NATIONAL SYMPOSIUM ON RESEARCH AND DEVELOPMENT IN MARINE FISHERIES
MANDAPAM CAMP
16-18 September 1987

Papers Presented
Sessions III & IV
NATIONAL SYMPOSIUM ON RESEARCH AND DEVELOPMENT IN MARINE FISHERIES
MANDAPAM CAMP
16-18 September 1987

Papers Presented
Sessions III & IV
Bulletins are issued periodically by Central Marine Fisheries Research Institute to interpret current knowledge in the various fields of research on marine fisheries and allied subjects in India.

Published by
Dr. P. S. B. R. JAMES
Director
Central Marine Fisheries Research Institute
E. R. G. Road
Cochin-682 031, India

Editorial Committee
Dr K ALAGARSWAMI
Dr K ALAGARAJA
Shri M S MUTHU
Dr K J MATHEW
Dr N GOPINATHA MENON

Limited Circulation
A REVIEW OF MARINE FINFISH CULTURE RESEARCH IN INDIA

P. Nammalwar and G. Mohanraj
Central Marine Fisheries Research Institute, Cochin

ABSTRACT
The paper deals with a review of marine finfish culture research for development in India. Information on the marine finfish seed resources and culture potential of the various estuaries, backwaters and coastal waters, the different species of finfishes cultured in mono and polyculture systems and development of technology for the culture of various species of marine finfishes in different culture systems are given. In India, the aquaculture practices so far have mainly dealt with milkfish, grey mullets, Indian Sandwhitting, rabbit fishes, perches and groupers in various ecosystems. Details of methods of pond construction, suitable areas for culture and production, constraints met with in maintenance, management and development of coastal fish farms are presented. The problems in marine finfish culture research for development in India are discussed.

INTRODUCTION
Marine finfish culture which has been an established practice in various parts of India is now undergoing rapid development in order to (i) utilise the extensive areas which are now unutilised but which have possibilities for aquaculture development (ii) to increase the production of animal protein to meet the needs of the fast growing population (iii) to develop special market-oriented products for export and consequently for earning foreign exchange (iv) creating employment opportunities (Pillai, 1972; Qasim, 1975; Silas et al., 1976). Although traditional culture of marine finfishes has been practised in estuaries and coastal areas of Kerala, Goa and West Bengal, the production rate was not high. However, the traditional methods of farming, suitably
modified have shown promising results in certain maritime states.

The scope for an organised system of marine finfish culture in our country was realised by Hornell (1911) who suggested the development of coastal saline swamps, backwaters, estuaries, deltaic marshes and salt pans for the purpose of cultivating saltwater fish. Since then, the Madras Government started a marine fish farm at Hare Island area in 1915, converting some of the lagoons in that area and stocking them with mullets (Mugil spp) and sandwhiting (Sillago spp). The venture was discontinued after a brief period owing to certain unforeseen circumstances. Marine finfish farming in Kerala was started in 1940 at Narakkal, growing mullets and milkfish with encouraging production rate of 1000 kg/ha/yr. The Madras Fisheries Department renewed fish culture experiments in 1944 at Krusadai Island for growing milkfish and mullets. But the recurring hardship of trails and handicaps forced discontinuance of these experiments. Pioneering attempts on marine finfish culture were made at Mandapam, Krusadai Island, Tuticorin, Madras, Calicut, Narakkal and Mangalore. The significant advances and new approaches have been made by the Central Marine Fisheries Research Institute in finfish culture research (James, 1985; Mahadevan, 1985).

In India, an awareness has developed in recent years on the need to carryout aquaculture on scientific basis as a means to augment fish production through various aspect of research. The past experience in farming underlined the need to evolve suitable hatchery techniques and management strategies. The present paper reviews the experimental culture methods in different ecosystems with the naturally available seed of various species of marine finfish.

