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a b s t r a c t

The study was conducted to develop an information theory-based decision support system to under-
stand the variance distribution structure of the data so that a proper modeling approach could be
implemented to explain the relationship between the body length and weight of shrimps. Based on
biological reasoning, initially, a log-normal multiplicative error structure was assumed and therefore,
a log-linearized model was applied. Secondly, the support for normal additive error structure was
assessed by fitting a weighted nonlinear model with a power variance structure (wNLM) to address the
heteroscedasticity in shrimp weight. The likelihood support for the error structures was ascertained by
comparing the AICc of the two competing models. As the general cut-off criterion (1AICc>2.0) did not
give conclusive evidence from the scrutiny of the probability density diagnostic plot of the residuals,
an alternative model scaling criteria, i.e., Akaike weight (Aw) of 0.9 was used for model selection. The
corresponding 1AICc cut-off score of 4.2 was estimated by regressing the 1AICc score of the competing
model against the Aw scores of the best model. The competing models with 1AICc > 4.2 were rejected
and the alternate models with Aw ≥ 0.9 were selected for modeling the length–weight relationship.
Both the models were observed to be well founded, as narrow differences in the root mean squared
error (RMSE) were observed. A lower RMSE was almost always observed from wNLM despite a higher
1AICc score, which indicates that RMSE may not be efficient in detecting the model overfitting issue.
Contrary to popular belief, only 26.7% of the datasets exhibited a log-normal error structure, whereas, a
normal error structure was evident in 33.3% of the datasets. Interestingly, 40.0% of the datasets showed
data ambivalence (1AICc < 4.2) and therefore, an Akaike weighted model averaging was performed
to reduce model uncertainty for the accurate estimation of model parameters and their confidence
intervals.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The collection of information pertaining to the biomass of
quatic animals directly from field observation is quite cumber-
ome, expensive and time-consuming. However, such informa-
ion can be easily derived by establishing a relationship between
ody length and weight of animals. Unlike body weight, the
ength of the aquatic animal can be collected much more easily
nd quickly from the field and is also widely available in devel-
ping fisheries across the world. Due to the high dependence
f conventional fisheries stock assessment studies on readily

∗ Corresponding author.
E-mail address: gyanranjandashcmfri@gmail.com (G. Dash).
ttps://doi.org/10.1016/j.rsma.2023.103140
352-4855/© 2023 Elsevier B.V. All rights reserved.
available length-based data, an accurate modeling framework is
essential for converting these length-based data to weight data so
that the uncertainty during the prediction of stock biomass can
be minimized. As the information on this biomass is further used
in ecological modeling and quantification of various resource
management reference points, inappropriate modeling of the re-
lationship between body length and weight (LWR) could have
severe implications for the uncertainty associated with the final
model output. The information on the length–weight relationship
(LWR) has several applications in fishery biology studies, such
as estimation of stock biomass for their sustainable utilization,
various ecological and biomass modeling studies and also to
understand the spatio-temporal as well as ontogenetic variations
in the overall well-being of animals (Ricker, 1968; Pauly, 1984;
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etrakis and Stergiou, 1995; Froese, 2006; Froese et al., 2011;
ürker et al., 2018).
Accurate estimation of the LWR is of paramount importance,

specially when it is used as an input parameter for popula-
ion biomass estimation, because wrongly predicted modeling
arameters could disproportionately amplify the uncertainty and
rrors during the raising process from sample level to population
r stock level. Though often neglected, the variance distribution
tructure of data plays a critical role in the selection of an ap-
ropriate modeling approach while establishing the relationship
etween length and weight. If the variance structure is assumed
o be normal and additive, then an ordinary nonlinear model
hould be used for the correct estimation of modeling parameters
Xiao et al., 2011). However, the ordinary nonlinear model does
ot account for the heteroscedasticity in the variance structure
f the body weight data that gradually increases as the animal
ecomes larger. Such a gradual inequality in the variance of fish
eight with an increase in body length can be addressed by
weighted nonlinear modeling approach with an appropriate
eighting function to address the unequal variance structure (De
iosa and Czerniejewski, 2016). On the other hand, if the variance
s suspected of having a log-normal multiplicative error structure,
t is appropriate to apply a log-linearized (transformed) model
Xiao et al., 2011). The log transformation not only makes the
ariance distribution Gaussian (normal) but also stabilizes the
nequality in the variance structure.

It is, therefore, very important to ascertain the variance dis-
ribution structure before an appropriate modeling approach can
e followed. This can be achieved by a statistical approach that
nalyzes the likelihood of data being generated from an un-
erlying normal distribution with an additive variance structure
r an underlying log-normal distribution with a multiplicative
rror structure (Xiao et al., 2011). Consequently, commonly used
nformation theory (IT-based) indices such as the Akaike infor-
ation criterion (AIC) or the Bayesian information criterion (BIC)
an be used to evaluate the best modeling approach that is in
ongruence with the assumed probability distribution structure
f residuals generated from the data at hand (Burnham and
nderson, 2002). An IT-based criterion such as AIC basically as-
umes that though real-world data is generated from random
ariable(s) with an unknown probability distribution, the true
robability distribution (true model) of the data can be derived.
IC calculates the information that would be lost in the form
f a distance (technically known as the Kullback–Leibler or K–
discrepancy) between the predicted probability distribution of
he fitted model and that of the true probability distribution of
eal-world data. It also assumes that the K–L discrepancy will get
maller as the accuracy of the fitted model gets better, which will
esult in a smaller ‘information loss’ between the true probability
istribution of the real-world data and the predicted probability
istribution of the fitted model. As a result, the best-fitted model
ill be the one that approximates the true probability distribu-
ion of the data in a way that will result in the least amount
f information loss (Burnham and Anderson, 2001; Banks and
oyner, 2017).

