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Abstract

Surplus production models are widely employed to evaluate the condition of fish stocks, encompassing the entire 
stock, overall fishing effort, and the total yield derived from the stock. These models operate under the assumption that 
variations in population biomass result from hikes due to growth and reproduction, as well as drops due to natural and 
fishing mortality. Utilizing Catch-Per-Unit-Effort (CPUE) as input, these models rely on the presumption that CPUE is 
directly proportional to the biomass of fish stock in the sea. An inherent challenge in fitting such a production model 
lies in determining CPUE, whether in terms of units operated or in hours of operation/actual fishing hours (AFH) or 
in any measure of fishing efforts. Given the heterogeneous nature of fishing fleets in tropical regions, they are often 
categorized into boat-gear categories, where fishing units within each category share similar characteristics and 
performance. When assessing the collective impact of the fishing operations of the entire fleet on the exploitation 
of fish stock, nominal addition of the efforts of different boat-gear categories may lack meaningfulness without prior 
effort adjustment to enhance comparability. In tropical regions, due to the varying capacities of gears and the potential 
presence of multiple species in each gear, the effort expended to catch a resource cannot be simply considered as 
the sum of the duration/units of operation of all gears. This paper aims to underscore various effort standardization 
methodologies found in the literature for different situations, offering insights into the challenges faced in tropical 
fisheries and proposing a way forward.
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GAM, GLM, GLMM, delta methods

Introduction

Fish stock assessments are crucial for understanding 
the health and sustainability of fish populations. These 
assessments provide valuable information on the size, 
age, and productivity aspects of fish stocks, which can 
help managers make informed decisions about fishing 
regulations which may be furthered to harvest control rules/
quotas. Additionally, fish stock assessments can help identify 
areas where habitat restoration or conservation efforts may 
be needed and play a critical role in maintaining healthy 
and sustainable fisheries. These assessments as they are 

practised worldwide, entail determining the parameters of 
population dynamics models by fitting them to research 
and monitoring data.

Surplus production models are commonly used for assessing 
the state of fish stocks and they deal with the stock, the fishing 
effort and the total yield obtained from the stock in their 
entirety. These models assume that variation in population 
biomass results from addition due to growth and reproduction 
and loss due to natural and fishing mortality. The results 
of this fitting process are then used to estimate quantities, 
such as current abundance, that are important for decision-
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makers. When fitting stock assessment models, a range of 
data types can be utilized. However, these data sets generally 
need to include details about removals due to harvesting 
and an indicator of relative abundance. Ideally, this indicator 
of abundance should be derived from fishery-independent 
data collection methods like surveys. However, acquiring 
fishery-independent data is often prohibitively expensive or 
challenging. In such cases, reliance on fishery-dependent 
data becomes necessary. Consequently, assessments of 
numerous stocks rely exclusively on fishery-dependent 
data. The most common and easily obtainable form of 
fishery-dependent data is the catch and effort information 
from commercial or recreational fishers, typically presented 
as catch-per-unit-of-effort (CPUE) or catch rate (Maunder 
and Punt, 2004). 

As the fishing fleet is heterogeneous in most cases, it is 
partitioned into boat-gear categories in each of which the 
fishing units have similar characteristics and performance. 
When it comes to measuring the combined effect of the 
fishing operations of the entire fleet to the exploitation of 
a fish stock , it becomes apparent that adding together 
effort exerted by different boat-gear categories is not 
always meaningful without first applying effort adjustment 
to increase their comparability (Stamatopoulos and 
Abdallah, 2015). Hence, standardization of commercial 
catch and effort data is important in fisheries where 
in standardized abundance indices based on fishery-
dependent data are a fundamental input to stock 
assessments (Bishop, 2006). 

The objective of this paper is to highlight diverse methodologies 
for standardizing fishing efforts as identified in the literature 
across various situations. It seeks to provide insights into 
the challenges encountered in tropical fisheries and put 
forward potential pathways for addressing them.

