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Introduction

Modeling more than one time series together,
termed as vector time series, is done to explore the
relationship between the time series and to examine
the structure responsible for their dynamic
movement. Two major reasons for modeling and
analysing more than one time series sequences
together are (i) to understand the dynamic
relationships among the different time series
components, and (ii) to improve the accuracy of
forecasts of one series by utilizing the information
about that series contained in all other time series.
Stergiou (1991) used vector autoregressions to
describe and forecast sardine anchovy complex in
the eastern Mediterranean. Using a VAR (6) model
with two variables, he could explain 98% and
72% of variability in the catches of anchovy and
sardines respectively. In this study, vector time
series models of the type VAR (Vector
Autoregressive model) were fitted to time series
data on quarterwise landings of selected marine
fish species/groups along the Kerala coast,
southwest coast of India, to explore the relationship
between the time series and to examine the structure
responsible for their dynamic movement. The
selection of the species/groups for the analysis

were made based on their commercial importance,
contribution towards total landings and biological
aspects such as food and feeding habits, prey-
predator relation etc. The species/groups selected
for the study were the oil sardine, Indian mackerel,
anchovies, lesser sardines, ribbonfishes, tuna,
seerfish and elasmobranchs.

Being plankton feeders, the oil sardine,
mackerel, lesser sardine and anchovies compete
for food. Elasmobranchs, seerfish and ribbonfish
are predators of oil sardine and mackerel. Lesser
sardines and juveniles of ribbonfish feed on
postlarvae of anchovies and adults of ribbonfishes
feed on adults of anchovies. Seerfish
(Scomberomorous guttatus) and tuna (Auxis

thazard) also feed on anchovies. The lesser sardines
are Sardinella fimbriata, Sardinella albella and
Sardinella sirm. The important anchovies are
Stolephorus indicus, Stolephorus devisi,
Stolephorus waitei and Stolephorus bataviensis;

the important seerfish are Scomberomorus

commerson, S. guttatus and S. lineolatus and the
important tunas are Auxis thazard, Auxis rochei,
Katsuwonus pelamis, Euthynnus affinis, Thunnus

orientalis, Thunnus obesus and Thunnus tonggol.
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Abstract

Vector Autoregressive (VAR) type of models are used here to model and discover the relationships between
landings of eight commercially important marine fish species/groups using quarterwise landings in Kerala
during 1960-2005. Four different VAR models consisting of 4 time series each were developed and based
on the significance of elements of parameter matrices in the model, constrained re-estimation was carried
out to reduce the number of parameters. These models resulted in 16 individual models consisting of lagged
terms of different landings time series and their relationships and influence on dynamic behavior of
individual series were examined. Inter-dependence among component series was evident from these mod-
els as individual models contain lagged terms of other series.
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Materials and Methods

A set of k time series components is represented

by a vector,                               termed as

vector of time series. For stationary vector time
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at lag l. Estimate of elements of the lag l cross
correlation matrix based on a sample of size T is
computed as
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where,    is the sample mean of the component
ith series.

A stationary vector time series 
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components can be modeled by a vector
autoregressive model of order p denoted by
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independently and identically distributed random
innovation vectors having mean vector zero and
constant covariance matrix Σ. The condition
for stationarity of VAR(p) model, (Reinsel, 1993),
is that the determinantal polynomial
det (I - Φ

1
x - ...− Φ

p
xp) = 0 have all its roots out

side the unit circle.

In the present study the parameter matrices of

the fitted VAR(p) models were estimated by
generalized least square method (Reinsel 1993)
and estimate of innovation dispersion matrix was

obtained as  where

 and . For

large sample sizes under stationarity and
Gaussian assumption, the approximate large

sample distribution of   the estimate of

 is and

this property was used to compute the standard
errors of the estimates.

For selection of the order parameter p of vector
autoregressive models, different order selection
criteria were used. If is the maximum
likelihood estimator of the innovation dispersion
matrix Σ obtained by fitting a VAR(p) model to
the data, then the Akike’s AIC criterion (Akike,
1979) was calculated as

The other two criteria used are the Bayesian
information criterion, BIC suggested by Schwarz’s
and the HQ criterion proposed by Hannan and
Qunin. These criteria were calculated as

                                             and

The orders that yield minimum value for these
criteria were selected as the suitable order for the
model.

Time series data on quarterwise landings of the
selected species /groups in Kerala during 1960-
2005 were transformed by taking a 4 point moving
sum of natural logarithm and standardized for unit
variance before fitting VAR models. Natural
logarithm was taken to reduce the variability in
individual series and 4 point moving sum was
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z
i

−

...

...

... .

AIC(p) = ln(|Σ
(p)

|)+2(pk2+k)/T
∼

BIC(p) = ln(|Σ
(p)

|)+ln(T)(pk2+k)/T
∼

HQ(p) = ln(|Σ
(p)

|)+2ln(ln(T))(pk2+k)/T
∼

′



199

Journal of the Marine Biological Association of India (2007)

Vector time series modeling of marine fish landings

taken to remove seasonality. Four different vector
time series models were attempted each consisting
of four time series sequences. The first set was
consisting of plankton feeders, the second group
carnivores and the last two groups were consisting
of two prey and two predator type combinations.
For each set, suitable order for models were selected
based on AIC, BIC and HQ criteria by considering
orders up to lag 5 and parameters of VAR models
were estimated by Generalized Least Square.

