

Fatty acids from marine fish and their implications in health and diseases

Kajal Chakraborty, P. Vijayagopal, and K.K. Vijayan Marine Biotechnology Division, CMFRI, Cochin-682018, <u>chakrabortycmfri@gmail.com</u>

Fatty acids and their classification

Fatty acids are carboxylic acids with long hydrocarbon chains (usually C₁₂₋₂₂). Dietary fats are used to build every cell in the body and cell membranes are made of a variety of individual fatty acids. The essential fatty acids from marine fish have protective mechanisms against coronary heart disease, which became apparent in the investigations of the health status of Greenland Eskimos who consumed diets very high in fat from seals, whales, and fish, and yet had a low rate of coronary heart disease events. This paradox was explained by the fact that Eskimos consumed contained large quantities of the very-long-chain and highly polyunsaturated fatty acids with C201-22 carbons and 5-6 olefinic bonds, which are abundant in marine fish, and are scarce or absent in land animals and plants. Classification of fatty acids is based on to denote hydrocarbon chain length and number and positions of olefinic bonds. However, the most accepted system of classification is based on the number of olefinic bonds. Saturated fatty acids (SFAs) donot possess olefinic bonds in hydrocarbon chain. Examples of SFAs are lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, and lignoceric acid (Table 1). Monounsaturated fatty acids (MUFAs) possess one double bond, the typical examples being myristoleic acid, palmitoleic acid, elaidic acid, oleic acid, erucic acid, and nervonic acid. Fatty acids with e" 2 double bonds are termed as polyunsaturated fatty acids (PUFAs). The tetrahedral bond angles on carbon results in a molecular geometry for saturated fatty acids that is relatively linear. Olefinic bonds in hydrocarbon chain of unsaturated fatty acids results in kinks in their structure results in weak stacking. PUFAs are broadly divided into two major families' viz., ù-3 and ù-6 PUFAs (otherwise termed as n-3 and n-6 PUFAs). However, ù-3 fatty acids are found to be abundantly available in marine sources particularly fish and phytoplanktons. These fatty acids affect many physiological processes including cognitive function, visual acuity, immunosuppressive, and anti-thrombic activities along with having major role on glucose and lipid metabolism. Table 1 illustrates the details regarding the differential changes of fatty acids and their structures including their abbreviated formulae, molecular formulae, and molecular weight.

Biosynthetic route of fatty acids

Fatty acid synthesis is a metabolic process to combine eight C_2 – moieties (-CH₃C(=O) group from CH₃COSCoA) to synthesize saturated fatty acid with C_{16} -moiety ($C_{16}H_{32}O_2$), which thereafter modified to form homologous fatty acid analogues. These modifications include: elongase-catalyzed