However, it must be noted that the absolute value of these IT-
ased indices (i.e., AIC and BIC) does not provide any information
bout the performance of the model. It is the comparison of
hese IT-based indices values in a relative term that provides
he necessary insight for drawing the multimodel inference from
set of models, where the model with the lowest information

oss is selected as the best model. The AIC values of competing
odels can be compared in terms of their relative values, where

he difference in the absolute AIC value (i.e., 1AIC) of the com-
eting model compared to the best model (with the lowest AIC)

ives information about the support for the competing model

2

based on specific threshold values. As a general rule of thumb,
the following three cutoff criteria are used for acceptance or
rejection of the competing model: (1) If 1AIC = 0–2, then both
the competing model and the best model are accepted due to
substantial empirical support for both models; (2) If 1AIC = 4–
, then the competing model might be considered for rejection
ue to the lack of adequate empirical support in its favor and
3) If 1AIC > 10, then the competing model should be straight
way rejected due to the complete lack of empirical support in
ts favor (Burnham and Anderson, 2002). Nevertheless, there is
onsiderable ambiguity regarding the treatment (acceptance or
ejection) of the competing model if the 1AIC falls within the
oubtful zone that primarily ranges from 2 to 4 and to some
xtent even up to 7.
Though the application of IT-based indices such as AIC and

IC for evaluation of the model performance to draw multimodel
nference is very popular for ecological hypothesis testing (Burn-
am and Anderson, 2002; Johnson and Omland, 2004; Richards,
005; Thorup et al., 2006; Burnham et al., 2011; Symonds and
oussalli, 2011; Brewer et al., 2016), the indices have not been
uch publicized as a decision support system in fishery biology

nvestigations. According to a recent review conducted by Flinn
nd Midway (2021), only about 28% of the studies conducted for
he growth modeling of fish have used some form of IT-based
ndices. Nevertheless, there are few noteworthy studies where IT-
ased indices have been used in fishery biological investigation,
ainly while modeling the growth of fish (Imai et al., 2002; Porch
t al., 2002; Zhu et al., 2009; Panhwar et al., 2010; Diniz et al.,
012) and also to some extent while conducting other biological
nvestigations such as modeling the relationship between stock
nd recruitment of fish (Hiramatsu et al., 1994; Wang and Liu,
006) and even the relationship between body length and weight
f fish (De Giosa and Czerniejewski, 2016).
The present study was envisaged to develop a decision support

ystem using an IT-based criterion to establish the relationship
etween the body length and weight of five commercially im-
ortant shrimps. This was done by giving adequate consideration
o the likelihood support for the variance distribution structure
n order to reduce bias and improve the accuracy of modeling
arameters and their confidence intervals.

. Materials and methods

.1. Data collection

The data on the length and weight of the selected five com-
ercially important shrimps, viz. Penaeus monodon (n = 480,
ale to Female ratio (M:F) = 1:1.04), Penaeus semisulcatus (n =

20, M:F = 1:0.75), Parapenaeopsis stylifera (n = 480, M:F =

:7.42), Parapenaeopsis sculptilis (n = 480, M:F = 1:10.71) and
olenocera crassicornis (n = 480; M:F = 1:5.40) were collected
rom the most important fish landing centre (FLC), i.e., Digha Mo-
ana FLC (West Bengal) of the northeast coast of India, at monthly
ntervals from July 2018 to March 2021. The shrimps were pri-
arily caught by the mechanized crafts using non-selective trawl
ets having a cod end mesh size of 25 mm from a depth range
f 15–40 m operating between the latitudinal range of 21◦28′N
o 21◦35′N along the northwestern portion of the Bay of Bengal
Fig. 1). All the specimens were washed and stored immediately
n the field using ice and brought to the laboratory of the Digha
esearch Centre of ICAR-CMFRI (West Bengal, India), where their
dentity was further confirmed following the standard identifi-
ation protocols (Fischer and Bianchi, 1984). The sexes of the
hrimps (i.e., male or female) were identified based on the pres-
nce or absence of petasma between the first pair of pleopods and
he total body length (TL), i.e., the straight line distance between
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Fig. 1. Fishing location from which the shrimp specimens for the present study have been collected.
he tip of the rostrum and the tip of the telson to the nearest
0.1 cm’ was recorded for all the specimens. The body weight
as recorded to the nearest ‘0.1 g’. The shrimps were dissected

n the laboratory for routine biological investigation after length
nd weight measurements were taken.

.2. Determination of the error structure of data

The variance distribution structure was ascertained by con-
ucting a likelihood analysis and comparing the derived informa-
ion theory (IT-based) indicators. Based on biological reasoning,
irst, the data were assumed to have been generated from a
og-normal distribution with multiplicative error structure (LNM)
Eq. (1)) and therefore, a log–log transformed linearized modeling
pproach (LM) (Eq. (2)) was followed. The modeling parameters
a, b, and σ 2) were derived for the LM and were back-transformed
to the original scale. The likelihood score (Llognorm) of data as-
uming a log-normal probability distribution was derived in the
riginal untransformed scale using Eq. (3) (Banks and Joyner,
017).