Methods for standardization of 
fishing efforts

There is a lot of literature available on the standardization 
of the fishing effort. These methods deeply depend on the 
characteristics of the gear being operated and the availability 
of the information. This choices/listing is more based on the 
generic nature of the underlying approach and relevance 
to multigear multispecies scenarios. Following are the few 
methods available in the literature for the standardization 
of fishing effort:

Standard vessel/gear based approach 
(Beverton and Holt, 1957)

This method consists of selecting a reference gear/vessel 
and determining the relative fishing power/effort (RFP) of 
all other vessels/gears by

where RFPi is the relative fishing power/effort for vessel/gear 
i, with Ci representing the total catch by vessel/gear i during 
the specified period when both the standard vessel/gear and 
vessel/gear i were present in the fishery. CS represents the 
total catch by the standard vessel during the same period. 
Ei denotes the total days fished (or another measure of 
fishing effort) by vessel i during the specified period, while 
ES represents the total days fished by the standard vessel 
during the same period.

The standardized catch rate for year t, is then defined as

where Ct,i is the catch by vessel i in year t, and Et,i the number 
of days fished by vessel/gear i in year t. This approach is a 
simple method for estimating fishery yields, but it may not 
be suitable for situations with multiple factors and when 
no long-term fishing vessels are available for comparison.

Relative effort based approach 
(Robson, 1966)

A more direct approach to standardize fishing effort is 
proposed by Robson (1966), although it necessitates the 
availability of additional data. The method operates based 
on the notion of “relative fishing power”. With the fishing 
power of vessel B relative to vessel A means:

applied when two boats are fishing under identical conditions 
(simultaneously and in the same area). Vessel A is commonly 
referred to as the “Standard vessel.” Suppose the boats 
are participating a certain fishery can be divided into 5 
homogenous groups, so that each group consists of boats 
with similar fishing powers. Suppose also that the CPUE is 
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in units of catch per unit time and further that the following 
data have been collected:

Boat type
A

(Standard)
B C D E

Fishing Power (PA) 1.0 PA (B) PA (C) PA (D) PA (E)
Number of Boats (N) NA NB NC ND NE
Average number of 
fishing days per boat (d)

dA dB dC dD dE

The total effort would then be estimated by:

Total effort = 1.0*NA*dA + PA (B)*NB*dB + PA (C)*NC*dC + 
PA (D)*ND*dD + PA (E)*NE*dE

In specific instances, one may infer that the fishing 
effectiveness correlates with certain attributes of the boat 
or gear, readily accessible, such as GRT (tonnage) or HP 
(horsepower), or their combination for trawlers, and, for 
instance, the quantity or length of nets for gill netters. Since 
the focus typically revolves around relative effort, the fishing 
power (PA) can be easily substituted with the characteristics 
of the boat or gear.

Derived effort based approach 
(Sparre, 1998)

In general, a suitable measure of fishing effort is the one 
that demonstrates a linear relationship with the catch rate 
(Sparre, 1998).

The relative effort is

Since the effort of different gears is assessed in terms of 
units per year and hence to ensure compatibility among 
various gear types (effort units), each unit needs to be 
converted into CPUE, which is then further converted into 
“relative CPUE”. The relative catch per unit of effort of gear 
i (i=1 to k) in year y is defined as follows:

where CPUEi (y) = Yi(y)/fi(y) = catch per unit effort of gear 
i in the year y, Yi(y) = yield of gear i in the year y; and fi(y) 
= effort of gear i in the year y.

The total yield of the species under examination denoted as 

YT(y), encompasses both the catch covered by the catch/
effort sampling scheme and the unaccounted yield. When 
this total yield is divided by the weighted sum of relative 
CPUE values, it yields a quantity proportional to the total 
effort R(y), as YT (y)/R(y).

The normalized effort for the year y is , 

where YT(y)/R(y) is the relative effort of year y, YT(y)= 
total yield of all gears (including gears for which effort is 
not known), is the sum 
of related CPUE weighted by the yields in the year y and  
YE (y) =   is the sum of yields of gears for which 
effort is known (yield of sampled gears), per year.

Multigear mean standardization 
(MGMS) (Daniel et al., 2016)

The method named multi-gear mean standardization (MGMS) 
combines catch per unit effort data that standardizes catch 
per unit effort data across gear types (Daniel et al., 2016). The 
calculation of MGMS begins by standardizing the CPUE data 
for each gear using a form of mean centering. First, the total 
catch (TC) of all i species in each observation j per unit of 

effort e is calculated as         . Next, for each gear, the mean  
 
total catch per unit effort              is calculated. To standardize 
 
the data for each gear, the CPUE of species i in observation 
j (Cij /e) is divided by the mean total catch per unit effort 
across all observations, yielding:

where MSCij is mean standardized catch of species i in 
observation j. Once CPUE data for each gear are converted to 
MSCij, they can be combined across gears and the resulting 
sums provide the basis for further analysis.

