# PCR-based sex determination of cetaceans and dugong from the Indian seas

## P. Jayasankar<sup>1,2,\*</sup>, B. Anoop<sup>1</sup> and M. Rajagopalan<sup>1</sup>

<sup>1</sup>Central Marine Fisheries Research Institute, P.B. No. 1603, Ernakulam North PO, Cochin 682 018, India <sup>2</sup>Present address: Division of Fish Genetics and Biotechnology, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India

A sex-determination technique based on PCR amplification of genomic DNA extracted from the skin tissue has been standardized in cetaceans and dugong sampled from the Indian seas. A Y-chromosome-specific region (SRY or Sex-determining Y-chromosome gene) of 210-224 bp size in the genome has been amplified (only in males) using specific PCR primers. A fragment of the ZFX/ZFY (zinc finger protein genes located both on the X and Y chromosomes respectively) region in the size range 442-445 bp is also amplified (in both sexes) using another pair of primers simultaneously as positive controls for confirmation of sex. Molecular sexing was standardized in spinner dolphin (Stenella longirostris), bridled dolphin (Stenella attenuata), bottlenose dolphin (Tursiops aduncus), Indo-Pacific humpbacked dolphin (Sousa chinensis), Risso's dolphin (Grampus griseus), finless porpoise (Neophocaena phocaenoides), sperm whale (Physeter macrocephalus), blue whale (Balaenoptera musculus), Bryde's whale (Balaenoptera edeni) and dugong (Dugong dugon), which are all vulnerable/endangered species protected under the Indian Wildlife Act.

**Keywords:** Conservation, marine mammals, PCR-based sex determination, vulnerable/endangered species.

SEX identification is of fundamental importance in studies on population structure, social organization, distribution, behaviour and heavy metal accumulation in marine mammals<sup>1</sup>. However, distinguishing the males and females among these animals is difficult due to the poor sexual dimorphism, especially during their free-ranging state<sup>2</sup>. Direct anatomical evidence of an individual's sex comes only from a full-ventral inspection of its genital region and such opportunities are limited during field observations; unless the animal rolls and remains inverted at the surface<sup>3</sup>, its genital region is visible only to an underwater observer, and that too only at a close range<sup>4</sup>. Nonmolecular methods of sex identification have proved difficult and often unreliable. By examining the carcass remains of stranded/beach-cast cetaceans, which are often at decomposition levels, accurate assessment of reproductive organs is not possible. Though the individual may be inferred to be a female if it is observed near a calf<sup>5,6</sup>, such

inferences are troublesome for some species like the sperm whale, in which 'babysitting' males are possible<sup>7</sup>.

Karyological identification of sex, though successful in some species of marine mammals<sup>8,9</sup>, requires obtaining viable fibroblast tissue for cell culture, restricting its usefulness under many field conditions. The early molecular sexing techniques applied to cetaceans required Southern hybridization using probe derived from the human Y-chromosome<sup>10</sup> and amplification and then restriction digests of a fairly long fragment of the *ZFX/ZFY* genes<sup>11</sup>. Other techniques based on PCR amplification of sexspecific DNA fragments used genes *Amg*<sup>12</sup>, *ZFX/ZFY*<sup>2,13–16</sup> and *Sry*<sup>17</sup>.

In the present study, Y-chromosome-specific SRY locus was amplified simultaneously with the homologous ZFX/ZFY genes on the X-chromosome of females (ZFX) and XY chromosomes of males (ZFX/ZFY) as positive control, for the absolute confirmation of sex. Females lack a Y-chromosome and the test is based on the absence of a SRY product in females. This method was successful in identifying the sex of several mammalian groups 13,18. One set of primers amplifies a fragment from the ZFX/ ZFY genes in males and females<sup>13</sup>. The other set amplifies a much shorter fragment from the SRY gene in males only. Because the test with the SRY primers is based on the absence of the shorter SRY product in females, the ZFX/ZFY primers act as internal positive control to show that the lack of the former is not due an amplification failure and demonstrate the presence of amplifiable DNA in the PCR reaction.