Results and Discussion

Model for oil sardine, lesser sardine, anchovies

and mackerel:   The three order selection criteria
were computed using the vector time series
consisting of oil sardine, lesser sardine, anchovies
and mackerel as elements of the vector. The
minimum AIC and HQ values for this vector series
were for order 5 but the minimum BIC was for
order 2. Since VAR(5) model consists of too many
parameters the model considered was VAR(2) model.

The expression for the VAR(2) model is

where 

are the parameters (first is a vector with 4 elements
and others are square matrices of order 4 × 4 with
16 elements) and Σ is the innovation dispersion
matrix (a symmetric square matrix of order 4×4
with 10 distinct elements). Estimates of parameter
matrices and innovation dispersion matrix of the
model are given in Table 1 along with estimates of
standard errors in parenthesis. Since a VAR(2) model
for this data set contains 36 elements in its
parameter matrices, which are not all significant a
constrained estimation by setting the non-
significant elements to zero was made. These
estimates along with the new estimates of standard
errors and the estimated innovation dispersion
matrix are given in Table 1. Individual models for
the four components, ‘oil sardine, lesser sardine,
anchovies and mackerel’ of the vector series are
the first four models given in Table 2. From the
individual models (series: 1 to 4) shown in Table
2, it can be seen that all the series depend on its
past at lag 1 and also at lag 2 in some cases. This
is partially due to the pre-processing of the
quarterwise time series by taking a four point

moving sum to remove seasonality in the data.
Inter-dependence of component series is evident
from most of the models as the individual series
models contain in some cases lagged terms of other
series.

Model for elasmobranchs, ribbonfish, seerfish

and tuna:  The order selection criteria AIC and HQ
had minimum values for VAR(5) model whereas
the BIC criterion had minimum value for VAR(1)
model. The VAR(1) model,  was
then selected as the suitable model for this vector
time series and model parameters estimated are
given in Table 3 along with the estimates of
standard errors and estimate of innovation
dispersion matrix. Out of the 20 parameter elements
in the model, only 8 were found significant and
hence the model parameters were re-estimated by
constraining the non-significant elements to zero.
These estimates and the standard errors are also
given in Table 3 with the estimate of innovation
dispersion matrix. Individual models for the
components, ‘elasmobranchs, ribbonfish, seerfish
and tuna’ of the vector model (series: 5 to 8) are
given in Table 2.

Model for oil sardine, anchovies, ribbonfish

and seerfish:  For the vector time series consisting
of oil sardine, anchovies, ribbonfish and seerfish,
the order selection criterion AIC had minimum
value for VAR(5) and the HQ and BIC criterion had
minimum values for VAR(2). Hence, the model
selected for this data set is VAR(2),

and the parameters
estimated for the model are given in Table 3. Out
of the 36 parameter elements in the model, only 15
were found significant. Constrained estimation was
carried out by setting the non-significant parameter
elements into zeroes and the new estimates are
also given in Table 4 along with the estimate of
innovation dispersion matrix. The four models
corresponding to the individual elements, ‘oil
sardine, anchovies, ribbonfish and seerfish’ of the
vector (series: 9 to 12) are given in Table 2 along
with the percentage of variation explained by the
models.

Model for elasmobranchs, lesser sardine,

mackerel and tuna:  Selection of the order for the
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vector series consisting of elasmobranchs, lesser
sardine, mackerel and tuna based on the three
criteria yielded VAR(5) model for both AIC and
HQ criteria and BIC criterion suggested VAR(2)
model. For reasons of parsimony VAR(2) model,

was selected and model
parameters estimated are given in Table 5. Only 16

out of the 36 parameter elements were found
significant and hence the parameters were re-
estimated by constraining the non-significant
elements to zeros. The new estimates and the
estimate of innovation dispersion matrix are also
given in Table 5. Individual models representing
the component series, ‘elasmobranchs, lesser

Table 1. Estimate of constant vector δ and parameter matrices Φ
1
and Φ

2 
with estimates of standard errors of elements

in parenthesis for the VAR(2) model fitted for the vector series consisting of oil sardine, lesser sardine, anchovies

and mackerel. The constrained re-estimates after setting the non-significant elements to zero and the estimate

of innovation dispersion matrix Σ are also given
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Table 2. Individual models derived from the four set of vector models fitted and the percentage of variation in each

series explained by the models (   ’s are the standardized 4 point moving sums of log transformed landings)

sardine, mackerel and tuna’ of the VAR(2) model
(series: 13 to 16) are given in Table 2 along with
percentage of variations explained by each model.