NM, log (W) = a × Lb × exp(ε), ε ∼ Normal(0, σ 2) (1)

M, log (W) = log (a) + b × log (L) + ε, ε ∼ Normal
(
0, σ 2)

(2)

lognorm =

n∏
i=1

⎡⎢⎣ 1√
2πσ 2

LM

exp

⎛⎜⎝−

(
log (yi) − log

(
aLMxbLMi

))2

2σ 2
LM

⎞⎟⎠
⎤⎥⎦
(3)

Secondly, the data were assumed to have been generated
from a normal distribution with additive error structure (NLM)
3

(Eq. (4)). However, assuming heterogeneous variance distribution
structure in fish weight data, a weighted nonlinear modeling
approach with power variance structure, i.e., var(ε) = σ 2[fitted
weight]2d (Eq. (5)) was followed to account for the heteroscedas-
ticity in the data. The modeling parameters (a, b, and σ 2) were
derived for the wNLM and the likelihood score (Lnorm) of the data
assuming a normal probability distribution was derived using
Eq. (6) (Banks and Joyner, 2017).

NLM, W = a × Lb + ε, ε ∼ Normal
(
0, σ 2) (4)

wNLM, W = a × Lb + ε, ε ∼ Normal
(
0, σ 2 [fitted weight]21

)
(5)

Lnorm =

n∏
i=1

⎡⎢⎣ 1√
2πwi

2σ 2
wNLM

exp

⎛⎜⎝−

(
yi − awNLMxbwNLM

i

)2

2wi
2σ 2

wNLM

⎞⎟⎠
⎤⎥⎦
(6)

The linear modeling (LM) and weighted nonlinear modeling
(wNLM) were performed using the linear regression ‘lm’ routine
and a generalized nonlinear regression ‘gnls’ routine, respectively,
in the R statistical software package. The statistical support for
the error structure was determined using an IT-based indicator,
i.e., the Akaike information criterion (AIC). However, due to the
small sample size in the case of males of certain shrimps, a sample
size-corrected AIC (second-order information criterion), i.e., AICc
(Sugiura, 1978; Hurvich and Tsai, 1995), was used to compare
the likelihood support for the appropriate error structure. This
small sample unbiased AIC (i.e., AICc) value for log-normal and
normal probability distribution assumptions was derived using
the corresponding likelihoods (L ) of the two distribution models,
i
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.e., Llognorm and Lnorm respectively, in the following equation
suggested by Burnham and Anderson (2002).

AICc−i = 2k − 2 log (Li) +
2k (k + 1)
n − k − 1

(7)

where, AICc−i represents the AICc score for the corresponding
models (i.e., LM and NLM). k is the number of parameters in each
of the models and n is the sample size. This AICc was further
used to derive 1AICc using the following equation suggested by
Burnham and Anderson (2002).

1AICc−i = AICc−i − min(AICc−norm,AICc−lognorm) (8)

where, 1AICc−i represents the 1AICc score for the corresponding
models (i.e., LM and NLM). This 1AICc score was further used to
calculate the Akaike weight (Awi) for the corresponding models
(i.e., LM and NLM) using the following equation suggested by
Burnham and Anderson (2002).

Awi =
exp(− 1

21AICc−i)∑R
r=1

(
−

1
21AICc−k

) (9)

where, the numerator represents the relative likelihood of the
corresponding model and the denominator represents the sum of
the relative likelihoods of the competing models under consider-
ation. Therefore, the value of Awi ranges from 0 to 1.

The ratio of the Akaike weight (Aw) of the best model to the
other competing model in a pair of models under consideration
was used to derive the evidence ratio (ER) in favor of the best
model using the following equation suggested by Burnham and
Anderson (2002).

ER =
Awi

Awj
=

exp(− 1
21AICc−i)

exp
(
−

1
21AICc−j

) (10)

here, Awi is the Akaike weight of the best among the competing
odels (with the lowest AICc) and Awj is the Akaike weight of

the other competing model. ER can also be calculated from the
relative likelihood of the corresponding competing models.

2.3. Decision support for modeling approach

Initially, an 1AICc cutoff of higher than 2 was used to as-
certain the appropriate error structure for the data, which was
cross-validated using probability density diagnostic plots for the
residuals generated from both competing models. As no apparent
distinguishable probability density distribution of residuals could
be visualized in certain cases at 1AICc > 2.0 and the correspond-
ing W (Aw) of 0.88 and ER of 7.5, a further higher W (Aw) of
0.9 and ER of 9.0 was used for the rejection of the competing
model. The corresponding 1AICc score for the model rejection
was determined by regressing the 1AICc of the competing model
against the Akaike weight (Aw) of the best model (Fig. 3 and
Eq. (11)).

1AICc = a −

(
1
b

× LN (1 − W)

)
(11)

here, a = −0.53342 and b = 0.48834 are regression parameters.
The cut-off 1AICc for model rejection, corresponding to an Aw of
0.9 and an ER of 9.0 was estimated to be 4.2. The following three
4

criteria were used for the selection of an appropriate modeling
approach.

Criterion-1: 1AICc > 4.2 with WLM ≥ 0.9: Better support for
log-normal distribution with multiplicative error structure

Criterion-2: 1AICc > 4.2 with WwNLM ≥ 0.9: Better support for
normal distribution with additive error structure

Criterion-3: 1AICc < 4.2 with WLM or WwNLM < 0.9: Equal sup-
port for both the log-normal distribution with multiplicative er-
ror structure and the normal distribution with additive error
structure.

