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ABSTRACT 

Three different statistical modelling procedures, viz. deterministic regression 
modelling, univariate time series and multivariate time series modelling 
approaches were evaluated on the basis of their efficiency with a view to 
modelling and providing accurate operational forecasts of the quarterly 
commercial landings of seven species of marine fishes along with the total 
landings of Tamil Nadu. The forecasts were based on the database of 1975-
'96. Sound statistical techiques were utilised to select an appropriate model. 
The selected models were then used to forecast species-wise landings for the 
next two more years. 
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Introduct ion 
Statistical modelling essentially con­

sists of developing a model to ad­
equately represent the salient features 
of the problem under study. Subse­
quently, it is used to forecast future 
values of the underlying phenomenon 
which may be for example, commercial 
landings of some important fish species. 
To model such a dynamic system, 
methods used in the literature (Stergiou 
et al., 1997) are oriented towards the 
following. 

a) Modelling on the basis of deter­
ministic, regression techniques that 
explain changes in fishery variables 
(e.g. catch, catch per unit of fishing 
effort) in terms of changes in various 
biotic (e.g. spawning stock, predators, 
competitors) and/or abiotic variables 
(e.g. fishing effort, climate). 

b) Modelling on the basis of univariate 
time series techniques that t reat the 
system as a black box, viewed as an 
unknown generating process and fore­
casting is based on projecting past 
values of a variable and/or past errors 
into the future. 

c) Models that synthesise the above 
mentioned two general approaches 
(multivariate time series). 

In the present study under the first 
approach of regression modelling, poly­
nomials of suitable orders and time 
varying seasonal regression models 
(TVS) are developed. The second part 
consists in developing Winters' (Win­
ters , 1960) Exponential Smoothing 
model(WES) and Auto Regressive Inte­
grated Moving Average (ARIMA) time 
series models. On the other hand, an 
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attempt has been made to fit harmonic 
multivariate regression (HREG) mod­
els, under the last approach. All these 
techniques are employed to seven differ­
ent commercially important fish spe­
cies. A suitable model in each of the 
above eight situations is selected not 
only on the basis of computing the 
frequently used measure of model accu­
racy, namely, R2, the coefficent of deter­
mination, but also on testing the ran­
domness or white noise assumption of 
the model generated residuals. Further­
more, an attempt has been made to 
examine the accuracy of the resultant 
model by comparing the last two obser­
vations with the values obtained by 
fitting the selected model in all the data 
sets after ignoring the last two data 
values. Finally forecast of fish landings 
is done utilising the chosen model for 
next two more years. The STATISTICA 
(Release 4.5) package available at 
CMFRI, Cochin was used for data 
analysis. 

Materials and methods 
The quarterly landings of seven 

commercially important fish groups, 
viz. elasmobranchs, other sardines, per­
ches, silverbellies, croakers, carangids. 
and penaeid prawns along with total 
landings from 1975-'96 in Tamil Nadu 
obtained through a stratified multistage 
random sampling procedure developed 
by the Central Marine Fisheries Re­
search Institute, Cochin form the data­
base for this study. The above men­
tioned statistical modelling procedures, 
as discussed below, are employed to 
these data sets, with a view to selecting 
the most appropriate model for each of 
these eight data sets. 

(i) Regression modelling : At the first 
instance, polynomial function of suit­
able degree is fitted. Denoting the 

dependent variable of interest as, yt 

(here, it refers to the fish species catches 
at time period, t) the polynomial func­
tion of kth degree is given by : 

Yt=b.+ b1t+bJt? + ... + bktk
 + et (1) 

where b;'s are the unknown para­
meters to be estimated and et denotes 
the error term following some continu­
ous statistical distribution. Eq.(l) of 
suitable degree will be selected by 
observing the decrease in the residual 
sum of squares at each stage. Specifi­
cally, eq.(l) will be chosen to represent 
the data set only when there is an 
insignificant decrease in the residual 
sum of squares due to fitting of (k+l)th 

degree polynomial. 

