Dr. K Vinod Principal Scientist & Head, ICAR-CMFRI, Mandapam RC

Introduction

The seahorses have increasing demand in the international market as they are highly sought after for use in traditional Chinese Medicines (TCM), marine aquarium trade and as curios. Globally, studies have indicated depletion of seahorse population in the wild, due to their heavy demand in the international export market and the consequent over-harvest from the wild. The last global assessment of seahorses conducted in 2016 by Project Seahorse with the IUCN SSC Seahorse, Pipefish and Seadragon Specialist Group established that atleast one-third of the 41 species then recognised were threatened (2 are Endangered, 12 are Vulnerable, 17 are Data Deficient, 10 are Least Concern). In India, a total of seven species have been reported *viz., Hippocampus kuda, H. trimaculatus, H. spinosissimus, H. histrix, H. kelloggi, H. mohnikei* and *H. camelopardalis* and of these, except for one species (*H. camelopardalis*), all the other species are listed as Vulnerable in the IUCN Red List of Threatened Species (Table 1).

Sl.	Species	Common	IUC	Status in the	CITES
No		Name	Ν	Indian Wildlife	
			Red	(Protection)	
			List	Act, 1972	
			Statu		
			s		
1.	Hippocampus kuda	Spotted	VU	Schedule I	Appendix II
	Bleeker, 1852	seahorse			
2.	Hippocampus trimaculatus	Longnose	VU	Schedule I	Appendix II
	Leach, 1814	seahorse			
3.	Hippocampus spinosissimus	Hedgeho	VU	Schedule I	Appendix II
	Weber, 1913	g			
		seahorse			
4.	Hippocampus histrix	Thorny	VU	Schedule I	Appendix II
	Kaup, 1856	seahorse			
5.	Hippocampus kelloggi	Great	VU	Schedule I	Appendix II
	Jordan & Snyder, 1901	seahorse			
6.	Hippocampus mohnikei	Japanese	VU	Schedule I	Appendix II
	Bleeker, 1853	seahorse			
7.	Hippocampus camelopardalis	Giraffe	DD	Schedule I	Appendix II
	Bianconi, 1854	seahorse			

Table 1. List of seahorse species reported from India

2024

MARBIE 2

Habitat

The seahorses belong to the family Syngnathidae, which also encompasses pipefishes and seadragons. The members of Syngnathidae are generally found distributed from 50° North to 50° South latitude, with most species occurring in Western Atlantic Ocean and Indo-Pacific region. Seahorses are generally marine, except for some, which are found in estuaries. The seagrasses, seaweeds and coral reefs are the preferred habitats of seahorses, while some species are also found in the mangroves. Some of them are found to be associated with soft bottom communities such as sponges, sea squirts and gorgonids.

Feeding in seahorses

The seahorses are slow moving and hold on to the hold-fast using their prehensile tail. Most seahorses are active during day and feed on tiny organisms that come on their way. They feed on small crustaceans, fish fry and invertebrates (Tipton and Bell, 1988; Vincent, 1996; Do et al., 1998; Teixeira and Musick, 2001). They also have the ability to camouflage and change their colour in minutes to match their surroundings.

Reproduction

The seahorses show peculiar breeding behaviour in that the males becomes pregnant and give birth to young ones. They show highly structured social behaviour and male and female seahorses form faithful bonds. Most species of seahorses are monogamous (Vincent, 1994; Vincent and Sadler, 1995; Masonjones and Lewis, 2000); after pairing, the adult male and female remain as partners and mate successive times during the entire breeding season and sometimes even during successive breeding seasons. If one of the pair dies, the remaining partner will take many weeks to find a replacement (Vincent and Sadler, 1995).

The seahorses attain its first maturity and starts breeding at an age of six months to one year (Jiaxin, 1990; Lourie et al., 1999). Sexual maturity in male can be recognised by the appearance of brood pouch. The fecundity is low and the eggs are large, pear-shaped, orange and semi-transparent. Mating occurs after an elaborate courtship, and the female deposits her entire egg clutch into the male's brood pouch where it gets fertilized. The embryonic development takes place inside the male's brood pouch. The gestation period ranges from 12 to 15 days at a temperature of 28 to 20°C. At the end of pregnancy, the males expel the young ones from the brood pouch through muscular contractions, during the late night or early morning hours. The young ones look like miniature adult seahorses, 6 to 12 mm long. Most of the seahorse species produce about 100 to 300 young ones per pregnancy.