Under criterion-1, log-transformed linearized modeling (LM)
approach was used for modeling. On the other hand, if criterion-
2 was fulfilled, then weighted nonlinear modeling (wNLM) was
used. However, under criterion-3, an AIC weighted model av-
eraging (AwMA) approach was followed, assuming inconclusive
support for both the probability density structures of error. A full
model averaging following the recommendations of Lukacs et al.
(2009) and Xiao et al. (2011) was used to derive the model pa-
rameters. The model parameters (β) i.e., a and b, were estimated
using the following equation.

β =

R∑
i=1

Wi (AIC) × βi (12)

Subsequently, the CIs for a and b for the AwMA were gen-
erated by bootstrapping datasets using the ‘boot’ routine in the
R statistical software package. The models performance was fur-
ther cross-checked using the conventional goodness of fit (GOF)
indicator, i.e., root mean squared error (RMSE).

3. Results

The information-theoretic criterion (AICc) and its derivatives
for the evaluation of support for two competing models with
log-normal multiplicative error (LM) and normal additive error
structure (wNLM) are summarized in Table 1. An initial scrutiny
of the probability density diagnostic plot of residuals (Fig. 2)
generated from two modeling approaches does not provide con-
clusive evidence for the two competing models at a 1AICc of
more than 2.0 or even at an Akaike weight (Aw) threshold of
0.88. Therefore, a higher Aw of 0.9 and an evidence ratio of 9.0
were used for the rejection of the competing model. The Akaike
weights (Aw) of the best models as predictor variables were
regressed against the 1AICc scores of the competing models as
response variables to derive the 1AICc cut-off score of 4.2 for the
rejection of the competing model (Fig. 3).

Using this derived 1AICc cut-off, a higher likelihood support
or the log-normal multiplicative error structure of the data was
learly evident in only 4 out of 15 datasets (26.7% of overall data),
.e., P. sculptilis (sex pooled and female datasets), S. crassicornis
(sex pooled and female datasets), suggesting the applicability of
the log-linearized model (LM) as the best modeling approach.
On the other hand, 5 datasets (33.3% of overall data), i.e., P.
stylifera (female dataset), S. crassicornis (male dataset) and P.
monodon (sex pooled, male and female datasets) showed higher
likelihood support for normal additive error structure, suggesting
the weighted nonlinear model (wNLM) as the best modeling
approach. In maximum datasets, i.e., 6 out of 15 (40% of overall
data), i.e., P. stylifera (sex pooled and male datasets), P. sculptilis
(male dataset) and P. semisulcatus (sex pooled, male and female
datasets), equal support for two of the above error distribution
structures was observed, indicating an ambivalent error struc-
ture for most of the observations. For these six datasets, an AIC
weighted model averaging (AwMA) approach was used for the
accurate estimation of modeling parameters and their confidence
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Fig. 2. Probability density diagnostic plot for validating the support for lognormal multiplicative error (LM) and normal additive error structure (wNLM). The
alphabets in the figure represent shrimp species, i.e., a: Parapenaeopsis stylifera; b: Parapenaeopsis sculptilis, c: Solenocera crassicornis; d: Penaeus monodon and e:
Penaeus semisulcatus; the numerical subscripts represent dataset category, i.e., 1: female dataset; 2: male dataset and 3: sex-pooled dataset. The green and red
probability plots with dotted lines indicate higher and lesser supports, respectively, for the log-normal distribution of residuals. The green and red probability plots
with solid lines indicate higher and lesser supports, respectively, for the normal distribution of residuals. The blue probability plots indicate equal support for both
the log-normal and normal distributions of residuals.
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Table 1
Information-theoretic criterion (AICc) and its derivatives for evaluation of support for two competing models with lognormal multiplicative error (LM) and normal
dditive error structures (wNLM).
Species Sex AICc-lognorm AICc-norm 1AICc exp

(−1/2
1AICc-lognorm)

exp
(−1/2
1AICc-norm)

Awlognorm Awnorm ER Best modeling
approach

P. stylifera
P 1192.02 1187.99 4.03 0.13 1.00 0.12 0.88 7.51 AwMA
M 47.62 45.54 2.08 0.35 1.00 0.26 0.74 2.83 AwMA
F 1093.45 1080.93 12.51 0.00 1.00 0.00 1.00 521.80 wNLM

P. sculptilis
P 2332.80 2346.12 13.32 1.00 0.00 1.00 0.00 778.91 LM
M 153.10 155.08 1.98 1.00 0.37 0.73 0.27 2.70 AwMA
F 2169.65 2183.02 13.37 1.00 0.00 1.00 0.00 800.31 LM

S. crassicornis
P 1329.52 1349.53 20.01 1.00 0.00 1.00 0.00 22088.12 LM
M 115.19 91.94 23.25 0.00 1.00 0.00 1.00 111983.83 wNLM
F 1213.14 1225.46 12.32 1.00 0.00 1.00 0.00 473.65 LM

P. monodon
P 3259.97 3224.73 35.24 0.00 1.00 0.00 1.00 44884578.07 wNLM
M 1614.60 1587.37 27.23 0.00 1.00 0.00 1.00 817651.54 wNLM
F 1647.37 1633.40 13.97 0.00 1.00 0.00 1.00 1079.61 wNLM