COASTAL FISH FARM DEVELOPMENT

Tampi (1950) has discussed about the advantages and disadvantages of establishing a marine fish farm with seven culture ponds spread over a total area of 0.38 ha at Mandapam. The low level of biological productivity is attributed to wide fluctuations in salinity often reaching hypersaline conditions combined with very low concentration of essential nutrient salts and their lack of regeneration (Udaya Varma et al., 1963). The development of small experimental fish farm in the same area has been initiated later with a view to construct a viable farm using various techniques including pumping of sea water into the ponds both during day and night. It was proposed to supplement this facility by erecting a few wind-mill pumps. Recently, at Mandapam, the fish farm has been reconstructed and a total number of 28 ponds spread over a total area of about 15 ha have been developed for experimental work on finfish and prawn farming. The bunds of the ponds were turfed with locally available grass to keep the bunds intact (Bonsam, 1985). The coastal fish farm construction and development for marine finfish culture experiments at Mandapam, Tuticorin, Madras, Narakkal and Calicut centres of Central Marine Fisheries Research Institute has been already reviewed (Tampi, et al. 1983). At Tuticorin, a total area of 2.5 ha has been developed at Karapad into 12 ponds for the culture of finfish, prawns and crabs during 1972. At Madras, a total extent of 93 acres of salt water area at Muttukkadu about 35 km south of Madras was acquired during 1982, from the Government of Tamil Nadu. Of this, an area of 13 ha has been developed into ponds for experimental programmes by the Central Marine Fisheries Research Institute. At Calicut, a total number of 13 polyethylene lined ponds covering a waterspread area of 0.4 ha has been developed (Lazarus and Nandakumar, 1987). At Kakdwip and Bokhali in West Bengal and Puri in Orissa, the fish farm construction was made by the Central Inland Fisheries Research Institute (CIFRI, Reports, 1982). At Kakinada, the experimental fish farm was developed by the Central Institute of Fisheries Education (CIFE Reports, 1978). The Tamil Nadu State Fisheries Department has developed the brackishwater fish farm at Santhome, Madras (Evangeline, 1968).
MARINE FINFISH SEED RESOURCES

Survey on the cultivable finfish seed resources of Chanos chanos, Mugil cephalus, Liza macrolepis, Liza parsia, Liza cunnesius, Siganus spp., Etroplus spp and Silago spp have been reported from estuaries, backwaters and coastal waters of India by many earlier workers. (Tampi, 1973; Evangeline et al., 1969; Prabhakara Rao, 1972; Victor Chandra Bose and Venkatesan, 1982 Dorairaj et al., 1984; Silas et al., 1985; Nammalwar, 1986).

Regarding the occurrence and collection of milkfish fry, from several centres along the east and west coasts of India, special mention has to be made of Ramanathapuram and Tirunelveli coastal belt which sustains the maximum population of milkfish seed. The season for the large scale collection of these fry may vary from locality to locality. The peak season in most of the places is from April to July and the secondary season from September to November.

Grey mullets rank next only to milkfish as far as salt water and brackishwater fish farming is concerned. The seed of M. cephalus is abundant only during October-December in the coastal estuaries around Madras. Other grey mullets species such as L. macrolepis, L. parsia, L. tade, L. waigiensis, L. cunnesius and V. seiheli occur for the greater part of the year. (Nammalwar et al., MS).

MARINE FINFISH CULTURE RESEARCH IN VARIOUS ECOSYSTEMS

Monoculture

At Krusadai Island and Mandapam, monoculture of C. chanos in ponds at the stocking density of 500-1000/ha was conducted (Devanesan and Chacko 1944; Chidambaram and Unni, 1946; Chacko and Mahadevan, 1956). The average monthly growth rate was 14.1-27.0 mm. The production details of these early experiments, however, are not available. At Mandapam, monoculture of milkfish in ponds at the stocking density of 6250-12,500/ha was conducted during 1958-59 despite the poor water quality of the soil, meagre organic content, low nutrient level and hypersaline conditions for most part of the year (Tampi, 1980). The monthly average growth was 18.3 mm. The production was 121 to 466 kg/ha.