A special case of the above regression 
model is the time varying seasonal 
(TVS) regression model. For such mod­
els a modified version of eq. (1) can be 
used that copes with seasonal cycles. 
This is done by introducing (s-1) dummy 
variables (where s is the length of 
seasonality; in our case 4 quarters), Dt 

to D3: D1 = 1, if the quarter is first, and 
zero otherwise; D2 = 1, if the quarter is 
second, and zero otherwise; and D,j = 1, 
if the quarter is third, and zero other­
wise. 

Each of these three dummy variables 
is equivalent to a new regression : 

Y t = b 0 + a A + a 2 D 2 + a 3 D 3 + bj* +-
+bktk+e t , (2) 
and the set of three dummy variables 
identifies all four quarters (Makridakis 
et al., 1983). 

(ii) Univariate time series models: 
Under this approach two different cat­
egories of univariate time series models, 
namely, exponential smoothing and Auto 
Regressive Integrated Moving Average 
(ARIMA) models are fitted with a view 
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to describing the data effectively. Expo­
nential smoothing models apply un­
equal exponentially decreasing weights 
for the averaging of past observations. 
In contrast, ARIMA models capture the 
historic autocorrelation of the data and 
extrapolate them into the future. They 
usually outperform the exponential 
smoothing models when the time series 
of data is long, not highly irregular and 
the autocorrelations are strong (Stergiou 
et al., 1997). In the present study, 
Winters' exponential smoothing (WES) 
(Winters, 1960) models which can han­
dle both trend and seasonality as well 
as randomness, are used. They are 
based on three smoothing equations 
such as trend, stationarity and sea­
sonality (Stergiou et al., 1997) In the 
multiplicative WES model it is assumed 
that each observation is the product of 
a deseasonalised value and a seasonal 
index: 

St=cc(yt/It.L) + ( l - a ) ( S , 1 + b t J 

b t = Y ( S t - S M ) + ( l - Y ) b w 

I t=P(y t/S t) + ( l - P ) I t , 

and the forecasts are computed based on: 

F = (Sf + mb) I t. 4 
t+m t t t-L+m 

Here a, P and y are the general 
smoothing, seasonal smoothing and 
trend smoothed coefficients respectively, 
taking values between the range 0 and 
1; L is the length of seasonality; bt is the 
trend component; I is the seasonal 
adjustment factor; S t is the smoothened 
series (smoothed value at time t) that 
does not include seasonality and Ft+m is 
the forecast m periods ahead. The 
computation of smoothing coefficients is 
based on the minimisation of mean 
squared error (MSE) and the approach 
to estimate these values is trial and 
error. In the present study, built-in-

options available in STATISTICA (Re­
lease 4.5) package is used to formulate 
these WES models. 

ARIMA models formulated by Box -
Jenkins (Box and Jenkins, 1976) as­
sume that a time series is a linear 
combination of its own past values and 
current and past values of error terms. 
These models necessitate the stationarity 
assumption of the time series, a series 
for which mean and variance are con­
stant over a period of time. It may be 
pointed out that differencing of the 
original series upto suitable order, makes 
the original series stationary. The gen­
eral form of an ARIMA model can be 
written as : 

U-cpjB") (1-^JB*) (1-Bd) (l-BD)yt 

= ( 1 - 0 ^ ) ( 1 - 0 ^ ) ^ , (5) 

where Bp is the backward shift 
operator for which Bpyt = Yt ; (pi, (pi, 01 
and 0j are the arithmetic coefficients; 
and e t is the error term at time t. The 
general form of ARIMA model is re­
ferred to as: 

ARIMA (p, d, q) (P, D, Q)s, (6) 

where p, q, and d respectively denote 
the order of auto regression (AR), 
moving average (MA) and the degree of 
differencing needed to achieve station­
arity. Moreover s is the seasonality 
(number of periods per season); and P, 
D, Q are seasonal terms corresponding 
to p, d, q respectively. In this approach 
at first instance, possible candidate 
models are selected to represent the 
data set by observing two plots, viz. 
auto-correlation function (ACF) and 
partial auto-correlation function (PACF) 
of the stationary series. Consequently, 
these chosen models are tested for 
improvement (by considering alterna­
tive models and/or overfitting) in terms 
of Bayesian Information Criterion (BIC), 
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MSE and R2 values, whereas the over-
fitted term(s) had to have coefficients 
that are more than two standard errors. 
Maximum likelihood algorithm avail­
able in the STATISTICA package is 
utilised for building these ARIMA mod­
els. 

