# Evolution of Fisheries and Aquaculture in India



N.G.K. Pillai & Pradeep K. Katiha

# **Evolution of Fisheries** and Aquaculture in India

N.G.K. Pillai

Central Marine Fisheries Research

Pradeep K. Katiha

Central Inland Fisheries Research Institute, Kochi Institute, Barrackpore













# Evolution of Fisheries and Aquaculture in India N.G.K. Pillai and Pradeep K. Katiha\*

Published by

Prof. (Dr.) Mohan Joseph Modayil Director Central Marine Fisheries Research Institute, Kochi - 682 018

Pillai, N.G.K and Pradeep K. Katiha 2004. Evolution of Fisheries and Aquaculture in India, p 240. Central Marine Fisheries Research Institute, Kochi - 18, India

© 2004, Central Marine Fisheries Research Institute, Kochi

ISBN: 81-901219-4-4

Printed at Niseema Printers and Publishers Kochi - 18

<sup>\*</sup> authorship in alphabetical order

## Pipeline technologies - marine

### Marine

Technologies are being constantly evolved, refined and upgraded with the cooperation of fishermen and R&D organisations in the fisheries sector. Many of these have been perfected to particular needs of the fishing/ farming groups and to suit particular agro-climatic zones of the country. Some of these technologies in the pipeline include:

### Capture fisheries sector

- Conversion of trawlers into longliners using monofilament long lines
- Seasonal conversion of bottom trawlers into drift gill netters targetting tunas and seerfishes along the southeast coast of India and purse seiners to trawlers along upper southwest coast of India.
- Conversion into or introduction of large plank-built boats (using plywood) with in-board engines (100-120 h.p.) and power winches for operating large seines in deeper grounds of the shelf for target resources along the south west and south east coasts of India.
- Upgradation of existing medium size trawlers for deep sea fishing.

### Culture fisheries sector

- Organic farming technology for the culture of shrimps without the use of drugs and chemicals in any stage of their life cycle
- Development of cost effective ecofriendly shrimp feed
- Production of transgenic shrimps/fishes/crabs and establishment of cell lines of crustaceans for pathogenicity studies
- Domestication of commercially important shrimp species in a biosecurity environment and production of Specific Pathogen Fre e post larvae under controlled conditions
- Tissue culture of abalone Haliotis varia and pearl oyster Pinctada fucata

- Half pearl production in Haliotis varia
- Black pearl production in Pinctada margaritifera
- On-shore culture of pearl oyster and production of pearls of desired colours
- Development of alternatives for bivalve culture- Flexible Plastic Strips (FPS) for seeding mussels instead of coir or nylon ropes, pre-stitched cotton nets to put mussel seeds for attachment
- Hatchery technology for cuttlefish Sepiella inermis
- Hatchery technology for ornamental gastropod Babylonia spp.
- Integrated fish and bivalve culture in brackishwater ponds Fishes like pearl spot Etroplus suratensiscan be cultured in cages between mussel or oyster seeded ropes on racks.
- Broodstock development, maturation, sex reversal, spawning and larval rearing of groupers
- Triploid strains of edible oyster and pearl oyster through gene manipulation
- Sea crab and mud crab hatchery technology
- Sand and spiny lobster hatchery technology
- Domestication and selective breeding of selected penaeids shrimps.

All these technologies offer scope for increased income generation and availability of cheap protein food for marginalised fishing communities.

### **Processing Sector**

Prospective products listed by CIFT with technologies in the pipeline are

- Coated products- fish fingers, fish balls, cutlets
- Extruded products –noodles, wafers, flakes
- Fish Mince and Mince based products
- Fish wafers and soup powder
- Battered and breaded products