At Madras, six monoculture experiments with milkfish at the stocking density of 906-38402/ha were conducted (Evangeline, 1967). According to one monoculture experiment with milkfish conducted at the brackishwater experimental fish farm of the Central Inland Fisheries Research Institute, at Kakdwip, an estimated production of 710 kg/ha was obtained by supplementary feeding at a stocking density of 3000 nos/ha (Anon, 1978). At Kakinada, in four monoculture experiments with milkfish, wherein the stocking density was 5000/ha the average monthly growth ranged between 20.6 and 23.6 mm (Dwivedi et al., 1980). At Tuticorin, in two monoculture experiments, milkfish was stocked at the rate of 7820/ha and 75,490/ha and the production ranged between 318 and 857 kg/ha (Bensam and Marichamy, 1981). At Calicut, in polythene lined ponds milkfish was stocked at the density of 5600/ha and the average monthly growth was 32.5 mm/28.3 g. The production was 920 kg/ha (Lal Mohan and Nandakumaran, 1981). At Mandapam, in two monoculture experiments, the milkfish was stocked at the rate of 4000/ha, and the average monthly growth of 15.2 mm (58 g) in one experiment and 23.9 mm (31.2 g) in the other was reported. The production was 216 and 852 kg/ha (Mohanraj et al., 1983; Gandhi and Mohanraj, 1986). Further, Lazarus and Nandakumaran (1987) reported that in six monoculture experiments with milkfish, the production rates ranged between 1765 kg/ha/yr and 4663 kg/ha/yr in different stocking regimes.

In the six monoculture experiments with grey mullets, L. waigiensis and Vemamugil saiheli, the stocking density ranged between 22,000 and 50,000/ha (James et al., 1985 a). The average monthly growth was 3.5 mm (1 g) for L. waigiensis and 3.5 to 12.6mm for V. saiheli. The production ranged between 135 and 782 kg/ha. At Madras, monoculture of milkfish under the stocking density of 3000/ha recorded the average monthly growth of 33 mm/12.7 g.
The production was 45 kg/ha (Nammalwar and Kathirvel, MS). Further, four monoculture experiments with milkfish were conducted (Nammalwar et al., MS). The mean monthly growth rate ranged from 14.6 to 31.6 mm (6.6-18.0 g) and the production was 60-385 kg/ha. In two monoculture experiments with Lates calcarifer, the stocking density ranged from 1500 to 7500/ha. The production was from 2000-2500 kg/yr (Anon, 1985). In another four monoculture experiments with grey mullets, M. cephalus and L. macrolepis, the stocking density ranged from 1500 to 7500/ha. The monthly average growth was 41.1 mm/12.6 g for M. cephalus and 19.4 mm (7.1 g) to 22.3 mm (8.5 g) for L. macrolepis. The production was from 72-226 kg/ha (Nammalwar et al., MS).

Polyculture

In two polyculture experiments at Sunderbans grey mullets, craps and prawns altogether yielded a total production range of 139.8-1549.6 kg/ha (Pakrasi et al., 1975). At Mangalore, in a polyculture experiment, C. chanos, L. macrolepis, S. sihama and P. indicus were stocked in ponds at the stocking density of 1000-3600/ha (Ramamurthy et al., 1978). The average monthly growth rates for the above species were 57.4 mm, 28.2 mm, 6.7 mm and 10.6 mm respectively. At Madras, two polyculture experiments with C.chanos and P.indicus with the same stocking density of 3500/ha and 70,000/ha were carried out (Sunderarajan et al., 1979). The average monthly growth rates were 62.2 mm/82.21 g & 43.5 mm/37.5 g for milkfish and 15.8 mm (1.8 g) to 29.8 mm (2.5 g) for prawns. The estimated production rates were 705-1038 kg/ha for milkfish and 135-312 kg/ha for prawn. At Tuticorin, in a polyculture experiment, C. chanos, L. macrolepis and S. serrata with the stocking density of 1450, 3000 and 617/ha were conducted (Marichamy et al., 1980). The average monthly growth rates were found to be 14.9 mm/8.6 g, 25.6 mm/21.6 g and 12.4 mm/6.5 g. The estimated total production was 1644 kg/ha. In three other polyculture experiments at Tuticorin, C. chanos, M. cephalus and P. indicus with the stocking density of 3500-4982, 2428-7384 and 43,200-76,382/ha, the average monthly growth rates were 32.4 mm/27.4 g, 24.8 mm/9.1 g and 25.3 mm/22.2 g for milkfish. 26.6 mm/19.1 g, 30.5 mm/22.2 g and 20.1 mm/14.1 g for mullets and 9.1 mm/1.5 g and 10.3 mm/2.2 g for prawn. The estimated total production of 498 to 682 kg/ha of milkfish, mullet and prawn was obtained (Marichamy and Rajapackiam, 1982 a & b).