Skin samples of the animals were obtained from either incidental fishery kills or from stranding (Table 1), and were stored in 70% ethanol for subsequent analysis. Total genomic DNA was extracted using the standard phenolchloroform method<sup>19</sup>, with slight modifications. Briefly, about 25 mg of skin tissue was extracted with a buffer (0.1M NaCl, 10 mM Tris HCL and 1 mM EDTA) and 10% SDS and digested by proteinase K (10 mg/ml) at 65°C for 3 h followed by phenol, chloroform: isoamyl alcohol extractions and alcohol precipitation. The genomic DNA was amplified by a duplex PCR reaction using two sets of primers to detect sex-specific markers. The technique used in the present study was adapted from Gilson et al.<sup>20</sup>, with some modifications. The annealing temperature of 60°C proposed in the original method was reduced to 58°C. Each primer concentration was 60 pmol in the original method, while it was 25 pmol each in the present study.

The amplifications were performed under the following conditions: A reaction volume of 20  $\mu$ l containing 10–100 ng of extracted genomic DNA template, 10 mM of Tris-HCl (pH 9.0), 50 mM KCl, 1.5 mM MgCl<sub>2</sub>, 0.01% gelatin, 240  $\mu$ M each of dATP, dTTP, dCTP and dGTP, 1 U of HotStart Taq DNA polymerase and 25 pmol each of forward and reverse primers for both sets. The primer sequences for  $SRY^{20}$  were F 5' CCC ATG AAC GCA TTC ATT GTG TGG 3' and R 5' ATT TTA GCC TTC CGA

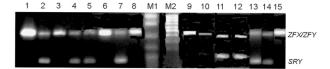
Table 1. Particulars of gender identification carried out by external examination and PCR method in cetaceans and dugong during the present study

|                          |                            |                      | Identified sex <sup>1</sup> |        |
|--------------------------|----------------------------|----------------------|-----------------------------|--------|
| Species                  | Place of sample collection | Sample code assigned | By E.I <sup>2</sup>         | By PCR |
| Tursiops aduncus         | Vizhinjam                  | Viz1                 | Female                      | Female |
| T. aduncus               | Kakinada                   | VRC/Dol/01           | Female                      | _      |
| T. aduncus               | Chennai                    | CHO4                 | Male                        | Male   |
| T. aduncus               | Chennai                    | CHO8                 | Male                        | Male   |
| Stenella longirostris    | Kakinada                   | VRC/Dol/05           | Male                        | Male   |
| S. longirostris          | Kakinada                   | VRC/Dol/04           | Female                      | =      |
| S. longirostris          | Kakinada                   | VRC/Dol/07           | Female                      | =      |
| S. longirostris          | Kakinada                   | VRC/Dol/06           | Female                      | =      |
| S. longirostris          | Chennai                    | CHO2                 | Male                        | =      |
| S. longirostris          | Chennai                    | CHO3                 | Male                        | =      |
| S. longirostris          | Mangalore                  | MNG3                 | =                           | Male   |
| S. longirostris          | Chennai                    | CH6                  | Male                        | Male   |
| S. longirostris          | Chennai                    | CHO7                 | Female                      | Female |
| S. longirostris          | Chennai                    | СН9                  | Female                      | Female |
| S. longirostris          | Chennai                    | CH10                 | Female                      | Female |
| S. longirostris          | Chennai                    | CH11                 | Male                        | Male   |
| S. longirostris          | Chennai                    | CH12                 | Male                        | Male   |
| S. longirostris          | Chennai                    | CH13                 | Male                        | Male   |
| S. longirostris          | Chennai                    | CH17                 | Male                        | Male   |
| S. longirostris          | Chennai                    | CH18                 | Male                        | Male   |
| S. longirostris          | Chennai                    | CH19                 | Male                        | Female |
| Stenella attenuata       | Chennai                    | CH5                  | Male                        | Male   |
| Delphinus capensis       | Kakinada                   | VRC/Dol/03           | Female                      | -      |
| D. capensis              | Malpe                      | MNG18                | Female                      | -      |
| Sousa chinensis          | Gangoli                    | MNG 4                | Male                        | Male   |
| S. chinensis             | Mangalore                  | MNG16                | Female                      | Female |
| Grampus griseus          | Chennai                    | CHO1                 | Male                        | Male   |
| G. griseus               | Chennai                    | CH15                 | Female                      | Female |
| Neophocaena phocaenoides | Gangoli                    | MNG5                 | Male                        | Male   |
| N. phocaenoides          | Gangoli                    | MNG6                 | Male                        | Male   |
| N. phocaenoides          | Gangoli                    | MNG7                 | Male                        | Female |
| N. phocaenoides          | Gangoli                    | MNG8                 | Male                        | Male   |
| N. phocaenoides          | Gangoli                    | MNG9                 | Male                        | Male   |
| N. phocaenoides          | Gangoli                    | MNG10                | Male                        | Male   |
| N. phocaenoides          | Gangoli                    | MNG11                | Male                        | Male   |
| N. phocaenoides          | Gangoli                    | MNG12                | Female                      | Female |
| N. phocaenoides          | Malpe                      | MNG13                | Female                      | Female |
| N. phocaenoides          | Malpe                      | MNG14                | Female                      | Female |
| N. phocaenoides          | Mangalore                  | MNG15                | Female                      | Female |
| N. phocaenoides          | Mangalore                  | MNG17                | Male                        | Male   |
| Physeter macrocephalus   | Chennai                    | CHWI                 | =                           | Female |
| Balaenoptera musculus    | Mandapam                   | M5                   | Male                        | Male   |
| B. edeni                 | Mandapam                   | M6                   | _                           | Male   |
| Dugong dugon             | Mandapam                   | M4                   | Female                      | Female |