Commercial uses of seahorse

The seahorses form the major constituents in the Traditional Chinese Medicines (TCM). TCM is practised in China, Hong Kong, Taiwan, Singapore and ethnic communities worldwide. In the Central Philippines, seahorses are used to treat

asthma, gas pains and hyperactivity (Alino et al., 1990). The seahorses are also one of the most popular fishes in the marine aquarium trade. Their peculiar body features like the horse-like head, tubular snout, prehensile tail and camouflaging behaviour make them a favourable choice of marine aquarium hobbyists. The dried seahorses are also used as curios like key chains, paper weights and jewellery and are kept as souvenirs in beach side shops and resorts in many countries.

Taxonomy of seahorses

Identification of species of seahorse is very important for the sustainable fisheries management and to achieve long-term conservation goals. The habitat requirements, reproductive behaviour etc. may differ from one species to the other, and hence the right species identity is a pre-requisite.

Morphological characteristics

The seahorse has peculiar body characteristics with a horse-like head, tubular snout, bony plates and a prehensile tail. Hence, unlike other teleost fishes, the morphological characteristics which are considered for the identification of seahorses are slightly different. The spines, rings, coronet and tubercles are some of the key characteristics which are used in the identification of species. The important morphological characteristics are given in figure 1 and table 2.

Characteristics	Description
Height	Distance from the tip of the coronet to the tip
	of the uncurled tail
Operculum	Flap that covers the gill slits
Keel	Sharp median ridge running down the ventral
	side of the trunk (in some species)
Tubercles	Raised rounded nodules located at the
	intersections of rings and ridges (in some
	species)
Dorsal fin rays	Bones supporting the dorsal fin
Pectoral fin rays	Bones supporting the pectoral fin
Coronet	Large crown-like structure found on top of the
	head (in some species)
Eye spines	Spines found directly above the eye
Nose spine	Single spine located in front of the eyes on the
	upper side of the snout (in some species)
Cheek spines	Spines located at the bottom of the operculum
	on each side of the head
Cleithral ring	Bony ring just behind the operculum

Table 2. Morphological characteristics of seahorse

	· · · · · · · · · · · · · · · · · · ·
Trunk rings	Raised bony ridges that encircle the body
Tail rings	Raised bony ridges encircling the tail of the
	seahorse
Snout length	Distance between the bump immediately in
	front of the eye (not the nose spine) to the tip
	of the snout
Head length	Distance from the mid-point of the cleithral
	ring to the tip of the snout
Trunk length	Distance from the mid-point of the cleithral
	ring to the lateral mid-point of the last trunk
	ring
Tail length	Distance between the lateral mid-point of the
	last trunk ring to the tip of the uncurled tail