At Madras, in four polyculture experiments with C.chanos, L. macrolepis, M. cephalus, P. indicus and P. monodon, an estimated production of 218 to 1617 kg/ha was obtained by Ramakrishna et al., (1982). At Calicut Lal Mohan and Nandakumaran (1981) conducted live polyculture experiments with milkfish, mullet and prawn in polythene lined ponds but no production results were mentioned. At Sunderbans, in a polyculture experiment, milkfish, mullet, craps and prawn together yielded the production of 1390 kg/ha (Pitai et al., 1985).

At Madapam, six polyculture experiments with L. macrolepis, V. seheli, C. chanos, S. sihama and P. indicus were conducted (James et al., 1984 a; 1984 b). In the first experiment L. macrolepis and V. seheli were stocked in association with C. chanos and P. indicus at the stocking rate of 13,000, 2000, 22,000 and 7,000/ha. The average monthly growth rate of 10.7 mm/6.4 g, 13.6 mm/8.6 g, 20.1 mm/15.6 g and 10.5 mm/2.3 g was recorded for L. macrolepis, V. seheli, C. chanos and P. indicus respectively. The total production was 1464 kg/ha. In the second experiment, V. seheli, C. chanos and S. sihama were stocked at the stocking density of 17,000/ha each. The average monthly growth increment for the above species were found to be 10.2 mm/4.3 g and 17.3 mm/9.5 g and 9.2 mm/2 g respectively. The total production was 1865 kg/ha. In the rest of the four experiments C. chanos and V. seheli were stocked with the stocking density of 8333/ha and 7777/ha. The monthly average growth of C. chanos and V. seheli ranged from 20.7-27.7 mm/20.6-25.9 g and 14.8-16.9 mm/6.8-10.6 g respectively. The total production ranged between 1378 and 1580 kg/ha.
At Madras, in two polyculture experiments, *C. chanos* and *P. monodon* were stocked at the rate of 5000/ha and the monthly average growth was 22.4 mm/6.3 g in one experiment and 34.4 mm/15.1 g in the other for milkfish. In the case of *P. monodon*, the recorded monthly mean growth was 16.9 mm/2.1 g in one experiment and 19.5 mm/17.7 g in the other. The total production was 69 and 183 kg/ha (Nammaiwar and Kathirvel, M.S). Further, in seven polyculture experiments with *M. cephalus*, *L. macrolepis* and *L. cunneus* at the stocking density of 2500 to 50,000/ha the monthly average growth was 17.0-40.1 mm/7.4-29.3 g for *M. cephalus*; 16.1-23.4 mm/4.9-12.2 g for *L. macrolepis* and 10.3-15.8 mm/2.9-6.8 g for *L. cunneus* (Nammaiwar *et al.*, M.S). Lazarus and Nandakumar (1987) reported that in polyethylene film ponds a maximum production of 100.4 kg/ha/211 days and 137.3 kg/ha/169 days was obtained in polyculture experiments with *C. chanos* and *P. indicus*.

PEN CULTURE

At Tuticorin, in two polyculture experiments *C. chanos* and *Mugil* spp. were stocked at the rate of 10,000 and 15,000/ha in pens erected with split-bamboo screens (Shanmugam and Bensam, 1982). The average monthly growth rates for the above species were found to vary between 27 and 51 mm (7.48 g) and 23 and 29 mm (18.26 g) respectively. At Mandapam, five monoculture experiments in net pens with *C. chanos* were conducted (Lai Monan, 1983). The average monthly growth ranged from 33.8 to 60.9 mm (30.6-57.1 g). Further, *C. chanos*, *V. seheli* and *S. sihama* were stocked at a density of 50,000/ha in a pen made of palmyrah leaf stalks (James *et al.*, 1984a). The average monthly growth increments for *C. chanos*; *V. seheli* and *S. sihama* were 22.7 mm/10.3 g, 28.9 mm/10.5 g and 16.8 mm/3.1 g respectively. At Mandapam, the results of one mono and one polyculture experiments with *C. chanos* and *Mugil* spp. in bamboo pens indicated that the average monthly growth increments for *C. chanos* was 42.3 mm (24.7 g) and 50.0 mm (63.4 g). For *Mugil* spp. the mean growth recorded was 18.3 mm/4.7 g (Venkataraman *et al.*, 1985). Except for the details of growth of milkfish and mullet, production data are not available for these experiments.