Generalized linear models (GLMs) and 
generalized additive models (GAMs)

Approaches built on GLMs and GAMs represent statistical 
approaches employed to model the correlation between 
catch (response variable) and factors such as effort , 
environmental variables, and other covariates (predictor 
variables). These methods are adept at accommodating 
non-linear relationships and variability within catch data, 
providing flexibility for capturing intricate patterns. The 



ICAR-CMFRI | Marine Fisheries Information Service Technical & Extension Series No. 257, 2023 10

standardization of catch and effort data is most commonly 
achieved through the application of Generalized Linear 
Models (GLMs), as introduced by Nelder and Wedderburn 
in 1972. Gavaris (1980) is recognized as a pioneer in utilizing 
the GLM approach for this purpose, marking the first 
instance of its application. He expanded upon the use of 
multiplicative models (Robson, 1966) for standardization by 
explicitly incorporating assumptions of log-normal errors. 
Gavaris (1980) employed an Analysis of Variance (ANOVA) 
model, exclusively incorporating categorical explanatory 
variables, on the natural logarithm of CPUE. Hilborn and 
Walters (1992) gave an excellent exposition on the use of 
Generalized Linear Models (GLM) for the standardization 
of fishing efforts. 

GLMs are characterized by the statistical distribution 
governing the response variable, typically (though not 
always) the catch rate, and how a linear combination of 
certain explanatory variables correlates with the anticipated 
value of the response variable. The fundamental premise of 
a GLM lies in the assumption that the connection between 
a function of the expected response variable value and the 
explanatory variables follows a linear pattern.

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

where g is the differentiable and monotonic link function, 
,   the vector of size m that specifies the explanatory 

variables for the i th value of the response variable,   is a 
vector (of size m) of the parameters, and yi the i th random 
variable. 

To overcome the linearity assumption of GLMs, Generalized 
Additive Models (GAMs) were developed and are effective 
models in establishing a relationship between predictor 
variables and the response. GAMs offer the ability to represent 
a broader spectrum of response curves compared to GLMs. 
Many researchers are opting for GAMs over GLMs, particularly 
in fisheries science, where their predominant application 
mirrors that of GLMs—specifically, the standardization of 
abundance data. 

Generalized additive models (GAMs; Hastie et al., 2001) 
are extensions of generalized linear models that involve 
generalizing Eq. (1) by replacing the linear predictor by an 
additive predictor:

 . . . . . . . . . . . . . . . . . . . . . . . . . . 2

where  is a smooth function (such as a spline or a 
loess smoother). The degree of smoothness achieved 
is balanced against the deviance by a tuning constant, 
often chosen by cross-validation, so that estimation is 
by the method of maximum penalized likelihood rather 
than of maximum likelihood. This gives GAMs a partially 
non-parametric aspect.

Methods for zero-inflated data

Databases containing information on catch and effort 
frequently exhibit a substantial proportion of entries 
where the catch value is zero, despite a recorded non-
zero effort . Instances where effort is marked as zero 
must be addressed, either as trivial cases if they coincide 
with zero catch or as errors necessitating resolution 
(e.g., removal) before conducting any analyses. This 
pattern is particularly pronounced for less abundant 
species and those categorized as bycatch. Regrettably, 
these species often represent crucial sources, if not the 
sole source, of data for standardized catch rate indices 
that track changes in abundance (Ortiz and Arocha, 
2004). The prevalence of zero values can undermine 
the assumptions underlying the analysis, posing a 
risk to the reliability of inferences if not appropriately 
modeled, as emphasized by Lambert (1992). Moreover, 
the abundance of zeros can introduce computational 
challenges. The following approaches are commonly 
adopted to deal with zero inflated data:

(a) Zero-inflated models

Zero-inflated models are often used when dealing with 
data that has excess zeros. These models typically assume 
that the observed data is a mixture of two processes: 
one that generates zeros and another that generates the 
remaining values. Common models for zero-inflated data 
include zero-inflated Poisson (ZIP) or zero-inflated negative 
binomial (ZINB) models. Rochman et al. (2017) attempted to 
standardize CPUE to estimate relative abundance indices 
based on the Indonesian longline dataset time series 
using GLM with Tweedie distribution. Setyadji et al. (2018) 
used GLM to standardize CPUE and to estimate relative 
abundance indices based on the Indonesian longline 
dataset. Six GLM models were considered viz., negative 
binomial, zero inflated Poisson, zero-inflated negative 
binomial, Poisson hurdle, and negative binomial hurdle 
models. AIC and BIC were used to select the best models 
among all those evaluated.
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(b) Delta methods