<sup>&</sup>lt;sup>1</sup>Dash indicates either absence of external identification or failure of PCR to identify the sex.

CGA GGT CGA TA 3' and those for ZFX/ZFY<sup>13</sup> were F 5' ATA ATC ACA TGG AGA GCC ACA AGC T 3' and R 5' GCA CTT CTT TGG TAT CTG AGA AAG T 3'. The temperature profile for the amplifications was 94°C for 1 min followed by 35 cycles of 94°C for 45 s, 58°C for 45 s, 72°C for 1 min and finally 72°C for 7 min. The amplification products were resolved in 1.2% agarose gel and stained with ethidium bromide.

The perfect molecular sex marker would: (1) amplify diagnostic products in one step, in order to be fast, cheap


and sample-conserving, (2) produce at least one product that exists in both sexes, to provide an internal positive control, (3) amplify small products (100–300 bp) likely to be present in degraded DNA and (4) be diagnostic in a range of species<sup>21</sup>. The markers visualized in the present study qualify all these conditions.

In the present study, the *SRY* gene had a size ranging from 210 to 224 bp, which was present only in males, whereas the *ZFX/ZFY* locus was longer with a size range of 442–445 bp and appeared in both sexes (Figure 1).

<sup>&</sup>lt;sup>2</sup>External identification.

|                          | Number of individuals sexed by PCR |        | Size of SRY band (bp) |     | Size of ZFX/ZFY band (bp) |     |
|--------------------------|------------------------------------|--------|-----------------------|-----|---------------------------|-----|
| Species                  | Male                               | Female | Mean                  | SD  | Mean                      | SD  |
| Tursiops aduncus         | 2                                  | 1      | 224                   | 2.1 | 443                       | 0.7 |
| Stenella longirostris    | 8                                  | 4      | 222                   | 1.7 | 444                       | 0.8 |
| S. attenuata             | 1                                  | =      | 222                   | 0   | 444                       | 0   |
| Sousa chinensis          | 1                                  | 1      | 220                   | 0   | 443                       | 0   |
| Grampus griseus          | 1                                  | 1      | 215                   | 0   | 444                       | 0   |
| Neophocaena phocaenoides | 7                                  | 5      | 222                   | 1.2 | 444                       | 0.5 |
| Physeter macrocephalus   | =                                  | 1      | =                     | _   | 445                       | 0   |
| Balaenoptera musculus    | 1                                  | =      | 210                   | 0   | 445                       | 0   |
| Balaenoptera edeni       | 1                                  | =      | 210                   | 0   | 445                       | 0   |
| Dugong dugon             | _                                  | 1      | _                     | _   | 442                       | 0   |

Table 2. Particulars of PCR-based gender identification in different species of marine mammals



**Figure 1.** PCR amplification of *SRY* and *ZFX/ZFY*-specific fragments in different species of cetaceans and dugong. Lane 1, Female finless porpoise; lane 2, Male finless porpoise; lane 3, Female spinner dolphin; lane 4, Male spinner dolphin; lane 5, Male bottlenose dolphin; lane 6, Female bottlenose dolphin; lane 7, Male Indo-Pacific humpbacked dolphin; lane 8, Female humpbacked dolphin; lane 9, Female Risso's dolphin; lane 10, Female dugong; lane 11, Male blue whale; lane 12, Male Bryde's whale; lane 13, Male Risso's dolphin; lane 14, Male bridled dolphin and lane 15, Female sperm whale. M1, pBR322 DNA/*MSPI* digest and M2, 100-bp DNA ladder.

