

CMERL SPECIAL PUBLICRTION
Number 7

MANUAL OF RESEARCH METHODS FOR CRUSTACEAN BIOCHEMISTRY AND PHYSIOLOGY

Issuret on the occasion of the Werksbop on CRUSTACEAN BIOCHEMEGTY AND PHYSHOH OGY jointly begatised by
the Department of Zoology. University if Madras atat
the Contre of Advancod Statioc, : Warmontare.
 fieht at Matide trom 8 . 20 : m . 1441

Manual of Research Methods for Crustacean Blochemistry and Physiology

RDTYED BX
M. E. RAVINDRANATH

School of Eumbitology, Departnout of Zaoloos
Univeratty of Madras, Madras 60000's

ISSUED ON THB OCCAMTNT, OP THE WORHSHOP ON CALIEAC WN

(Limated Distribution)

Published by : E. G. SILAS
Director
Central Marine Fisheries
Research Institute
Cochin 682018

PRINTED in miola
at the diocesan press, madras $600007-1981$. C2375.

22.1 Parred SAMple 't'Test

In ' t ' test for mean difference, the significaince of a difference between 2 sample mean is tested. Under certain conditions 2 sets of sample values may be related to one another. Such paired dates may be tested to see if the miean differerice between the pair is significant by different from zéro. i.e. $t=\frac{\text { mean difference between the pairs }}{\operatorname{standard} \text { error of the Ifican difference }}$

1. $x_{1}-x_{5}=y$
2. $\boldsymbol{Z} y$
3. $(\underset{\Sigma}{\prime} y)^{2}$
4. $\boldsymbol{z} y^{2}$
5. $\frac{\sum y^{s}-\frac{\left(\sum y\right)^{n}}{n}}{n-1}=S y$

$$
\therefore \mathrm{t}=\frac{\bar{y}}{\mathrm{Sy}}
$$

22.2. ' t ' Test For Mban Difference

Whether the means of two normally distributed samples are significantly different at a particular level of probability or not may be tested with the following prerequisites.

1. Means of two samples ($\overline{\mathrm{x}}_{1}, \overline{\mathrm{X}}_{2}$), their differences, $\overline{\mathrm{x}}_{1}-\overline{\mathrm{X}}_{1}$.
2. Variance $\left(\mathbf{s}_{\mathbf{1}}^{\mathbf{2}}, \mathrm{s}_{\mathbf{1}}^{\mathbf{2}}\right)$ of two samples i.e.

$$
\frac{\sum x_{1}^{2}-\frac{\left(\sum x_{1}\right)^{3}}{n_{3}}}{n-1}=s_{1}^{2} ; \quad \frac{\sum x_{2}^{2}-\frac{\left(\sum x_{2}\right)^{4}}{n_{2}}}{n_{1}-1}=s_{1}^{2}
$$

* Prepared by M. Arumugam, School of Pathobiology, Department of Zoology, University of Madras, Madras-600 005.

3. The variance of means $\frac{s_{1}^{2}}{n}, \frac{s_{2}^{2}}{n}$ and
4. The variance of the difference between the two means 1 \& 2 (sum of the variances of the samples).
5. Calculating standard error of the difference beween the \therefore variances of the means $\frac{s_{1}^{2}}{n}+\frac{\mathbf{s}_{2}^{2}}{n}$.

5n 6. ' t ' is the ratio of the differences between the means and the standard error of difference between the variances of the means.

$$
t=\frac{\bar{x}_{1}-\dot{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

