SYMPOSIUM ON

CRUSTACEA

PART II

MARINE BIOLOGICAL ASSOCIATION OF INDIA MARINE FISHERIES P.O.. MANDAPAM CAMP INDIA

PROCEEDINGS

OF THE

SYMPOSIUM ON CRUSTACEA

held at
ERNAKULAM

PART II

SYMPOSIUM SERIES 2

MARINE BIOLOGICAL ASSOCIATION OF INDIA MARINE FISHERIES P.O., MANDAPAM CAMP india

distribution of sex ratios of penaeld prawns in the trawl fishery OFF COCHIN*

M. J. George and P. Vedavyasa Rao**
Central Marine Fisheries Research Institute, Mandapam Camp, India

Abstract

Sex ratio data of four species of penaeid prawns Metapenaens dobsoni, Penaeus indicus, Parapeneopsis stylffera and Metapenaeus affinis in the trawl fishery catches of Cochin for 1962 and 1963 are analysed statisticafly and it is found that in the former three species the distributions of the sexes are significantly different from what could be accounted for by binomial theory and in Metapenaeus affints alone the sexes are more or less evenly distributed throughout the year. It is suggested that the differential sex ratios in the fishing grounds may be brought about by the segregated sex movements for breeding.

In sex ratio studies in which monthly samples are collected and analysed for sex ratio estimation, different monthly samples may give different estimates of sex ratio. It is possible that either the sex ratios are distributed according to the binomial theory and the apparent difference in the monthly sex ratios are due to sampling fluctuations or the sex ratios are not distributed according to the binomial theory due to an actual change in the concentration of the sexes.

Sex ratios of the four species of penaeid prawns, viz., Metapenaeus dobsoni, Metapenaeus affinis, Penaeus indicus and Parapeneopsis stylifera in the commercial trawl fishery in Cochin area for the years 1962 and 1963 have been analysed in order to determine whether or not they were distributed binomially. Tables I a to d give the sex ratios of the different species during the different months of off-shore catches. From the tables it is evident that the ratio of males vary considerably in different months in most of the species. To test if the variation in the monthly sex ratios could be expected from binomial theory or not, x^{2}-statistics given below was calculated:

where x_{i} is the number of males in the " i "-th month, n_{i} is the total number of observations in the " i "-th month, $p=\sum x_{i} / \sum n_{i}$ (Cochran, 1954) and $q=(1-p)$. The x^{2} values of each species with the associated degrees of freedom are given in Table 11 separately for 1962 and 1963. Significance tests at a probability level of 0.01 show that the variations in sex ratios in different months in the case of the three species M. dobsoni, P. sitylfera and P. indicus were significantly different from what could be accounted for by binomial distribution. But the variation in monthly sex ratios in the case of M. affinis was not found to be significantly different from the expected binomial ratios.

If the sex ratios are distributed according to the binomial theory, the estimate of variance of sample estimate of the sex ratio is given by $\boldsymbol{v}(p)=p q / n$, where, p is the sample estimate of mate ratio, $q=1-p$ measuring the estimate of female ratio and ' n ' the sample size. This formula is not valid if the distribution is not binomial, unless individual prawns are sampled at random. In actual practice cluster sampling is resorted to. In this case Cochran (1953) has given the following formula for estimation of variance of p.

[^0]Table I
Showing the sex ratios of the different species for 1962 and 1963

Months		1962			1963		
		Sample size	Males	Ratio	Sample size	Males	Ratio
	(a) M. dobsoni						
			428	0.43	1,047	519	0.49
February		1,057	466	0.44	1,222	432	$0 \cdot 35$
March		1,743	553	0.32	1,997	389	0.39
April		-919	416	0.45	1,009	385	0.38
May		1,127	536	0.48	1,069	456	0.43
June November		846	553	0.65	50	39	$0 \cdot 78$
November		271	150	$0 \cdot 55$	167	98	0.59
December		390	247	0.63	196	94	0.48
	(b) M. affinis						
January		205	109	0.53	287	- 132	0.46
February		200	103	0. 51	331	187	0.56
March		323	178	0.55	297	131	0.44
April		55	18	$0 \cdot 33$	384	204	$0 \cdot 53$
May		545	265	0.49	377	189	0. 50
June		285	152	$0 \cdot 53$	97	41	$0 \cdot 42$
September		1	1	1.00	is	\because	- 47
October		442	217	0.49	15	7	$0 \cdot 47$
November		446	223	0.50	97	49	0. 50
December		635	324	$0 \cdot 51$	44	27	$0 \cdot 61$
	(c) P. stylifera						
January		33	9	$0 \cdot 27$	41	17	0.41
February		43	8	$0 \cdot 19$	29	16	0.55
March		108	47	$0 \cdot 43$	141	65	0.46
April		49	- 25	$0 \cdot 51$	251	32	$0 \cdot 13$
May	-	401	174	0.43	31	13	0.42
June		818	423	$0 \cdot 52$	24	10	0.42
September		515	238	0.46			
October		778	419	0.54	125	80	0.64
November		574	348	0.61	177	118	0.67
December		326	170	0. 52	18	14	$0 \cdot 78$
	(d) P. indicus						
January		247	144	0.58	- 82	50	$0 \cdot 61$
February	,	115	82	$0 \cdot 71$	46	30	$0 \cdot 65$
March		40	22	0.55	15	6	6. 40
April		2	1	0.50	143	71	0.49
May		9 18	5 9	0.55 0.50	84	28	$0 \cdot 33$
October		18	9 2	0.50 1.00	\cdots	\ldots	\ldots
November		5	1	$0 \cdot 20$	\because	\cdots	\ldots
December		153	117	$0 \cdot 76$	8	2	0.25

