Bay there is very little scope for the species to multiply due to the scantiness of the substratum well above water level. The abundance of Tectarius spp in Gulf of Mannar can be ascribed to the ability of the species which have a shell thicker than Littorina to withstand desiccation and absence of predators. The extreme abundance of the barnacle Chthamalus stellatus stellatus on the pillars of C. M. F. R. I. jetty could be ascribed to good wave action which is known (Southward and Orton 1954) to highly favour settlement of large numbers of C. stellatus on exposed surfaces. Near the pier by the side of the jetty C. stellatus stellatus are found in good numbers on granite stones but in lesser density than on the cement concrete jetty. The rough and uneven surface of the granite stones do not facilitate settlement and survival of the barnacles as much as the smooth cement surface of the pillars of the jetty. For the same reason the barnacles are found in moderate numbers in station IV. The poor numbers of C. stellatus stellatus in station III and the moderate intensity in station II could be ascribed to the movement of interstitial sand over the flat boulders on which the barnacles are present causing mortality. Dead barnacles have been observed in a fixed area in station III (in Gulf of Mannar) examined at periodical intervals.

While C. stellatus stellatus is represented in the intertidal region in the Gulf of Mannar in small or large numbers, it has been found only very rarely in the Palk Bay. Balanus amphitrite commutis is the barnacle which is seen in Palk Bay and it occurs generally in small numbers. The factors responsible for the sporadic occurrence of the barnacles in this area is not quite clear. The soft nature of the dead coral stones which are only available for the settlement of barnacles may not be conducive for their survival. The high content of organic and inorganic suspended matter in the area over muddy sand may also be inimical to barnacles.
ECOLOGY OF INTERTIDAL MOLLUSCS OF GULF OF MANNAR AND PALK BAY

Stephenson and Stephenson (1949, 1952) have recorded that oysters and limpets are abundant in the midlittoral zone in Florida Keys and north Florida. Under tropical conditions in Gulf of Mannar *Crassostrea cucculata* and *Cellana radiata* are represented only in small numbers. The striking difference is understood when it is realized that in Mandapam area the oysters and limpets live under very unfavourable conditions, being exposed to intense heat during day time and the conditions are worse in summer in tropical areas as pointed out in the case of the South African coasts by Stephenson (1943).

The prosobranchs *Trochus radiatus* and *Turbo interostaldis* are present in Gulf of Mannar in the infralittoral fringe where there is excellent growth of the algae *Centroceras*, *Amphiroa* and *Caulerpa racemosa* which constitute their food. The occurrence of large populations of *Planaxis sulcatus*, *Cerithium triali*, *C. clypeomorus*, and *C. splendens* in Palk Bay is favoured by the availability of their food, the algae like *Chaetomorpha*, *Enteromorpha compressa*, *Gelidilla*, *Cladophora* and *Sphacelaria* and organic detritus. However, it may be stated that the density of various species is determined not by just a single factor or a set of a few individual factors but by quite a variety of biotic and abiotic factors constantly tending to alter the ecosystem. Mutual competition of the organisms constituting the ecosystem may bring about drastic changes in its composition and the picture may vary with seasons. In this paper the factors which are of prime importance in the colonization of different subzones of the intertidal region by different organisms are mentioned.

The observations on the habits of intertidal molluscs show that they are influenced by factors like light, geotaxis, high tide, wave action and water temperature changes. *Littorina* spp. and *Tectarius* spp. are usually found in the supralittoral fringe being well-adapted for aerial respiration but they extend into the midlittoral zone also when there is a suitable substratum. Atapattu (1969) has also recorded *Nodilittorina* (*Tectarius*) *granularis* in midlittoral zone on Ceylon coast. *Littorina* spp. and *Tectarius* spp. exhibit negative phototaxis preferring shady crevices. For feeding purposes, however, they come out of crevices. *Littorina* sp. and *Tectarius malaccanus* keep above water level except when feeding exhibiting what Mitsuikuri (1901) has described as negative hydrotaxis in *Littorina exigua*.

Littorina spp. and *Tectarius* spp. are mostly inactive at low tide and actively feed when splashed by waves at high tide. *Planaxis sulcatus*, *Cerithium triali*, *C. clypeomorus*, *Trochus radiatus*, *T. pustulosus* and *Cellana radiata* also exhibit a similar behavior. *Patella vulgaris* is known (Fretter and Graham, 1962) to occur from the highest portions of the intertidal region down to M.L.W.S. and the occurrence of the limpet has been stated to be determined by the extent of water splash. Wave action appears to similarly restrict the distribution of *Cellana radiata* and *Planaxis sulcatus* in Palk Bay between the midlittoral zone and landward portions of the infralittoral fringe.

There is evidence to show that increase in water temperature during daytime is followed by active locomotion and feeding in *Planaxis sulcatus*, *Cerithium triali*, *Trochus* spp., *Cellana* and some other species. Even on cloudy days when there has been no increase in water temperature these molluscs have been more active towards noon and in the afternoons as compared to mornings. This is suggestive of the existence also of an internal rhythm in the organisms that results in active locomotion.
and feeding at particular periods in the day. Weather conditions have been observed to have profound influence on the intertidal molluscs. On days when there is a depression in the bay, and rough sea accompanied by rain the water temperature is low (22.8° to 24.8°C compared to a temperature of 28–31°C on days with fair weather), Littorina spp. and Planaxis sulcatus drifted to big stones along with waves and were attached firmly to the top surfaces of the stones. At such periods feeding does not take place or is very scanty in these species. Cerithium spp. Cellana and Onchidium sp. and some other gastropods also have showed similar behaviour. These observations recall those of Newell (1958) who has observed that Littorina littorea become inactive and cease to feed or move about at about 8°C on north Kent coast due to low temperature.

ACKNOWLEDGEMENTS

We express our sincere gratitude to Dr. S. Jones, Director, Central Marine Fisheries Research Institute for suggesting the problem and for valuable suggestions; to Mr. K. Virabhadra Rao, Senior Research Officer for helpful advice and going through the paper; to Dr. M. Unamaheswara Rao, Assistant Research Officer for helpful discussions and for identifying intertidal algae; and to Dr. P. A. Thomas for identifying the sponges and Mr. G. P. K. Achari for identifying the polychaetes.

REFERENCES

Rao & Sundaram: Ecology of Intertidal Molluscs

--- (1961). The littoral zone on rocky shores—a biological or physical entity? Oikos, 12, 280-301.