(Hi) Multivariate time series models: 
In this section the aim is to develop a 
multivariate time-series model, viz. 
Harmonic Regression (HREG) model, 
which synthesises the above discussed 
two general approaches. HREG models 
(Bulmer, 1974) incorporates sine and 
cosine terms to account for periodic 
variations existing in the time-series 
data. The general form of HREG model 
incorporating a set of sine and cosine 
waves, with known frequencies, cd (for 
i = l(l)k), is : 

y t = I [ a 1 ( s i n ( ( a , - ) 2 n ) 
i=\ n 

+a 9 / cos( (a , - )2n) l + e, ( 7 ) 

n 

where a ti and a2i are the arithmetic 
coefficients and e t is the error term at 
time t. The application of HREG re­
quires that the frequencies cri are 
known ahead of time. In this study the 
frequencies are estimated using Fast 
Fourier Transform (FFT), applied to the 
raw data. The five maximum peri-
odogram values (od/n) are observed. 
Thereafter, a multiple regression in­
volving eq. (7) as a part of explanatory 
variables is fitted to obtain the param­
eter estimates. 

(iv) Measures of model adequacy : To 
assess the goodness-of-fit of the models, 
the coefficient of determination (R2) 
statistic value is computed (Kvalseth, 
1985): 

.2 (J/ ->',)2 

R* = 1 - ~n 7 7 
I ( y , - r ) 2 

where n is the number of observations. 
The higher the value of R2, better is the 
fitted model. In addition to this, before 
taking any final conclusion about the 
appropriateness of the fitted model, 
randomness assumption regarding the 
error term is tested. This is equivalent 
of testing the independency of residual 
autocorrelations of the fitted model. To 
test this assumption of residuals, the 
Box-Ljung statistic (Q) (Box and Jenkins, 
1976) is utilised. 

Q = (n-d)i r?(a) 
.7 = 1 

where r2 (a) denotes the squared ACF 
corresponding to residuals of j th lag and 
n denotes the number of parameters 
estimated in the model. The hypothesis 
of adequacy of the model is not rejected 
at 5 % level, if the calculated Q value 
at various lags have the corresponding 
probability values (P) more than 0.05. 
Otherwise, the Q values indicate that 
the residual autocorrelations as a set 
are significantly different from zero at 
5 % level. 

Results and discuss ion 

i) Model fitting 

As discussed earlier, the three differ­
ent statistical modelling procedures are 
applied to the quarterly data on seven 
different groups of commercially impor­
tant fish landed along with the total 
landings observed in the state of Tamil 
Nadu during the period 1975-1996. 
Polynomial functions of suitable degree 
for describing these data sets are formu­
lated by observing the reduction in the 
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TABLE 1. Results of 2nd degree polynomial fit 
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Species Elasmo-
statistic branchs 

b0 5001.874 

b, -64.441 

b2 0.534 

R2 0.131 

Other 
sardines 

8157.516 

-107.566 

1.780 

0.165 

Perches 

1887.626 

-18.938 

1.236 

0.755 

Croakers 

3605.044 

-11.108 

0.070 

0.009 

Carangids 

1690.363 

18.592 

0.373 

0.468 

Silver 
bellies 

6066.79 

86.003 

-1.576 

0.164 

Penaeid 
prawns 

2609.94 

-6.640 

0.674 

0.642 

Total 

56291.9 

-250.820 

9.950 

0.682 

residual sum of square at each model fit. 
It was observed that none of the models 
fit above 2nd degree yields effective 
reduction in residual sum of square. 
Accordingly, the results of 2nd degree 
polynomial fit to eight different data 
sets are presented in Table 1 along with 
the goodness-of-fit statistics. A cursory 
look at this Table reveals among other 
things that the R2 value of the model 
ranged from 0.009 for croakers catches, 
to 0.755 for perches. Furthermore, the 
Q statistic value at various lags for each 

data fit, is computed and are presented 
in Table 2. A perusal of this Table 
indicates that except for perches, croa­
kers and the total landings, the random­
ness (or independency) assumption of 
the error in other data sets is met. 