Traditional Generalized Linear Model (GLM) analyses, relying 
on log-transformed data, assume that no CPUE observation 
equals zero. To address these challenges within a GLM 
framework, the delta-lognormal method (Pennington 1983, 
1996; Lo et al., 1992) has been employed. This method handles 
zero catches separately, modelling them independently, and 
then employs a GLM for positive catches. The models for zeros 
and the GLM are then integrated to generate an abundance 
index. Delta-GLM and Delta-GAM models are extensions of 
GLMs and GAMs, respectively, used for standardizing catch 
and effort data. They focus on modelling the differences (delta) 
between observed and expected catch rates, allowing for 
better handling of count data and overdispersion.

Generalized linear mixed 
models (GLMMs)

Generalized Linear Mixed Models (GLMMs), as introduced 
by Pinheiro and Bates in 2000, expand upon the Generalized 
Linear Model (GLM) approach by allowing certain parameters 
in the linear predictor to be considered as random variables. 
This extension enables more flexibility in modelling and 
accommodates the inclusion of random effects. In recent 
analyses of catch and effort data, various studies (Chang, 
2003; Miyabe and Takeuchi, 2003; Rodríguez-Marín et al., 
2003; Brandão et al., 2004; Ortiz and Arocha, 2004) have 
employed GLMMs, treating some of the model parameters 
as random effects. This utilization of random effects is 
particularly valuable in addressing interactions between 
variables, such as year and other categorical factors like 
area. The incorporation of random effects allows for a more 
meaningful representation of the underlying complexities 
in the data, contributing to a more comprehensive and 
accurate modelling approach. By considering random effects, 
GLMMs can provide more accurate estimates of catch rates, 
especially when dealing with hierarchical data structures.

Spatial models

Spatial models are analytical tools used in various fields to 
represent and analyze the spatial relationships and patterns 
of phenomena across geographic space and can help to 
understand, simulate, and predict the behaviour of processes 
that exhibit spatial dependencies. Spatial Autoregressive 
Models (SAR) and Spatial Regression Models are two 
popular models which are useful when analyzing data from 
different geographic locations and can account for spatial 
dependence in the standardization process.

Machine learning approaches
Machine learning algorithms, such as Random Forest , 
Gradient Boosting, and Support Vector Machines (SVM), 
can be applied to standardize catch and effort data. In a 
study conducted by Yang et al. (2020), SVM was applied to 
standardize longline catch per unit fishing effort for Bigeye 
tuna (Thunnus obesus) in the tropical fishing area of the 
Atlantic Ocean. The researchers evaluated three parameter 
optimization methods: a Grid Search method, and two 
enhanced hybrid algorithms, namely SVM in combination 
with particle swarm optimization (PSO-SVM) and genetic 
algorithms (GA-SVM). These optimization methods were 
employed to strengthen the performance of SVM, providing 
a more robust and accurate tool for CPUE standardization 
in fisheries data. 

Like GAMs, neural networks offer increased flexibility in 
representing relationships between CPUE and explanatory 
variables. Maunder and Hinton (2006) pioneered a neural 
network approach for estimating relative abundance based 
on CPUE data. Their key innovation involved incorporating 
the year effect as a categorical variable within the neural 
network framework. Unlike GLMs , which are constrained 
to linear relationships (with the option of higher-order and 
interaction terms), neural networks enable the data to 
determine these relationships, allowing for more nuanced, 
non-linear modelling. Warner and Misra (1996) provide a 
comprehensive introduction to the connection between 
neural networks and regression, elucidating the terminology 
used in both. However, a drawback of neural networks is the 
potential existence of multiple solutions arising from common 
estimation techniques. These diverse solutions stem from 
different initial weights. Preliminary investigations indicate 
that these varied solutions yield comparable estimates of 
the year effect (Maunder and Hinton, 2006).