P. semisulcatus
P 2563.37 2564.28 0.92 1.00 0.63 0.61 0.39 1.58 AwMA
M 1365.30 1366.95 1.65 1.00 0.44 0.70 0.30 2.28 AwMA
F 1169.29 1173.35 4.06 1.00 0.13 0.88 0.12 7.61 AwMA

P: sex-pooled data; M: male data; F: female data; AICc-lognorm: sample size corrected AIC for LM; AICc-norm: sample size corrected AIC for wNLM; 1AICc: AICc difference
f the competing model from best model; exp (−1/21AICc-lognorm): relative likelihood of LM; exp (−1/21AICc-norm): relative likelihood of wNLM; Awlognorm: Akaike
eight for lognormal distribution of error; Awnorm: Akaike weight for normal distribution of error; ER: Evidence ratio.
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Fig. 3. Regression of the Akaike weight (Aw) of the best model against the
AICc score of the competing model for deriving the cut-off 1AICc for the model
ejection.

ntervals. The modeling parameters and their confidence inter-
als obtained from LM, wNLM and AwMA are summarized in
able 2. The comparison of inappropriate modeling approaches
uch as the application of wNLM when errors are log-normally
istributed with multiplicative error structures and the applica-
ion of LM when the errors are normally distributed with additive
rror structures is shown in Fig. 4a1–a2 and Fig. 4b1–b2, respec-
ively. The applicability of AwMA in reducing the model bias
hen both the error structures (log-normal and normal) are
mbivalent is also shown in Fig. 4c1–c2. The root mean squared
rror (RMSE) compared to check the soundness of the compet-
ng models revealed narrow differences among the models and
herefore, the competing models could be concluded to be well-
ounded. Nevertheless, lower RMSE was almost always observed
n the wNLM compared to the LM and AwMA, except for the
arapenaeopsis sculptilis (sex pooled) dataset.

. Discussion

The choice of an appropriate modeling approach is mainly
nfluenced by the variance distribution structure (Xiao et al.,
6

011). As the fish grows in three dimensions, its weight grows
onlinearly as a power function of its length, and therefore, it
s biologically reasonable to assume a log-normal multiplicative
rror structure for the variance of the data. Furthermore, as the
eight of bigger fish varies more than that of smaller fish, the
elationship between fish length and weight does not follow ho-
ogeneity (heteroscedasticity) in terms of variance structure (De
iosa and Czerniejewski, 2016). Therefore, it makes sense why
he log-linearized models (LM) are so popular for deriving LWRs
n fishery biology studies. By log transformation, the log-normal
ultiplicative error structure with heteroscedasticity (Eq. (1))
ould be briefly normalized (Eq. (2)) with an additive and near
omogeneous error structure and therefore, this model is very
ommon in the biological literature (Ogle, 2015). However, real-
orld data may not always follow this popular and biologically
ound assumption (Xiao et al., 2011). There is a possibility that
he data at hand may have come from a normal distribution with
n additive error structure (Eq. (4)) due to inherent limitations in
he sampling process or due to the influence of some unknown
iological process that is yet to be explained. Under such circum-
tances, it is better to use a nonlinear modeling approach (Xiao
t al., 2011). As the ordinary nonlinear model (NLM) is better
t characterizing data with normal, additive, homoscedastic er-
or structure, an improvised version of the nonlinear modeling
pproach, i.e., weighted nonlinear modeling (wNLM) has been
sed in the present study to address the heteroscedasticity in
rror structure in fish weight data. The application of an ap-
ropriate weight function (here, power variance structure) in
he model (Eq. (5)) in the presence of heteroscedasticity could
ffectively reduce the influence of data points with high noise
variance or error) and thus makes the model less biased. Such
weighted nonlinear modeling approach (wNLM) has previously
een proven to outperform conventional log-linearized modeling
pproach (De Giosa and Czerniejewski, 2016; Dash et al., 2022).
Since the data collected from nature could have come from

ither a log-normal distribution with a multiplicative error struc-
ure or a normal distribution with an additive error structure,
he appropriate approach for modeling is to first ascertain the
ariance (error) structure so that the modeling parameters and
heir confidence intervals can be estimated accurately. It has
een found that IT-based indices such as AIC and BIC can be
uccessfully used to ascertain the likelihood support for the log-
ormal multiplicative variance structure or the normal additive
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p

Fig. 4. Comparison of modeling parameters (intercept (a); and rate of change (b)) and their confidence intervals derived from different modeling approaches (LM
vs. wNLM vs. AwMA) under different error structures. The alphabets in the figure represent different error structures, where Fig. 4a1 and Fig. 4a2 represent the
revalence of lognormal multiplicative error structure; Fig. 4b1 and Fig. 4b2 represent the prevalence of normal additive error structure; and Fig. 4c1 and Fig. 4c2