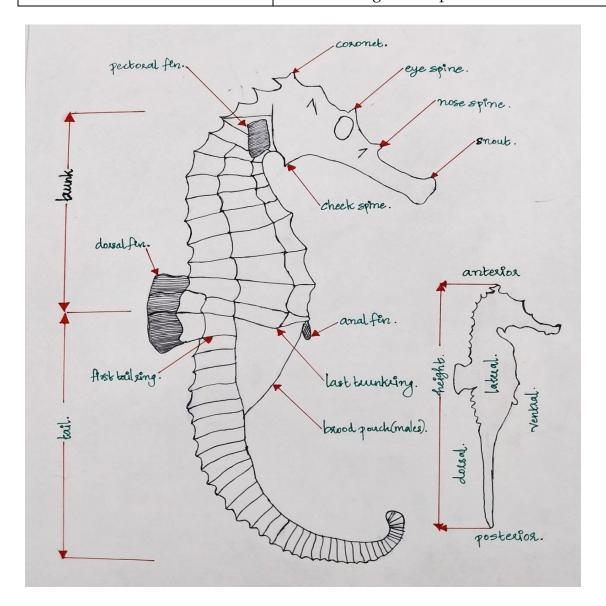


Fig. 1. Lateral view of seahorse

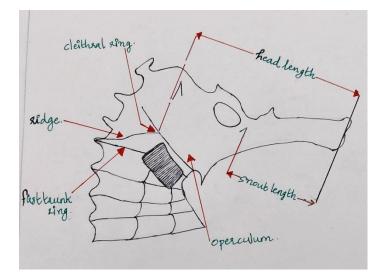


Fig. 2. Lateral view of seahorse head

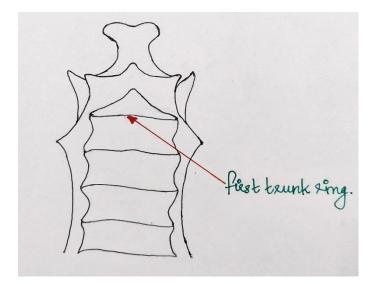


Fig. 3. Dorsal view of seahorse head

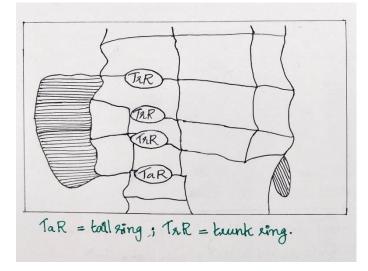


Fig. 4. Lateral view showing the rings supporting the dorsal fin

Steps in identification of seahorse specimen

A) Record the common characters used in seahorse species identification

1.	Record the height of the specimen (Ht): using a string/wire		
2.	Measure the head length (HL)		
3.	Measure the snout length (SnL)		
4.	Calculate the HL/SnL ratio of the specimen		
5.	Count the number of tail rings (TaR)		
6.	Count and record the number of trunk rings (TrR)		
7.	Record the number of cheek spines (CS): counts range from 0 to 2.		
8.	Record the number of eye spines (ES): counts range from 0 to 2.		
9.	Record the number of trunk rings (TrR) that support the dorsal fin		
10.	Record the number of tail rings (TaR) that support the dorsal fin		
11.	Record the number of dorsal fin rays		
12.	Record the number of pectoral fin rays		

B) Verify the recorded characteristics with the tables provided in the seahorse *identification data sheet* (Tables 3 to 7; not an exhaustive table, given as examples only)

1. Compare the height of the unidentified specimen with information of species in table.

- 2. Compare the HL/SnL value.
- 3. Compare the number of tail rings recorded for the unidentified specimen.
- 4. Compare the number of dorsal fin rays.
- 5. Compare the number of pectoral fin rays.

5. Compare the trunk rings, rings supporting the dorsal fin, cheek spines and eye spines.

 Table 3. Maximum height of selected species (Step B1)

Species	Maximum height (cm)
Hippocampus trimaculatus	17.0
Hippocampus kuda	17.0
Hippocampus histrix	17.0
Hippocampus spinosissimus	17.2
Hippocampus kelloggi	28.0

Hippocampus mohnikei	8.0
Hippocampus camelopardalis	10.0

Species	Possible range of HL/SnL	Most common value
Hippocampus trimaculatus	1.9 – 2.4	2.2
Hippocampus kuda	2.0 - 2.6	2.3
Hippocampus histrix	1.7 – 2.0	1.8
Hippocampus spinosissimus	2.0 - 2.4	2.2
Hippocampus kelloggi	2.0 - 2.3	2.1
Hippocampus mohnikei	2.8 - 3.9	3.0
Hippocampus camelopardalis	2.7 - 2.9	2.8

Table 5. Number of tail rings in selected species (Step B3)

Species	Range of number of tail rings	Most common value
Hippocampus trimaculatus	38 - 43	40, 41
Hippocampus kuda	34 - 38	36
Hippocampus histrix	34 - 37	35
Hippocampus spinosissimus	33 - 39	36
Hippocampus kelloggi	39 - 41	40
Hippocampus mohnikei	37 - 40	38
Hippocampus camelopardalis	38	38

Table 6. Number of dorsal fin rays in selected species (Step B4)

Species	Range of numbers of dorsal fin rays	Most common numbers
Hippocampus trimaculatus	18 - 22	20
Hippocampus kuda	17 - 18	17
Hippocampus histrix	15 - 18	17

Hippocampus spinosissimus	16 - 20	17, 18
Hippocampus kelloggi	17 - 19	18
Hippocampus mohnikei	15 - 16	15, 16
Hippocampus camelopardalis	19 - 22	-