CAGE CULTURE

At Mandapam, experiments were designed to investigate the possibilities of culturing some economically important marine fishes in low cost cages, erected in coastal waters. Rabbit fishes, *Siganus canaliculatus*, *S. javus*, Groupers, *Epinephelus teuvinas* and *E. hexagonatus* and sandwhiting, *Sillago sihama* were cultured in the cages (James *et al.*, 1985b). The average monthly growth increments for *S. canaliculatus* and *S. javus* were 8.5 mm/3.1 g and 5.6-8.2 mm/2-3.1 g respectively. The mean monthly growth for *E. teuvinas* and *S. sihama* were 19 mm/87.3 g and 10 mm/1.6 g respectively.

PROBLEMS AND CONSTRAINTS

The problems and possibilities of culture of marine fishes in India have been discussed by Tampi (1967, 1969), Jhingran (1969), Nair and Bensam (1974), Sekharan (1976), James (1983) and Marichamy (1987). The major problem in the culture of marine fishes in India is the task of locating suitable sites for culture. The straight coast line without indentations does not provide suitable sheltered areas and calm conditions for erection of structures like pens and cages in coastal waters.

The major constraint in the construction of ponds for farms so far developed has been water management. In many places the tidal amplitude is not sufficient to bring the optimum water exchange in the ponds. Consequently the ponds have to be periodically deepened and repaired due to damages caused by monsoon floods every year at considerable cost. Many salt water farms are virtually enclosed systems for most part of the year due to closure of the bar mouth and also insufficient tidal flow when the bar mouth is open. In the lagoon at Mandapam and Muttukadu similar problem exists. The fish ponds at Mandapam and Muttukadu do not have enough exchange of

BULLETIN 44

431
water due to constant sand accumulation at the main sluice. In Tuticorin farm also water exchange is poor. Similar conditions prevail in the farms of other areas also. Layout of farms is different from centre to centre and the pond sizes vary widely. The facilities created at different centres are also not a uniform standard and everywhere they fall far short of the requirements. Though extensive survey on the occurrence and abundance of cultivable seed resources have been made, informations are still lacking in some areas which are essential prerequisites for large scale culture of marine finfishes.

Research studies on marine finfish culture have been restricted to only a few species of grey mullets and milkfish mostly. More emphasis is now being laid on the rabbit fish, perches, groupers and sandwhiting. There is a need to identify and propagate selected fast-growing species for culture under different conditions. Nutritional requirements of various cultivable finfish species and the preparation of artificial feeds are to be standardised. In most of the ponds, flooding during south west and north east monsoon seasons occurred and caused damage to the bunds and fish stocks in the ponds necessitating repair and maintenance. Poaching of the cultured finfishes also has often been a source of loss in production. The economic feasibility of marine finfish culture in various ecosystems has not been worked out so far. However, with the constraints so identified, present culture experiments conducted in various ecosystems are aimed at working out these details, leading to further development.

REFERENCES

ANON. 1978. Brackishwater prawn and fish farming. All India coordinated Research Project. Third workshop, CIFRI and Kerala Agricultural University, Cochin.

CENTRAL INLAND FISHERIES RESEARCH INSTITUTE 1952. Annual Reports, Barrackpore.

DORAIRAJ, K.G., G. MOHANRAJ, V. GANDHI, A. RAJU, V. S. RENGASWAMY AND JOSEPH XAVIER RODRIGO. 1984. On a potentially rich milkfish seed collection ground near Mandapam along with the methods of collection and transportation. Indian J. Fish. 31 (2) : 257-271.

BULLETIN 44 433