represent the prevalence of support for both the error structures in the data; The abbreviations in X-axis represent the species-level data categories and applied
modeling approaches as follows: Fig. 4a1 and 4a2: PSCP: Parapenaeopsis sculptilis sex-pooled data; PSCF: Parapenaeopsis sculptilis female data; SCPSolenocera crassicornis
sex-pooled data; SCF: Solenocera crassicornis female data; Fig. 4b1 and 4b2: PSTF: Parapenaeopsis stylifera female data; SCM: Solenocera crassicornis male data; PMP:
Penaeus monodon sex-pooled data; PMM: Penaeus monodon male data; PMF: Penaeus monodon female data; Fig. 4c1 and 4c2: PSTP: Parapenaeopsis stylifera sex-pooled
data; PSTM: Parapenaeopsis stylifera male data; PSCM: Parapenaeopsis sculptilis male data; PSP: Penaeus semisulcatus sex-pooled data; PSM: Penaeus semisulcatus
male data; PSF: Penaeus semisulcatus female data; -LM: linear modeling approach with log transformed data; -wNLM: weighted nonlinear modeling approach with
untransformed data; -AwMA: Akaike weighted model averaging approach.
variance structure (Xiao et al., 2011). From the brief introduction
about IT-based indices, it is apparent that such indices help to
draw multimodel inferences by comparing the information loss
under a likelihood framework from several competing models.
They determine the accuracy (maximum likelihood) of model
parameters while maintaining the principle of model parsimony
by penalizing for the inclusion of extra parameters in the models
and thus reducing the effect of model over-fitting bias (Burnham
and Anderson, 2002). In the present study, the small-sample
equivalent of AIC, i.e., AICc (Eq. (7)) has been used as the IT-
based criterion for model selection due to small sample sizes (the
ratio between the sample size (n) and the number of modeling
parameters (k), i.e., n/k is less than 40) in certain data categories
such as Parapenaeopsis stylifer (males), Parapenaeopsis sculptilis
(males) and Solenocera crassicornis (males) following the recom-
mendations of Sugiura (1978) and Hurvich and Tsai (1995). In the
present study, AICc has been used instead of AIC and BIC as it has
been observed that AICc provides a stronger penalty compared to
AIC and BIC for small and very small sample sizes, respectively
(Brewer et al., 2016).

In the present study, the likelihoods have been calculated
from the least squares estimated parameters using Eq. (3) for
the LM-derived parameters and Eq. (6) for the wNLM-derived
parameters for the subsequent calculation of AICc, which are
valid as per the recommendations of Burnham and Anderson
(2002). Such switching from a least squares framework to a
likelihood-based framework is possible as the maximum like-
lihood estimates (MLE) for model parameters under the Gaus-
sian distributed error assumption are the same as the ordinary
least squares estimates (OLS) or weighted least squares estimates
(WLS) (Banks and Joyner, 2017). Furthermore, it must be noted
that though an operational normal and constant error struc-
ture has been assumed in log-linearized LM to derive the model
7

parameters, it basically represents an underlying log-normal mul-
tiplicative (heterogeneous) error structure in an untransformed
scale and therefore, the likelihood of LM has been estimated in
the untransformed scale in order to make the response variables
from both the models (i.e., LM and wNLM) in an identical scale
for the comparison, which is an important criterion for drawing
multimodel inference under an information-theoretic paradigm
(Burnham and Anderson, 2002).

As the absolute value of AICc is meaningless, it cannot eluci-
date if the model is good or poor in an absolute sense. Rather, it is
the relative difference in the AICc value (i.e., 1AICc, Eq. (8)) of the
competing model compared to the best model (with the lowest
AICc), that gives vital information regarding the performance of
the competing model. Though a 1AICc score-based criterion has
been proposed by Burnham and Anderson (2002) for the treat-
ment of competing models, there is still considerable ambiguity
regarding the treatment (acceptance or rejection) of competing
models if the 1AICc falls within the doubtful zone that primarily
ranges from 2 to 4 and to some extent even up to 7. In the present
study, the 1AICc values for the competing model were observed
to be approximately 4.0 in the case of Parapenaeopsis stylifera
(sex-pooled dataset) and Penaeus semisulcatus (female dataset).
Though, from the 1AICc score, it appears that NLM and LM
were the best modeling approaches for Parapenaeopsis stylifera
(sex-pooled dataset) and Penaeus semisulcatus (female dataset)
respectively, a revalidation attempt using density plots of the
residuals does not produce any apparent perceivable difference
in the probability densities of the residuals from the competing
models (Fig. 2a3 and 2e1). This could be due to the inherent
biological limitations in the unbiased random sampling process
that affect the variance distribution structure of the datasets.

Large individuals in a population exhibit a higher variance in body
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Table 2
Modeling parameters, their confidence intervals and modeling performance indicators obtained from different modeling approaches (LM, wNLM and AwMA) followed
to establish relationship between length and weight of five commercially important marine shrimps of West Bengal, India.
Species Sex Model a 95%CI of a b 95% CI of b SD d DF Log Lik. AICc RMSE

P. stylifera
P LM 0.0060 0.0048–0.0075 3.0358 2.9373–3.1342 0.8447 NA 478 −592.99 1192.02 0.8452
P wNLM 0.0065 0.0049–0.0081 3.0019 2.8980–3.1058 0.8441 0.50 478 −589.95 1187.99 0.8433
P AwMA* 0.0064 0.0050–0.0070 3.0059 2.9678–3.1104 0.8442 NA 478 −590.31 1188.46 0.8433

P. stylifera
M LM 0.0041 0.0030–0.0056 3.1696 3.0315–3.3077 0.3634 NA 55 −20.59 47.62 0.3610
M wNLM 0.0034 0.0023–0.0045 3.2521 3.1135–3.3907 0.3492 0.49 55 −18.39 45.54 0.3461
M AwMA* 0.0036 0.0032–0.0051 3.2305 3.0677–3.2844 0.3509 NA 55 −18.96 46.09 0.3480