Table 7. Number of pectoral fin rays in selected species (Step B5)

Species	Range of numbers of pectoral fin rays	Most common numbers
Hippocampus trimaculatus	16 - 19	17, 18
Hippocampus kuda	15 - 18	16
Hippocampus histrix	17 - 20	18
Hippocampus spinosissimus	16 - 19	17
Hippocampus kelloggi	17 - 19	18
Hippocampus mohnikei	12 - 14	13
Hippocampus camelopardalis	17 - 18	17, 18

C) After elimination of the above 5 steps, the following characters need to be considered

- 1. Height and shape of the coronet
- 2. Number, distribution and size of spines on the body
- 3. Patterns or markings such as stripes or spots.

Table 8. Number of trunk rings, trunk & tail rings supporting the dorsal fin, cheek spines and eye spines

Species	Trunk	Rings supporting Dorsal Fin		Cheek	Eye
	Rings	Trunk Rings	Tail Rings	Spines	Spines
H. trimaculatus	11	2	1	1	1
H. kuda	11	2	1	1 or 2	0 or 1
H. histrix	11	2	1	1	1
H. spinosissimus	11	2	1	1 or 2	1
H. kelloggi	11	2	1	1	1
H. mohnikei	11	2	1	2	0
H. camelopardalis	11	2	1	0	1

Thus, careful examination of the collected specimens, and proper recording of data is essential to arrive at the correct species identification. 'A Guide to the Identification of Seahorses' by Lourie et al. (2004) gives an insight to the step-by-step identification of seahorses, which can be referred in addition to the other standard literature that are available for species identification.

References

- 1. Alino, P.M., Cajipe, G.J.B., Ganzon-Fortes, E.T., Licuanan, W.P.Y., Montano, N.E. and Tupas, L.M. 1990. The use of marine organisms in folk medicine and horticulture: a preliminary study. Seaweed Information Center (SICEN). *Supplement of SICEN Newsletter*, February 1990.
- Do, H.H., Truong, S.K. and Ho, T.H. 1998. Feeding behaviour and food of seahorses in Vietnam. In: Morton, B. (Ed.), *Proceedings of the Third International Conference on Marine Biology of the South China Sea. Hong Kong University Press*, *Hong Kong*, pp. 307-319.
- 3. Jiaxin, C. 1990. Brief introduction to mariculture of five selected species in China (Section 1: Seahorse Culture). *Working Paper, FAO/UNDP Regional Sea Farming Development and Demonstration Project: Bangkok, Thailand.*
- 4. Lourie, S.A., Foster, S.J., Cooper, E.W.T. and Vincent, A.C.J. 2004. *A Guide to the Identification of Seahorses*. Project Seahorse and TRAFFIC North America. Washington D.C.: University of British Columbia and World Wildlife Fund.
- 5. Lourie, S.A., Vincent, A.C.J. and Hall, H.J. 1999. *Seahorses: An Identification Guide to the World's Species and their Conservation*. Project Seahorse, London, 214 p.
- 6. Masonjones, H.D. and Lewis, S.M. 2000. Differences in potential reproductive rates of male and female seahorses related to courtship roles. *Anim. Behav.*, 59: 11-20.
- 7. Teixeira, R.L. and Musick, J.A. 2001. Reproduction and food habits of the lined seahorse *Hippocampus erectus* (Teleostei: Syngnathidae) of Chesapeake Bay, Virginia. *Revue of Brasilian Biology*, 61(1): 79-90.
- 8. Tipton, K. and Bell, S.S. 1988. Foraging patterns of two syngnathid fishes: importance of harpacticoid copepods. *Mar. Ecol. Prog. Ser.*, 47: 31-43.
- 9. Vincent, A.C.J. 1994. Seahorses exhibit conventional sex roles in mating competition, despite male pregnancy. *Behaviour*, 128(1-2): 135-151.
- 10. Vincent, A.C.J. 1996. *The International Trade in Seahorses*. Cambridge, U.K., Traffic International, 163 pp.
- 11. Vincent, A.C.J. and Sadler, L.M. 1995. Faithful pair bond in wild seahorse, *Hippocampus whitei. Anim. Behav.*, 50: 1557-1569.