In the next stage, time-varying sea­
sonal (TVS) regression models are fitted 
to the data sets. The results obtained by 
this method are presented in Table 3, 
along with the goodness-of-fit statistic 
values. A perusal of this table indicates 
that the R2 values of the TVS models are 

TABLE 2. Box-Ljung (Q) statistic along with the probability values 

Model 
Species 

Elasmobranchs 

Other sardines 

Perches 

Croakers 

Carangids 

Silverbellies 

P. Prawns 

Total 

Polynomial 
fit 

19.660 
(0.185) 

17.680 

(0.280) 

66.41* 
(0.000) 

27.870* 
(0.022) 

9.940 
(0.824) 

15.480 
(0.418) 

14.700 
(0.513) 

39.840* 
(0.0005) 

TVS 

24.600 
(0.056) 

10.440 

(0.791) 

22.450 
(0.097) 

26.780* 
(0.031) 

11.110 
(0.745) 

15.100 

ARIMA 

11.0700 
(0.689) 

08.900 

(0.883) 

60.59* 
(0.000) 

22.280 
(0.101) 

18.100 
(0.257) 

13.790 

(0.444) (0.542) 

11.080 ' 
(0.747) 

19.210 
(0.205) 

31.80* 
(0.008) 

7.480 
' (0.943) 

WES 

17.380 

(0.299) 

13.350 
(0.575) 

34.05* 
(0.002) 

20.68* 
(0.017) 

20.470 
(0.155) 

24.060 
(0.068) 

14.190 
(0.500) 

15.53* 
(0.006) 

HREG 

13.720 
(0.5469) 

10.730 
(0.772) 

15.330 
(0.428) 

19.680 
(0.185) 

9.610 
(0.843) 

10.720 
(0.772) 

15.660 
(0.405) 

11.130 
(0.743) 

+ Significant error autocorrelation at 5 % level. 
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TABLE 3. Results of TVS model 
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fit 

Species 

Statistic 

b„ 

*>! 

K 
a i 

a2 

a 3 

R2 

Elasmo-
branchs 

4354.0 

-64.295 

0.535 

505.334 

904.944 

1140.348 

0.219 

Other 
sardines 

9429.0 

-106.57 

1.78 

834.35 

-2881.11 

-3163.94 

0.25 

Perches 

519.0 

-18.449 

1.238 

1418.23 

1545.872 

2402.26 

0.83 

Croakers 

3633.0 

-10.635 

0.069 

617.485 

-353.236 

-451.685 

0.11 

Carangids 

1502.0 

18.23 

0.373 

-76.716 

-209.292 

1095.432 

0.539 

Silver 
bellies 

4991.0 

186.632 

-1.575 

1281.51 

1410.87 

1458.52 

0.192 

Penaeid 
prawns 

2342.0 

-6.938 

0.675 

-226.78 

506.30 

829.975 

0.697 

Total 

50293.0 

-251.7 

9.96 

5171.90 

1798.84 

17067.97 

0.785 

quite high, as much as 0.830 in case of 
perches and as low as 0.110 in case of 
croakers. Comparing these R2 values 
with those corresponding values of 2nd 
degree polynomial fit, it may be noticed 
that eventhough there is a marginal 
increase in the latter case, they are 
lower R2 values, in case of elasmo-
branchs, other sardines, croakers and 
silver bellies. On the other hand, the R2 

values of total landings and of perches 
are quite large, indicating the suitabil­
ity of these fits in comparison with the 
polynomial models. But, before making 
any final conclusion, the randomness 
assumption of errors is tested in all the 
TVS models fit by computing the Q-
statistic values at various lags and are 
presented in Table 2 along with their 
respective probability values. It may be 
noticed from this Table that, except for 
the croakers, the independency assump­
tion of the residual autocorrelations is 
met in case of all the data sets. 