Environmental data integration

Integrating environmental variables (such as sea 
temperature, chlorophyll concentration, and ocean currents) 
into standardization models helps account for environmental 
influences on fish behaviour and distribution. Hinton and 
Nakano (1996) introduced a comprehensive habitat-based 
standardization (HBS) method that establishes an analytical 
framework, and consequently a statistical framework, 
for integrating an understanding of the distributions of 
environmental factors, fishing gear, and species into the 
standardization of CPUE. The fundamental concept is that if 
a hook is deployed in an environment preferred by a species, 
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All India

Regions

say bigeye tuna, it has an elevated probability of capturing 
that species. This becomes particularly crucial, for instance, 
in standardizing the effort of longline gear targeting tuna, 
given that the depth of the gear has increased over time as 
fishermen pursued bigeye tuna, which are generally located 
at greater depths in the water column.

Methods for multispecies 
multigear fishery

In tropical region, the marine fishery is of complex multi-
species nature where in different species are caught by 
several fishing gears and each gear harvests several species 
making it difficult to obtain the fishing effort corresponding 
to each fish species. Since the capacity of the gears vary 
and each gear may harvest multiple species, the effort made 
to catch a resource cannot be considered as the sum of  
duration/units of operation of all the gears, making the 
nominal figures less relevant or rather intriguing. 

As standardising efforts or CPUE stem from the kind of 
nominal measures of quantification available as basic 
data, a clear picture of the methodology adopted for 
landings/catch and effort collection is a mandatory 
requirement . Hence, as a typical point under focus 
towards an understanding of the marine fish landings 
data collection system followed in the Indian scenario 
is presented in brief. 

India has a well-established data collection and estimation 
system for generating information on species-wise and 
fishing gear-wise marine fishery resources landings 
and fishing effort for different maritime states every 
month using skilled observers in fish landing ports. The 
method was developed by ICAR-Central Marine Fisheries 

Research Institute jointly with ICAR-Indian Agricultural 
Statistics Research Institute following a scientific sampling 
scheme named “Stratified Multistage Random Sampling 
Design (SMRSD)” (Sukhatme et al., 1958; Srinath et al., 
2005), where stratification is done over space and time 
as well as sub regional/zonal levels. This system of data 
collection and estimation has been in use since 1960. The 
sampling frame was created by gathering information 
on marine fishing villages, landing centres, crafts, and 
gears, among other things, and it is updated on a regular 
basis to reflect changes in the sector through all India 
frame surveys. Species-wise catch, fishing effort , details 
of fishing crafts and gears and other related information 
are collected through this sampling scheme. 

The population that is being attempted to be assessed 
through the samples is two-dimensional with zone-month 
as the parametric index. The zones are sub-civic spatially 
contiguous divisions that may be equated to districts 
within the administrative provinces, states, in India. 
The parameters like total catch, effort and catch rates 
pertaining to these zone-month populations are estimated 
through a two-stage sampling procedure, with the first 
one having strata and a pseudo-strata of time intervals 
within a month. The sampling units are accordingly the 
fishing vessel or unit selected at the second level after 
the selection of a landing centre/ fishing harbour on a 
particular day (lcd) of the zone-month. 

In spatial stratification, based on the fishing intensity, 
geographical boundaries and number of landing centres, 
each maritime state is divided into suitable non-overlapping 
regions called fishing zones. These zones have been further 
stratified into substrata, depending on the intensity of fishing. 
The number of centres may vary from zone to zone (Fig. 1).

Fig. 1. Spatial stratification
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The landing centres are classified into High-Intensity 
Landing Centres (number of vessels in operation 300 
or more), Major Landings Centres (number of vessels in 
operation between 100-299) and Minor Landing Centres 
(number of vessels in operation less than 100). The 
sampling coverage is more for High-Intensity Landing 
Centres than that for Major Landings Centres and it 
is still less for Minor Landing Centres. Among the fish 
landing centres, the major fisheries harbours/centres 
are classified as single-centre zones for which there is 
exclusive and extensive coverage. 

The temporal stratification (Fig. 2) is more conventional than 
statistical, wherein the landing centre days to represent 
the population are ensured to spread evenly throughout 
the month, which is a major component defining the 
population. This gives enough support to take into account 
all the periodic oscillations noticed in resource availability 
within a month.

Suppose there are 10 landing centres in a zone, there will be 
300 landing centre days (10 centres x 30 days) in a month. 
A month is divided into three groups, each with ten days. A 
day is selected at random from the first five days of a month, 
and the next five consecutive days are chosen automatically 
and form cluster groups of two consecutive days. In the 
remaining ten-day groups, the clusters are systematically 
selected with an interval of ten days. Normally, in a month, 
there will be nine clusters of two days each. Among the total 
number of landing centres in the given zone, nine centres 
are selected with replacement and allotted to the nine 
cluster days described earlier. Thus, nine landing centre 
days are observed in a month. The observations are made 
as per Table 1.