PCR appears to favour the amplification of the shorter fragment, i.e. the *SRY* fragment. Hence, false female positive tests never resulted from male DNA. This further supports the reliability of this system with two sets of primers<sup>20</sup>. The present results also indicate the presence of longer *SRY* fragment in dolphins and porpoise compared to that in sperm whale and baleen whales, whereas there was no size difference of the *ZFX/ZFY* fragment (Table 2).

The sex determination method used in this study for cetaceans and dugong is technically simple, requiring only PCR amplification and agarose gel electrophoresis. By using HotStart *taq* enzyme, the specificity of PCR could be improved as the process would discourage non-specific annealing.

Testing the technique using samples of known sexes (determined by physical examination of stranded/accidentally caught individuals) from ten cetaceans and dugong indicated that this sexing method was effective across a broad taxonomic range. The method can provide the secondary confirmation necessary for positive sex identification in marine mammal specimens, or a primary method where accurate field observation of sex is not possible. In three cases, one each of spinner dolphin, sperm whale and Bryde's whale specimens, where external sex determination was not possible, molecular sexing

was done. In two cases, one each spinner dolphin and finless porpoise, PCR-based method revealed erroneous sexing by external examination. Upon re-examining these specimens it was found that external determination of sex was wrong due to partial mutilation of the body. PCR method could not be wrong because co-amplification of internal control ensures success of PCR reaction. However, in 8 individuals molecular sexing failed probably due to the highly deteriorated condition or non-availability of gDNA of the particular specimens. It is expected that the PCR-based sex determination method standardized in the present work would help in the studies of conservation, population structure and forensic issues of marine cetaceans and dugong.

- Rosel, P., PCR-based sex determination in Odontocete cetaceans. Conserv. Genet., 2003, 4, 647–649.
- Gowans, S., Dalebout, M. L., Hooker, S. K. and Whitehead, H., Reliability of photographic and molecular techniques for sexing northern bottlenose whales (*Hyperoodon ampullatus*). Can. J. Zool., 2000, 78, 1224–1229.
- Clapham, P. J. and Mayo, C. A., Reproduction and recruitment of individually identified humpback whales, *Megaptera novaean-gliae*, observed in Massachusetts Bay, 1979–1985. *Can. J. Zool.*, 1987, 65, 2853–2863.
- Glockner, D. A., Determining the sex of humpback whales (Megaptera novaeangliae) in their natural environment. In Communication and Behaviour of Whales (ed. Payne, R.), AAAS Selected Symposium, Westview Press, Colorado, 1983, pp. 447–464.
- Slooten, E., Dawson, S. M. and Whitehead, H., Associations among photographically identified Hector's dolphins. Can. J. Zool., 1993, 71, 2311–2318.
- Knowlton, A. R., Kraus, S. D. and Kenney, R. D., Reproduction in North Atlantic right whales (*Eubalaena glacialis*). *Can. J. Zool.*, 1994, 72, 1297–1305.
- Whitehead, H., Babysitting, dive synchrony, and indications of alloparental care in sperm whales. *Behav. Ecol. Sociobiol.*, 1996, 38, 237–244.
- Lambertsen, R. H., Baker, C. S., Duffield, D. A. and Chamberlin-Lea, J., Cytogenetic determination of gender among individually identified humpback whales (*Megaptera novaeangliae*). Can. J. Zool., 1988, 66, 1243–1248.
- Arnason, U., Bellamy, H., Eythorsson, P., Lutley, R., Sigurjonsson, J. and Widegren, B., Conventionally stained and C-banded karyotypes of a female blue whale. *Hereditas*, 1985, 102, 251–253.