Table II
Showitg the values of x^{2} for different species for 1962 and 1963

Species	1962			1963		
	Degree of freedom	Value of x^{2}	Significant or not	Degree of freedom	Value of x^{2}	Significant or not
M. dobsoni	7	333.519	Significant	7	$110 \cdot 740$	Significant
M. affinis	9	14.892	Non-significant	8	17.752	Non-significant
P. stylfera	9	$66 \cdot 082$	Significant	8	29.566	Significant
P. indicus	8	$22 \cdot 273$	Significant	5	$20 \cdot 118$	Significant

$$
v^{\prime}(p)=\frac{1}{k(k-1) \dot{n}^{2}}\left(\Sigma x_{4}^{2}+p^{2} \Sigma n_{4}^{2}-2 p \Sigma x_{i} n_{i}\right)
$$

where k is the number of clusters sampled. Table III gives the value of $v(p)$ and $v^{\prime}(p)$ in the case of all the species studied.

Table III
Showing the valtes of $\mathrm{v}(\mathrm{p})$ and $\mathrm{v}^{\prime}(\mathrm{p})$ for different species for 1962 and 1963

Species		1962		1963	
		$v(p)$	$v^{\prime}(p)$	$v(p)$	$v^{\prime}(p)$
M. dobsont	\cdots	0.0000338	0.001967	$0 \cdot 0000423$	0.000574
M. affinis	\cdots	0.0000798	$0 \cdot 00077$	$0 \cdot 9001295$	0.000338
P. stylffera	\cdots	0.0000686	0.000451	$0 \cdot 000295$	$0 \cdot 001305$
P. indicus	.	0.0003859	$0 \cdot 005584$	0.000661	$0 \cdot 006130$

For all the species it is found that $v^{\prime}(p)$ is greater than $v(p)$. This shows that the two sexes are distributed in greater patchiness in different months than expected by binomial theory.
x^{2} tests have shown that the same sex ratio is not maintained throughout the fishing season in the case of the three species M. dobsoni, P. stylifera and P. indicus. Menon (1957) sludying the inshore prawn fishery of Cochin area observed the occurrence of difference in the sex ratios of all these species as well as M.affinis especially in the larger size groups. It is possible that the difference in sex ratios observed may be due to an actual change brought about byinshore-off shore movements of these prawns as suggested by Menon (op.cit.). A close examination of Table $1 a$ will reveal that in the case of M. dobsoni the ratio of males is high in the fishing grounds in the months June and November-December. In other words females are less abundant here during these months. According to George (1962) these are the months of peak breeding season for this species in this area. Hence it is possible that this difference in sex ratio may be due to the movement of females in larger numbers to deeper waters for spawning. In the other species P. stylifera and P. indicus also the differential sex ratio can be explained to be due to breeding movements. In P. stylifera the female ratio is less in the exploited ground, as can be seen from Table I c, in October to December which is the peak breeding season of this species on the Malabar Coast as observed by Menon (1953). In the case of P. indicus the peak breeding months in Cochin area is November-December and February (George, 1962) when females are noticed to be less in the trawl catches (Table Id). However, it is interesting to note that in the case of M. affinis alone the x^{2} value is non-significant thereby indicating that this species does not appear to segregate by sex in the trawling area. This apparent difference in this particular species may be due to the fact that the breeding of this species does not take place anywhere near the present area exploited by the trawl fishery, so that segregated movements for breeding does not take place in this ground. The insignificant number of post-larvae of this species in comparison to the others entering the backwaters near the fishing area further strengthen this point of view.

The authors wish to express their gratitude to Shri S. K. Banerji for advice on statistical methods and for critical review of the manuscript.

References

Cochran, W. G. 1953. Sampiling Techniques. John Wiley and Sons, Inc., New York, Xiv +330 pp .
-__ 1954. Some methods for strengthening the common x^{2} tests. Biometrics, 10: 417-451.
George, M. J. 1962. On the breeding of penaeids and the recruitment of their post-larvae into the backwaters of Cochin. Indian J. Fish., 9 (1): 110-116.
Menon, M. K. 1953. Notes on the bionomics and fishery of the prawn Parapencopsis stylfepa (M. Edw.) on the Malabar coast. J. Zool. Soc. India, 5(1): 153-162.
-1957. Contributions to the biology of penaeid prawns of the South-west coast of India. I. Sex ratio and movements. Indian J. Fish., 4(1): 62-74.

[^0]: * Published with the permission of the Director, C.M.F.R. Institute, Mandapam Camp.
 ** Present Address: C.M.F.R. Sub-station, Ernakulam-6.