Table 1. Data collection during a landing centre day

24 hrs landings
(One landing centre day) Data collection method
1200 hrs to 1800 hrs of 1st day By observation on the first day

0600 hrs to 1200 hrs of 2nd day By observation on the second day

1800 hrs of the 1st day to 0600 hrs of the 
2nd day (night landing)

By enquiry on the second day

During an observation period, when the number of 
boats/craft landings is high, it may not be practically 
possible to record the catches of all boats landed. Hence, 
the following procedure given in Table 2 is adopted 
(Alagaraja, 1984):

Table 2. Number of boats/crafts to be observed

Number of boats/crafts landed Fraction to be observed
≤ 15 100 %

Between 16 and 19 First 10 and 50 % from the remaining

Between 20 and 29 1 in 2

Between 30 and 39 1 in 3 etc.

In the case of single centre zones, sixteen to eighteen days 
are selected randomly in a month and the units (fleets) 
landed on a selected day (either as a cluster of 2 days or a 
single day itself) is enumerated. 

In the data collection system, dedicated technicians (harbour-
based observers) with species identification skills visit the 
landing centres according to work schedules generated 
under SMRSD and record different aspects of the fishery 
from sampled boats. 

With the introduction of computers and information 
technologies, the access and dissemination of information 

Fig. 2. Temporal stratification
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have become easier. ICAR-Central Marine Fisheries Research 
Institute took the lead in developing an online system for 
the collection and retrieval of data on marine fish landings 
and other related parameters named Fish Catch Survey 
and Analysis (FCSA) and the system has been operational 
since 2018 and was proven to be an excellent system for the 
data collection and estimation of marine fishery resources 
(Mini et al., 2023). 

a) A simple analytical framework 
(Varghese et al., 2020)

This method of standardization requires the species catch, 
total catch and total fishing effort. Let Yijk represents the catch 
of kth species (k = 1, 2, ..., s) from ith (i = 1, 2, ..., g) gear at the 
jth (j = 1, 2, ..., t) time point (say year) and the corresponding 
effort is expressed as Xij. 

To calculate the component of standardized fishing effort 
for the species corresponding to each gear, the proportion 
of catch in the total catch by each gear for each year and a 
weighting factor for each gear is required. Following is the 
step-wise procedure of effort standardization:

Step1: Calculate                  where 

Step 2: Obtain the mean and variance of Pijk for each gear 
and for each species

Step 3: Calculate the weighting factor as

The weighting factor is then adjusted for unit sum. The 
decomposition of fishing effort for the species is then 
obtained by multiplying the corresponding total fishing 
effort for the gear in the year with the proportion of the 
species for the year corresponding to the same gear and 
the weighting factor.

Step 4: Obtain the standardized gear-wise fishing effort as

Here, the sum of all the gear efforts would give a total effort. 
But, the efficiency of gears varies so also the capability to 
catch in an hour which demands scaling the fishing efforts 
into a single scale. Hence, it is better to express all gears 
in terms of a single gear (which may be the least efficient 
or the most efficient) by deriving a suitable multiplication 
factor for each fishing gear.

Step 5: Calculate the catch per unit effort (gear-wise) as

The multiplication factor is where      is the  

Fig. 3. Species distribution in landings along the coastal states

Based on observed landings and fishing efforts, an estimate 
of fish landings and fishing efforts for all fleets for a landing 
centre in a day is made. Monthly zonal landings are estimated 
using these data. Furthermore, estimates at the District, State, 
and National levels are obtained on a Monthly, Quarterly, 
and Yearly time scale. 

The diversity of the fishery along the Indian coast is most 
probably reflected in the number of species documented 
in the fished taxa in recent years (FRAD-CMFRI, 2022; 
FRAEED-CMFRI, 2023), as illustrated in Fig. 3. Despite 
the source being commercial fishery, due to the fact that 
the record of landings was done by qualified and neutral 
enumerators with species level exhaustive identification 
as mandate, this can be viewed as measure of diversity 
of taxa. Additionally, the variety of gears in operation, as 
observed even on the southwest coast of India (Varghese 
et al., 2021), serves as an indicator of the intricate nature 
of the fishery. The combination of high species diversity 
and the utilization of multiple types of fishing gears 
contribute to the complexity of fisheries in tropical 
countries like India.