In the next stage, Winters exponen­
tial smoothing (WES) models with 
multiplicative error term are constructed 
to describe the data sets. For all the 
WES models built in this study, the 
smoothing coefficiets (not shown here) 
are computed based on the minimiza­

tion of MSE. The final values of the 
smoothing coefficients (a, p\ y, ) are 
presented in Table 4 along with the 
goodness-of-fit statistics. The R2 values 
due to this model fit, ranged from 0.810 
to 0.954, showing that WES model, fits 
all the data sets quite well. Before 
making any final conclusion, the Q-
statistic values are computed for differ­
ent data sets and are presented in Table 
2. A cursory look at these values 
indicates that the independency as­
sumption of errors is met in all the data 
sets, except for perches, croakers and 
the total landings. 

TABLe 4. Summary statistics of Winters exponen­
tial smoothing (WES) model fit 

Data set 

Elasmobranchs 

Other sardines 

Perches 

Croakers 

Carangids 

Silverbellies 

Alpha 

0.37 

0.60 

0.50 

0.20 

0.45 

0.50 

Beta 

0.40 

0.50 

0.40 

0.10 

0.20 

0.30 

Gamma 

0.10 

0.10 

0.10 

0.10 

0.10 

0.10 

R2 

0.860 

0.810 

0.954 

0.831 

0.863 

0.902 

Penaeid prawns 0.50 0.10 0.05 0.911 

Total 0.28 0.40 0.10 0.948 
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Univariate time-series modelling 
procedure is employed to select ARIMA 
models of suitable orders to all the data 
sets. Based on the ACF, the stationarity 
of the original series is checked. It may 
be noted here that in case of elasmo-
branchs, other sardines, croakers and 
silverbellies, the original series them­
selves are stationary. In the remaining 
data sets first difference of the original 
series is taken to achieve stationarity. 
Based on spikes at ACF and PACF 
obtained for the stationary data set, 
different candidate models are selected 
for further analysis. A final choice 
between different candidate models is 
made by comparing their respective 
Bayesian Information Criteria (BIC) 
and MSE (not reported here) values. 
Models with lesser BIC and MSE values 
are selected and the summary statistics 
for only these models are reported in 
Table 5. Perusal indicates that the R2 

values are quite high as much as 0.868 
in case of total landings, to the lowest 
value of 0.407 in case of carangids data 
set. As a final test of adequacy of the 

selected models, the Q-statistic values 
presented in Table 2 indicate that 
except for the perches and penaeid 
prawns data sets, the assumption of 
independency of errors is met in all the 
data sets. 

Finally, Harmonic regression models 
(HREG) are formulated with a view to 
describing the data sets appropriately. 
Under this procedure the arithmetic 
coefficients (frequencies) of sine and 
cosine terms are initially identified 
using spectral analysis. The arithmetic 
coefficients of the HREG models fitted 
to the quarterly catches, using the 
estimated frequencies (as well as time 
t and t2) as independent variables are 
shown in Table 6, along with the R2 

values. The R2 values of HREG are high 
ranging from 0.885 for perches to a 
lesser value of 0.448 for elasmobranchs. 
For all models, the Box-Ljung test 
indicates non-significant error autocor­
relations (Table 2). 

(ii) Comparative study 

From the above model fitting exer-

TABLE 5. Summary statistics of ARIMA model fit 

Data set ARIMA 
model 

Parameter estimates Constant 

Elasmo­
branchs 

Other 
sardines 

Perches 

Croakers 

Carangids 

Silver bellies 

Penaeid 
prawns 

Total 

(1,0,0) 

(1,0,0) 
(1,0,0)4 

(2,1,1) 
(0,1,1)" 

(1,0,0) • 
(1,0,0)4 

(0,1,1) 

(1,0,0) 

(1,1,0) 

(2,1,1) 
(1,1,0)'' 

0.249 

0.307 

-0.871 

0.355 

-

0.394 

0.693 

-0.761 

-

-

-0.321 

-

-

-
-

-0.275 

-

-

0.989 

-

0.836 

-
-

0.948 

0.473 

0.292 

3536.966 0 . 8 4 

8444.5 0 . 8 4 * 

0.575 0 . 8 6 3 

3280.4 0 . 8 9 1 

10185.2 

3951.1 

0.407 

0.904 

0 . 9 1 6 

0.868 
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TABLE 6. Summary statistics of HREG model fit 