### RESEARCH COMMUNICATIONS

- Baker, C. S., Lambertsen, R. H., Weinrich, M. T., Calambokidis, J., Early, G. and O'Brien, S. J., Molecular genetic identification of the sex of humpback whales (*Megaptera novaengliae*). Report of International Whaling Commission, Special Issue No. 13, 1991, pp. 105-111.
- Palsbøll, P. J., Vader, A., Bakke, I. and El-Gewely, M. R., Determination of gender in cetaceans by the polymerase chain reaction. *Can. J. Zool.*, 1992, 70, 2166–2170.
- Sullivan, K., Mannucci, A., Kimpton, C. and Gill, P., A rapid and quantitative DNA test: Fluorescence-based PCR analysis of X-Y homologous gene amelogenin. *Biotechniques*, 1993, 15, 636-642.
- Aasen, E. and Medrano, J. F., Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. *Biotechniques*, 1990, 8, 1279–1281.
- Berube, M. and Palsboll, P., Identification of sex in cetaceans by multiplexing with three ZFX and ZFY primers. *Mol. Ecol.*, 1996, 5, 283–287.
- Shaw, C., Wilson, P. J. and White, B. N., J. Mammal., 2003, 84, 123–128.
- Morin, P. A., Nestler, A., Robertson, K. M. and Mesnick, S. L., A reliable molecular method of gender determination for mammals. *Mol. Ecol.*, 2005, 14, 3275–3286.
- Richard, K. R., McCarrey, S. W. and Wright, J. M., DNA sequence from the SRY gene of the sperm whale (*Physeter macro-*

- cephalus) for use in molecular sexing. Can. J. Zool., 1994, 72, 873-877.
- Fain, S. R. and LeMay, J. P., Gender identification of humans and mammalian wildlife species from PCR amplified sex linked genes. *Proc. Am. Acad. Forensic Sci.*, 1995, p. 34.
- Sambrook, E., Fritsch, F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Press, Cold Spring Harbour, New York, 1989.
- Gilson, A., Syvanen, M., Levine, K. and Banks, J., Deer gender determination by polymerase chain reaction: Validation study and application to tissues, blood stains and hair forensic samples from California. *Calif. Fish Game*, 1998, 84, 159–169.
- Villesen, P. and Fredsted, T., A new sex identification tool: One primer pair can reliably sex ape and monkey DNA samples. Conserv. Genet., 2006, 7, 455–459.

ACKNOWLEDGEMENTS. The present study was funded by the Ministry of Earth Sciences, Government of India. We are thankful to the Director, CMFRI, Cochin for facilities, Susana Caballero for useful technical suggestions and E. Vivekanandan, P. K. Krishnakumar, P. L. Kumaran, P. Reynold, K. M. M. Yousuf, Anoop A. Krishnan and V. V. Afsal for providing tissue samples and for useful interactions.

Received 3 August 2007; revised accepted 24 March 2008

# **CURRENT SCIENCE**

### **Display Advertisement Rates**

#### India

| No. of insertions Size |              | Tariff (rupees) |                    |              |                 |              |             |  |
|------------------------|--------------|-----------------|--------------------|--------------|-----------------|--------------|-------------|--|
|                        | Inside pages |                 | Inside cover pages |              | Back cover page |              |             |  |
|                        | Size         | B&W             | Colour             | B&W          | Colour          | B&W          | Colour      |  |
| 1                      | Full page    | 10,000          | 20,000             | 15,000       | 25,000          | 20,000       | 30,000      |  |
|                        | Half page    | 6,000           | 12,000             | _            | _               | _            | _           |  |
| 6                      | Full page    | 50,000          | 1,00,000           | 75,000       | 1,25,000        | 1,00,000     | 1,50,000    |  |
|                        | Half page    | 30,000          | 60,000             | <del>-</del> | _               | _            | · · · · · — |  |
| 12 Full page           | Full page    | 1,00,000        | 2,00,000           | 1,50,000     | 2,50,000        | 2,00,000     | 3,00,000    |  |
|                        | Half page    | 60,000          | 1,20,000           | <del>-</del> | · · ·           | <del>-</del> |             |  |

### **Other Countries**

| No. of insertions Size | Tariff (US \$) |      |                    |      |                 |      |        |
|------------------------|----------------|------|--------------------|------|-----------------|------|--------|
|                        | Inside pages   |      | Inside cover pages |      | Back cover page |      |        |
|                        | Size           | B&W  | Colour             | B&W  | Colour          | B&W  | Colour |
| 1                      | Full page      | 300  | 650                | 450  | 750             | 600  | 1000   |
|                        | Half page      | 200  | 325                | _    | _               | _    | _      |
| 6                      | Full page      | 1500 | 3000               | 2250 | 3500            | 3000 | 5000   |
|                        | Half page      | 1000 | 2000               | _    | _               | _    | _      |

**Note:** For payments towards the advertisement charges, Cheques (local) or Demand Drafts may be drawn in favour of 'Current Science Association, Bangalore'.