As indicated earlier, due to varying capacity of gears and 
also the incidence of multiple species in some of the gears, a 
customized method is needed for the standardization of the 
fishing efforts. The following two approaches can probably 
handle the situation mentioned above:
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least efficient or the most efficient gear

Step 6: Obtain the standardized fishing effort for kth species 
at jth time point as

.

For ease of computation, an R package named Fishing Effort 
Standardization (FESta) (Available at https://CRAN.R-project.
org/package=FESta) for standardizing the fishing effort was 
developed. This package provides a function named “StdEffort” 
for the standardization of fishing effort expended by various 
fishing gears to obtain the Catch Per Unit Effort (CPUE) for 
a particular fish species using the time series of the total 
catch (landings) by each fishing gear, catch (landings) of a 
particular species (for which the CPUE is required) by each 
gear and total effort expended by each gear.

To install the FESta package in R, use the following code below:
install.packages(“FESta”)

And the usage of the “StdEffort” is:
StdEffort(sp_catch, tot_catch, effort, meg)

Where,

• sp_catch = Time series of catch/landings of a particular 
species (for which the CPUE is required) by each gear

• tot_catch = Time series of total catch/landings by each 
fishing gear

• effort = Time series of total effort expended by each gear
• meg = Most efficient gear (it takes value either FALSE 

(for least efficient gear) or TRUE (for most efficient gear))

An example of fishing effort standardization is given below:

A list named “Example” has been taken for illustration. It 
contains three data frames named sp_catch (Quantity of the 
fish species, in tonnes), tot_catch (Quantity of total catch, 
in tonnes), and effort (Fishing duration, in hours) with the 
same dimension.

To standardize the fishing efforts expended by various gears, 
the following codes can be used:

library(FESta)
data(“Example”)
StdEffor t(sp_catch=E xample$sp_catc ,tot_catch 
=Example$tot_catch, effort=Example$effort, meg=FALSE)

Remark: It is to be mentioned here that, as the method 
revolves around an identified gear, be it most efficient or 
otherwise, as reference amongst the gears with some 
significant contribution to the species landings may be 
selected for standardization and the gears with very 
negligible amount of species catch may be computationally 
insignificant. This always makes it mandatory to select the 
candidate gears by a strict rigour of pre-processing before 
reaching the standardization stage.

(b) Biodynamics model-based framework 
(Sathianandan et al., 2021)

The basic surplus production model takes the following 
expressions, one for the calculation of biomass of a species 
for successive periods termed as the process equation (Eq. 
3) and the other relating biomass to catch and fishing effort 
known as the observation equation (Eq. 4).

 . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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In the multispecies and multigear fishery situation prevailing 
in tropical regions, a species is usually caught by multiple 
fishing gears (fishing fleets) and similarly, a fishing gear 
catches many species. Here, the fishing effort expended 
by a specific fishing gear results in the catching of many 
fish species and attributing the total fishing effort expended 
by the fishing gear to individual species-level effort is a 
challenging task. This issue is addressed here by incorporating 
an additional set of gear standardization parameters (λ’s 
with its values summing to unity) in the catch equation 
in addition to the proportion of catch of the species in the 
total catch by the gear (Sathianandan et al., 2021). Thus, for 
each species the expression for standardized fishing effort �t 
was derived considering the fishing effort of all the g fishing 
gears in which the species is caught (Eq. 5). By replacing �t 
in equation 4 we get the modified catch equation suitable 
for the multigear situation (Eq. 6).

 . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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is not feasible. An attempt has been made in the paper to 
highlight various effort standardization methodologies found 
in the literature for different situations, providing insights 
into the challenges faced in tropical fisheries. It is important 
to note that the specific methods and models used for 
standardization can vary based on the fishery, available data, 
and research/management objectives. Fisheries scientists 
and managers need to collaborate to determine the most 
appropriate standardization techniques for a particular 
study or assessment.

The way forward
In the past few years, there has been an increasing inclination 
towards the integration of diverse approaches and the 
amalgamation of various modelling techniques to enhance 
the precision and dependability of standardized catch and 
effort data. The selection of a particular method frequently 
hinges on the distinct characteristics of the data, the research/
management goals, and the computational resources at hand. 