P. stylifera F LM 0.0081 0.0062–0.0106 2.9101 2.7954–3.0247 0.8713 NA 421 −543.70 1093.45 0.8720
F wNLM* 0.0083 0.0060–0.0105 2.9039 2.7870–3.0209 0.8713 0.44 421 −536.42 1080.93 0.8702

P. sculptilis P LM* 0.0078 0.0058–0.0106 2.9917 2.8785–3.1050 2.9439 NA 478 −1163.38 2332.80 2.9451
P wNLM 0.0077 0.0054–0.0101 2.9983 2.8857–3.1109 2.9486 1.03 478 −1169.02 2346.12 2.9456

P. sculptilis
M LM 0.0038 0.0024–0.0058 3.2791 3.1086–3.4497 1.6244 NA 39 −73.22 153.10 1.6056
M wNLM 0.0038 0.0022–0.0054 3.2800 3.1169–3.4431 1.6247 1.02 39 −72.99 155.08 1.6048
M AwMA* 0.0038 0.0031–0.0049 3.2794 3.1757–3.3520 1.6244 NA 39 −73.16 153.63 1.6050

P. sculptilis F LM* 0.0099 0.0068–0.0143 2.9039 2.7649–3.0428 3.0064 NA 437 −1081.80 2169.65 3.0081
F wNLM 0.0101 0.0063–0.0138 2.8989 2.7594–3.0385 3.0075 0.95 437 −1087.46 2183.02 3.0041

S. crassicornis P LM* 0.0252 0.0210–0.0303 2.5406 2.4586–2.6226 1.0411 NA 478 −661.74 1329.52 1.0424
P wNLM 0.0253 0.0204–0.0302 2.5430 2.4568–2.6292 1.0398 0.81 478 −670.72 1349.53 1.0387

S. crassicornis M LM 0.0231 0.0168–0.0317 2.5833 2.4290–2.7376 0.4526 NA 73 −54.42 115.19 0.4508
M wNLM* 0.0172 0.0140–0.0203 2.7217 2.6423–2.8012 0.4418 0.68 73 −41.68 91.94 0.4406

S. crassicornis F LM* 0.0262 0.0202–0.0339 2.5237 2.4099–2.6375 1.1172 NA 403 −603.54 1213.14 1.1186
F wNLM 0.0253 0.0184–0.0322 2.5427 2.4237–2.6617 1.1149 0.61 403 −608.68 1225.46 1.1135

P. monodon P LM 0.0057 0.0045–0.0072 3.1042 3.0275–3.1809 7.1869 NA 478 −1626.96 3259.97 7.1889
P wNLM* 0.0064 0.0049–0.0078 3.0695 2.9946–3.1443 7.1817 0.55 478 −1608.32 3224.73 7.1742

P. monodon M LM 0.0062 0.0043–0.0089 3.0776 2.9545–3.2006 7.2425 NA 233 −804.25 1614.60 7.2316
M wNLM* 0.0106 0.0066–0.0146 2.8996 2.7757–3.0236 7.0573 0.31 233 −789.60 1587.37 7.0423

P. monodon F LM 0.0054 0.0040–0.0072 3.1238 3.0270–3.2206 7.0388 NA 243 −820.64 1647.37 7.0395
F wNLM* 0.0052 0.0037–0.0066 3.1394 3.0466–3.2323 7.0238 0.62 243 −812.62 1633.40 7.0095

P. semisulcatus
P LM 0.0051 0.0041–0.0063 3.1650 3.0914–3.2386 5.4613 NA 418 −1278.66 2563.37 5.4588
P wNLM 0.0053 0.0042–0.0064 3.1532 3.0819–3.2245 5.4597 0.83 418 −1278.09 2564.28 5.4533
P AwMA* 0.0052 0.0043–0.0060 3.1604 3.1061–3.2202 5.4609 NA 418 −1278.44 2563.72 5.4555

P. semisulcatus
M LM 0.0069 0.0047–0.0103 3.0529 2.9153–3.1905 4.2912 NA 238 −679.60 1365.30 4.2876
M wNLM 0.0069 0.0043–0.0095 3.0555 2.9250–3.1859 4.2836 0.83 238 −679.39 1366.95 4.2747
M AwMA* 0.0069 0.0053–0.0099 3.0537 2.9278–3.1497 4.2888 NA 238 −679.53 1365.80 4.2825

P. semisulcatus
F LM 0.0104 0.0071–0.0150 2.9374 2.8143–3.0605 6.3632 NA 178 −581.58 1169.29 6.3495
F wNLM 0.0109 0.0068–0.0149 2.9225 2.7990–3.0461 6.3617 0.82 178 −582.56 1173.35 6.3440
F AwMA* 0.0104 0.0081–0.0131 2.9357 2.8602–3.0186 6.3631 NA 178 −581.69 1169.77 6.3482