Sgecies 
Statistic 

Constant 

a u 

aI2 

a i a 

a H 

a i 5 

a21 

3 2 2 

a 2 3 

a 2 4 

a 2 S 

t 

t2 

R2 

Elasmo-
branchs 

5180.660 

-0.118 

-0.196 

-0.228 

-0.121 

-0.181 

0.278 

-0.205 

0.080 

0.200 

0.142 

-74.300 

0.660 

0.448 

Other 
sardines 

7842.230 

0.347 

-0.079 

0.142 

-0.285 

0.001 

0.251 

0.272 

0.199 

-0.211 

0.172 

-1.121 

0.990 

0.568 

Perches 

2343.340 

-0.002 

0.040 

-0.121 

0.082 

-0.115 

-0.204 

-0.114 

-0.201 

-0.105 

-0.043 

-0.543 

1.469 

0.885 

Croakers 

206.834 

0.018 

0.297 

-0.088 

0.561 

-0.230 

-0.140 

0.085 

0.238 

0.981 

-0.020 

3.920 

-3.740 

0.462 

Caran-
gids 

1028.000 

-0.020 

-0.210 

-0.110 

0.030 

-0.070 

-0.160 

0.037 

0.147 

0.180 

0.190 

0.952 

-0.340 

0.609 

Silver-
bellies 

31.830 

0.324 

-0.221 

-0.239 

-0.195 

0.093 

0.614 

0.194 

0.074 

0.210 

0.180 

3.990 

-3.710 

0.473 

Penaeid 
prawns 

225000 

-0.207 

-2.210 

-0.050 

0.130 

0.138 

-0.105 

11.138 

-0.146 

0.080 

-0.062 

3.020 

11.140 

0.776 

Total 

5800000 

-0.065 

-43.050 

-0.204 

0.048 

-0.072 

-0.253 

-42.560 

-0.032 

0.195 

0.903 

52.450 

-51.800 

0.800 

noise or not. From the Q-statistic values 
presented viz. Table 2, computed with 
the help of all the three statistical 
modelling procedures, one can notice 
that in case of elasmobranchs, other 
sardines, carangids and silverbellies, 
the above assumption is met. On the 
other hand, for perch catches, only TVS 
and HREG generated residuals are 
satisfying the randomness assumption. 
But the ARIMA and HREG generated 
residuals of croakers are independent. 
In case of penaeid prawns except the 
ARIMA, the other models generated 
white noise residuals. However, in case 
of total landings the assumption of 
independency of residual is satisfied in 
case of all but, polynomial and WES 
model fits. 

(c) Combining these two measures of 
model adequacies it is suggested that , 
ARIMA model seems to fit four catego­
ries namely, total landings, other sar-

cise, the following conclusions may be 
drawn: 

(a) The R2 values for TVS models, in 
comparison with those of polynomial fit 
are invariably high in case of elasmo­
branchs, other sardines, croakers and 
silverbellies and in the remaining the 
corresponding increase is only mar­
ginal. However, these R2 values which 
are still low, clearly indicating the 
inadequacy ofthese fits to the data sets. 
On the other hand, the R2 values 
computed through the three time-series 
methods are quite satisfactory except in 
some odd situations. 

(b) Irrespective of the satisfactory 
increase achieved in R2 values by em­
ploying the time-series methodologies, a 
final decision on the model adequacy is 
done based on examining whether the 
model generated residuals are white 



TABLE 7. Forecasted landings (in '000 tonnes) 

Year 1996 

Quarter I II III IV I 

1997+ 

II III IV I 

1998+ 

II III IV 

Elasmo-
branchs 
(WES) 

Other 
sardines 
(ARIMA) 

Perches 

(HREG) 

Croakers 

(ARIMA) 

Carangids 

(WES) 

Silverbellies 

(ARIMA) 

P. prawn 

(WES) 

Total 

(ARIMA) 

Obs. 

Pred. 

Obs. 

Pred. 

Obs. 

Pred. 

Obs. 

Pred. 

Obs. 