Fishing effort inherently also includes the fishing behaviour 
of fishers, be it in terms of which fish to target based on 
demand (indirectly fishing ground selection), scouting for 
fish (part of actual fishing hours) or selection of what fish 
catch should be retained (which eventually translates into 
landings). A Bayesian approach to standardizing fishing efforts 
could be an option to address these uncertainties in fishing 
effort brought about by fishing behaviour and variability in 
the standardization process. As the standardization of fishing 
efforts aims to account for factors such as changes in fishing 
practices, gear efficiency, and other variables that may affect 
the observed catch rates, the Bayesian methods provide a 
flexible framework for modelling these uncertainties and 
incorporating prior knowledge into the analysis. 

Exploring innovative methods to standardize CPUE in 
anticipation of changing management requirements and 
fishermen’s responses must be carried out. These elements 
together constitute a holistic strategy to propel advancements 
in research within this domain, with the overarching goal of 
refining the precision and applicability of CPUE standardization 
techniques. Simultaneously, the strategy needs to be designed 
to ensure flexibility and adaptability to accommodate shifting 
management needs and the dynamic nature of fishing 
practices. Assessing the general applicability of currently 
available CPUE standardization methods in tropical fisheries 
and identifying the conditions under which they outperform 
other methods is also important. 

The symbols used for the above models are described below.

Bt biomass of the stock corresponding to year t

Ct quantity harvested in year t

fi,t fishing effort in hours spend by fleet type i in year t

pi,t observed proportion of the species/resource in the catch by gear 
type i in year t

r the intrinsic annual growth rate in biomass of the species/
resource

q overall catchability coefficient in catching the species/resource

K carrying capacity for the species/resource

λi
gear standardization parameter introduced for gear type i

The model parameters can be estimated after incorporating 
the observation error term  in the catch equation (Eq. 7). 
The error terms were assumed to be distributed identically 
and independently as N(0, σ2) leading to the expression 
for the negative log-likelihood (excluding constants) given 
as equation 8, which was minimised for estimating all the 
model parameters with as an additional constraint  
for λ during minimization.
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The model fitness can be assessed using appropriate 
statistical measures of goodness of fit or by verifying the 
closeness of the observed landings time series and its 
model-predicted values.

Conclusions
The standardization of commercial catch and effort 
data holds significance in fisheries, especially in cases 
where standardized abundance indices, derived from 
fishery-dependent information, play a crucial role in stock 
assessments. The primary objective of standardization is to 
minimize bias resulting from the intertwining of apparent 
abundance patterns with fishing power. Fisheries, particularly 
those where the fleet has undergone changes in fishing 
technology over time, face a heightened risk of confounding 
between fishing power and abundance. In tropical marine 
fisheries, due to varying gear capacities and the potential 
presence of multiple species in each gear, considering the 
effort exerted to catch a resource as the simple sum of the 
duration of fishing operation or units of operation of all gears 



ICAR-CMFRI | Marine Fisheries Information Service Technical & Extension Series No. 257, 2023 17

Integration of advanced technologies, such as satellite 
imagery, artificial intelligence, and machine learning may be 
handy in improving the accuracy and efficiency of measuring 
fishing effort. This could enhance data collection and provide 
real-time information for more dynamic standardization 
models. Incorporation of spatial and temporal dynamics into 
standardization models to understand how fishing effort 
varies across different locations and seasons is crucial for 
accurate stock assessments and sustainable management. 

Integrating environmental factors into the standardization 
of fishing efforts can help to account for influence of 
environmental variables such as temperature, ocean currents, 
and habitat characteristics etc. on fish behaviour and 
distribution thereby fisheries management can better 
understand and respond to the dynamic nature of marine 
ecosystems. This strategy extends beyond merely focusing 
on the target species and considers the broader ecological 
context. 

Refining the standardization models/methods that account for 
the impact of fishing effort on multiple species simultaneously 
is necessary especially in mixed-species fisheries where the 
catch of one species may affect the abundance of others. 
Future research efforts in the standardization of fishing 
effort should aim to enhance the robustness, accuracy, and 
adaptability of methodologies to contribute to the sustainable 
management of tropical fisheries resources. 

Standardization of fishing effort is only a part of the entire 
assessment process which includes a number of steps 
starting from fish catch data collection, its collation, correction, 
analysis, inferences and use of outputs. While researchers 
attempt to fine-tune each step of the process, efforts also 
should be made to adhere to a unified, comprehensive and 
locally attuned process of assessment genuinely reflective of 
the targeted fishery scenario. For this to happen effectively, 
a seamless collaboration between fishers, department 
officials, trade organizations, fisheries researchers, fishery 
managers and policy makers is needed.
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