P: Sex pooled data; M: Male data; F: Female data; a and b: Model parameters; SD: Standard deviation of the residuals; d: Power used in the power variance structure
of wNLM; DF: Degrees of freedom; CI: Confidence interval; LM: log-transformed linearized model; wNLM: Weighted nonlinear model; AwMA: Akaike weighted model
averaging; NA: Not available; Log Lik.: Log Likelihood score of the model; AICc: sample size corrected Akaike Information Criterion for the model; RMSE: Root mean
squared error; Models in bold and star marked are the appropriate modeling approaches for the data at hand.
weight compared to their smaller counterparts, but are scarcely
represented in a sample due to their decreased abundance in
a population. Such a limitation might have constrained these
real-world datasets in such a manner that they are producing am-
biguous variance distribution structures that equally support both
the log-normal residual assumption of the LM and the normal
residual assumption of the wNLM, leading to data ambivalence
even at a 1 AICc score of 4. This suggests that the competing
model should not be rejected simply because their 1AICc score
is merely above 2; instead, they should also be cross-validated
with appropriate tools, such as a residual diagnostic plot, to assess
the fulfillment of their assumed variance distribution structures.
Therefore, in the present study, some other scaling methods,
such as Akaike weights (Aw, Eq. (9)) and evidence ratios (ER,
Eq. (10)) have been used to derive additional insights for drawing
holistic conclusions about the competing models. As the Aw is
derived from the relative likelihood of the competing model, it
represents the weight of evidence (also considered analogous to
the probability) in favor of the competing model being the best
model. In the present study, instead of a 1AICc score above 2.0, an
Aw score of 0.9 for the best model has been used as the minimum
cutoff score for the rejection of the competing model. This was
further corroborated by the inspection of the residual probability
8

density diagnostic plot, as no apparent perceivable evidence for
the model superiority could be established even at an Aw score
of 0.88 corresponding to a 1AICc value above 2.0 (i.e., 4.03–4.06)
(Fig. 2a3 and 2e1, Table 1). As the Aw is a value between 0 and
1, a high score of 0.9 for the best model eventually indicates a
very low score of 0.1 for the competing model and thus the ratio
values (Eq. (10)), i.e., 9.0, which is also known as evidence ratios
(ER), can also be used as the minimum cutoff value of ER for
the rejection of the competing model. ER, being the ratio of the
weight of evidence of the best model (lowest AICc) to that of the
competing model (higher AICc), represents the number of times
(here, 9 times) the model is likely to be the best model compared
to the competing model in terms of Kullback–Leibler discrepancy
(Wagenmakers and Farrell, 2004). As the wAICc (Aw) score of the
best model increases exponentially in relation to the 1AICc of
the competing model, an exponential nonlinear regression (Fig. 3)
has been performed in the present study to estimate the cut-
off value of 1AICc using Eq. (11). The 1AICc cut-off value of
4.2 has been used for the model treatment, above which the
competing models have been rejected in favor of the best model.
This is found to be in congruence with the general observation
of Burnham et al. (2011), in which it has been recommended
that the plausible hypotheses are identified by a narrow 1AIC
c
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alue that probably ranges from 4 to 7. However, under situations
here the likelihoods of competing models are equally good at
pproximating the information in the dataset (i.e., Aw < 0.9 or ER
9.0 or 1AICc < 4.2), robust inference has been derived by model

averaging (Burnham and Anderson, 2002). Model averaging helps
to reduce the impact of model misspecification induced by data
ambivalence while accounting for model uncertainty by giving
due consideration to the likelihood support for both types of error
structures (Burnham et al., 2011).

Furthermore, in the present study, the AICc has also been used
n association with the root mean squared error (RMSE), which
s a conventional goodness of fit (GOF) indicator, to assess the
rediction quality of the competing model and cross-check if
he model is well-founded just like the best-performing model.
owever, in the present study, this conventional GOF indicator
as almost always shown that wNLM is the best modeling ap-
roach despite the higher AICc score in certain cases (Table 2),
hich indicates the limitations of RMSE in accurately predicting
he performance of the model. Contrary to the AICc, RMSE is
iased towards model overfitting and therefore, it cannot reveal if
he model is overfitting the observations as it does not penalize
he model for the inclusion of extra variable(s) or parameter(s)
ven though they are biologically not significant. RMSE as a fit
accuracy) performance indicator is usually influenced by outliers
nd tends to select the model that maximizes fit without giving
onsideration to model complexity (Liemohn et al., 2021).

. Conclusions

In the present study, it has been illustrated how the variance
error) distribution structure of the data could be ascertained
n order to select the appropriate modeling approach for re-
ucing uncertainty while establishing the relationship between
he length and weight data of shrimps. A likelihood-based in-
ormation theoretic criterion such as AICc should be used in
ongruence with the probability density of residuals through a
esidual diagnostic plot for the problem-specific formulation of
utoff criteria for the evaluation of competing models. The study
eveals that an improvised IT-based cutoff criterion, i.e., a 1AICc
score of 4.2 and above (corresponding to Aw ≥ 0.9 and ER ≥ 9.0)
ould be used as a decision support threshold to ascertain the
ariance distribution structure of data so that the best modeling
pproach could be followed to increase the accuracy of the model
rediction. Though a log-linearized model (LM) is commonly used
n fishery biology studies to establish the relationship between
he body length and weight of aquatic animals with a biologically
ound assumption in favor of a log-normal multiplicative error
tructure, the present study revealed that such an assumption
s not always valid. Contrary to this popular belief, the lowest
umber of datasets in the present study exhibited a log-normal
rror structure. Furthermore, the highest number of datasets ex-
ibited equal support for both the log-normal and normal error
tructures. Therefore, in such a data ambivalence situation, the
tudy also recommends the use of an Akaike weighted model
veraging approach to reduce model uncertainty.
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