Pred. 

Obs. 

Pred. 

Obs. 

Pred. 

Obs. 

Pred. 

4.439 

3.287 

26.632 

17.902 

10.885 

10.169 

4.319 

3.778 

6.057 

5.323 

9.536 

10.837 

6.296 

6.225 

118.642 

117.132 

3.167 

3.841 

9.519 

11.526 

7.636 

10.036 

2.546 

3.580 

4.654 

5.721 

9.230 

9.940 

6.620 

8.064 

88.268 

106.397 

4.313 

3.942 

10.918 

8.448 

13.845 

11.109 

3.298 

3.135 

7.308 

7.450 

11.701 

11.819 

7.611 

7.795 

127.724 

123.804 

3.805 

3.809 

13.411 

15.421 

5.869 

8.304 

3.244 

3.405 

5.146 

5.715 

15.581 

10.798 

7.001 

6.329 

101.039 

109.081 

4.190 3.814 4.501 4.102 4.509 4.099 4.831 4.397 

23.291 16.696 19.660 22.825 23.211 21.509 21.492 22.990 

B 

a. 

dg 

Ja­
rs 
a 

13.930 14.193 14.458 14.726 14.998 15.272 15.549 15.829 |" 

3.507 3.048 3.279 3.269 3.346 3.216 3.282 3.229 

5.152 4.960 7.159 5.463 5.215 5.021 7.247 5.530 

12.337 11.051 10.541 10.339 10.258 10.227 10.214 10.209 

6.175 7.873 8.422 6.972 6.490 8.208 8.776 7.262 

94.774 121.505 106.537 112.652 94.635 124.038 104.496 

+ = forecast periods, obs. = observed, pred. = predicted. 
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dines, croakers and silverbellies effec­
tively. While the WES model efficiently 
accounted for the e lasmobranchs , 
carangids and penaeid prawn catches, 
the HREG models explain the perch 
landings in Tamil Nadu quite well as 
compared to the other statistical meth­
ods considered for data analysis. 

(Hi) Forecasting 

An attempt has been made to exam­
ine the accuracy of the selected model by 
comparing the last two data observa­
tions with the values obtained by fitting 
the selected model in all the data sets 
after ignoring the last two data values. 
These values along with the forecast of 
fish landing for next two years are 
presented in Table 7. It is observed that 
the predicted values, for all the data 
sets are quite near the actual values 
during 1996. This further strengthens 
the appropriateness of the different 
selected models. 

(iv) Biological explanations of models 

In the ARIMA models fitted to the 
other sardines, croakers and silverbellies 
and total landings data sets, the catches 
of a category at period t is partially 
predicted by the autoregressive terms at 
time periods (t-4) and (t-5), and to a 
lesser extent at time-periods (t-1) and 
(t-6). Hence, these models predicted 
persistence of catches. In other words, 
everything being equal, once catches are 
high they tend to remain high for 2-3 
successive time-periods. Persistence may 
indicate tha t environmetal conditions 
favouring the formation of good year 
classes affecting the fisheries of the 
species (or group of species) of concern 
tend to persist. In particular, silverbellies 
catches are purely autoregressive of 

order one indicating apart from random 
fluctuations, the present period catch is 
predicted solely by the last period catch. 
A seasonal autoregressive model of 
order one with the above aruguments, 
represents the other sardines and 
croakers catches. In the WES models 
selected to represent the elasmobranchs, 
carangids and prawns catches, the re­
cent period catches of these fish species 
are given relatively more weights in 
forecasting than the older observations. 
As expected these models capture the 
highly irregular catches more effec­
tively. HREG models developed for the 
perch catches account for the periodic 
variations present in the data sets. 

(v) Further scope 

The above study is only a beginning 
of modelling and forecasting fisheries 
catches in our country. It is a challeng­
ing task to construct statistical models, 
which not only handle the economic 
aspects but also take into account the 
highly fluctuating trends, which are 
highly in need to explain the present 
day fisheries. Studies incorporating the 
above aspects need to be taken on 
priority in order to assess our country's 
marine fishery resources effectively, 
thus helping in framing suitable man­
agement strategies for the future. 
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