The above four sets of models give rise to 16

individual models (Table 2) for the eight series
considered, giving two models for each series. For
example, the two models 1 and 9 depict the
dynamics of oil sardine series. Model 1 reveals

First set – Model for oil sardine, lesser sardine, anchovies and mackerel

Second set – Model for elasmobranchs, ribbonfish, seerfish and tuna

Third set – Model for oil sardine, anchovies, ribbonfish and seerfish

Fourth set – Model for elasmobranchs, lesser sardine, mackerel and tuna
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Table 3. Estimate of constant vector δ and parameter matrix Φ
1
 with

estimates of standard errors of elements in parenthesis for the

VAR(1) model fitted for the vector series consisting of

elasmobranchs, ribbonfish, seerfish and tuna. The constrained

re-estimates after setting the non-significant elements to zero

and the estimate of innovation dispersion matrix Σ are also

given

that, the oil sardine series is influenced by (i) its own past
values at lags 1 and 2 and (ii) the past values of anchovies at
lag 2. Since oil sardine and anchovies are considered again in
the third set, (i) and (ii) are evident from model 9 also, with
almost identical coefficients for the terms representing (i) and

(ii). In addition, model 9 reveals that
the oil sardine series is influenced by
(iii) past values of seerfish at lags 1
and 2. From these results we can
conclude that in addition to the effect
of its own past values the oil sardine
series is influenced by past values of
anchovies at lag 2 and past values of
seerfish at lags 1 and 2. The sign of
the coefficients of the terms in the
model indicates whether the influence
is beneficial or not and the strength
of the influence is indicated by the
absolute value of the coefficient. Thus
high landings of anchovies in one
year is expected to marginally reduce
the landings of oil sardine two years
later whereas, the influence of seerfish
landings on oil sardine landings is of
mixed nature since the coefficients for
lag 1 and lag 2 are of different signs
with almost equal absolute values.
When there is high catch of the
predator (seerfish) in the previous year,
causing reduction in their population
size, the population of the prey (oil
sardine) in the current year in the sea
is expected to increase so that more
oil sardine is available for exploitation
resulting in increased landings of oil
sardine. Similarly, if there are low
landings of seerfish in the previous
year and high landings in the year
prior to that, we expect low landings
of oil sardine in the current year. The
same argument holds good for this
situation also.

Individual models for lesser sardine
series are models 2 and model 14.
From these models it is evident that
lesser sardine series depends on its
own past values and it does not
depend on any other series considered.
From models 3 and 10 it can be seen
that anchovies series is influenced by
past values of oil sardine series at lag
1 and its own past values at lag 1. For
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Table 4. Estimate of constant vector d and parameter matrices F
1 

and F
2 

with estimates of standard errors of elements

in parenthesis for the VAR(2) model fitted for the vector series consisting of oil sardine, anchovies, ribbonfish

and seerfish. The constrained re-estimates after setting the non-significant elements to zero and the estimate of

innovation dispersion matrix ∑ are also given

increased landings of oil sardine we can expect
slightly increased landings of anchovies in the
next year. From models 4 and 15 representing
mackerel series we see that apart from own past
values at lags 1 and 2 the mackerel series is
influenced by past values of anchovies at lag 1
and past values of both elasmobranchs and tuna at

lags 1 and 2. An increased landing of anchovies is
expected to cause a slightly increased landing of
mackerel in the coming year and there is mixed
type of influence of landings of elasmobranchs
and tuna on future mackerel landings as the signs
of coefficients are different for lags 1 and 2.
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Table 5. Estimate of constant vector δ and parameter matrices Φ
1 

and Φ
2 

with estimates of standard errors of elements

in parenthesis for the VAR(2) model fitted for the vector series consisting of elasmobranchs, lesser sardine,

mackerel and tuna. The constrained re-estimates after setting the non-significant elements to zero and the estimate

of innovation dispersion matrix Σ are also given

From models 5 and 13, we find that the
elasmobranch series is influenced by only its own
past values at lags 1 and 2. Models 6 and 11
representing ribbonfish series reveals that it
depends on its own past values at lag 1 and 2 and
past values of anchovies at lag 2. Increase or

decrease in the landings of anchovies is expected
to cause slight increase or decrease in the landings
of ribbonfish after two years. Models 7 and 12
represent the seerfish series and from these models
it can be seen that apart from own past values at
lags 1 and 2, the seerfish landings depends on past



205

Journal of the Marine Biological Association of India (2007)

Vector time series modeling of marine fish landings

values of tuna at lag 1, past values of oil sardine
at lags 1 and 2 and past values of anchovies at lag
1. Thus, higher landings of anchovies is expected
to cause slightly increased landings of seerfish in
the next year and there is mixed type of influence
of oil sardine landings on future landings of seerfish
since the coefficients representing lagged terms of
oil sardine in the model are positive and negative
respectively for lags 1 and 2. From models 8 and
16 representing the tuna series, we see that it
depends on its own past values at lag 2, past
values of ribbonfish at lag 1, past values of lesser
sardines at lags 1 and 2 and past values of
elasmobranchs at lag 2.
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