			Abbreviated nomenclature		Molecular formulae	Molecular weight
Saturated fatty acids	m	n	With respect to - COOH group	With respect to n (or ω)- group		
Dutais and	0		4.0	4.0	6110	00.11
Butyne acid	0	2	4:0	4:0	CH O	88.11
Caprole acid	0	3	0:0	0:0	C H O	110.10
Caprio agid	0	7	10-0	8.0	C _s n ₁₆ O ₂	144.21
Undecanoic acid	0	8	11:0	11:0	C.H.O.	186.29
Laurie acid	0	0	12:0	12:0	C.H.O.	200.32
Tridecanoic acid	0	10	13:0	13:0	CuHuO	214.34
Myristic acid	0	11	14:0	14:0	C.H.O.	228.37
Pentadecanoic acid	0	12	15:0	15:0	CueHuO ₂	242.4
Palmitic acid	0	13	16:0	16:0	CucHarOa	256.42
Heptadecanoic acid	0	14	17:0	17:0	CuHuOr	270.45
Stearic acid	0	15	18:0	18:0	C10HacOn	284.48
Arachidic acid	0	17	20:0	20:0	C ₁₀ H ₄₀ O ₂	312.53
Heneicosanoic acid	0	18	21:0	21:0	C21H42O2	326.53
Behenic acid	0	19	22:0	22:0	C22H44O2	340.58
Tricosanoic acid	0	20	23:0	23:0	C23H46O2	354.61
Lignoceric acid	0	21	24:0	24:0	C24H48O2	368.64
Myristoleic acid	2	7	14:1Δ ⁹	14:1n9	C14H26O2	226.36
Palmitoleie acid	4	7	16:1A ⁹	16:1n0	C.H.O.	240.56
Cis-10-Hentadecenoic acid	5	8	17:1410	17:1n10	C16H3002	268.43
Elaidie acid	7	7	18:149	18:1n0 imm	Changer	activity (1975)
Elalute actu				1.0.1102.0008	C10H202	282.46
Oleic acid	7	7	18:1 ⁰	18:1n9 cis	C ₁₈ H ₃₄ O ₂ C ₁₈ H ₁₄ O ₂	282.46 282.46
Oleic acid Cis-11-eicosenoic acid	7	7 9	18:1Δ ⁹ 20:1Δ ¹¹	18:1n9 cis 20:1n11	C ₁₈ H ₃₄ O ₂ C ₁₈ H ₃₄ O ₂ C ₂₀ H ₃₈ O ₂	282.46 282.46 310.51
Oleic acid Cis-11-eicosenoic acid Erucic acid	7 7 7 7 7	7 9 11	18:1Δ ⁹ 20:1Δ ¹¹ 14:1Δ ¹³	18:1n9 cis 20:1n11 22:1n13	C ₁₈ H ₃₄ O ₂ C ₁₈ H ₃₄ O ₂ C ₂₀ H ₃₈ O ₂ C ₂₀ H ₃₈ O ₂	282.46 282.46 310.51 338.57
Oleic acid Cis-11-eicosenoic acid Erucic acid Nervonic acid	7 7 7 7 7 7	7 9 11 13	$\begin{array}{c} 18:1\Delta^9\\ 20:1\Delta^{11}\\ 14:1\Delta^{13}\\ 14:1\Delta^{15} \end{array}$	18:1n9 dats 18:1n9 cis 20:1n11 22:1n13 24:1n15	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{38}O_2 \\ C_{22}H_{42}O_2 \\ C_{24}H_{46}O_2 \end{array}$	282.46 282.46 310.51 338.57 366.62
Oleie acid Oleie acid Erucie acid Nervonie acid n-6 Polyunsaturated fatty acids m	7 7 7 7 7	7 9 11 13	$ \begin{array}{c} 18:1\Delta^{9} \\ 20:1\Delta^{11} \\ 14:1\Delta^{13} \\ 14:1\Delta^{15} \end{array} $	18:1n9 cis 20:1n11 22:1n13 24:1n15	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{38}O_2 \\ C_{20}H_{38}O_2 \\ C_{24}H_{42}O_2 \\ C_{24}H_{46}O_2 \end{array}$	282.46 282.46 310.51 338.57 366.62
Oleie acid Oleie acid Erucie acid Nervonie acid n-6 Polyunsaturated fatty acids <u>m</u> Linolelaidie acid Linolelaidie acid	7 7 7 7 7 7 0 4	7 9 11 13	$\frac{18:1\Delta^9}{20:1\Delta^{11}}$ $\frac{14:1\Delta^{13}}{14:1\Delta^{15}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$	18:1n9 cis 20:1n11 22:1n13 24:1n15	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{38}O_2 \\ C_{20}H_{38}O_2 \\ C_{20}H_{46}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45
Oleie acid Oleie acid Erucie acid Nervonie acid n-6 Polyunsaturated fatty acids <u>m</u> Linolelaidie acid Linolelaidie acid u Linolelaidie acid	7 7 7 7 7 7 7 7 7 0 4	7 9 11 13 6 6	$\frac{18:1\Delta^9}{20:1\Delta^{11}}$ $\frac{14:1\Delta^{13}}{14:1\Delta^{15}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$	18:1n9 cis 20:1n11 22:1n13 24:1n15 18:2n6 tans 18:2n6 cis 18:2n6 cis	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{38}O_2 \\ C_{20}H_{38}O_2 \\ C_{24}H_{42}O_2 \\ C_{24}H_{46}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45 280.45 280.45
Oleie acid Oleie acid Erucie acid Brucie acid n-6 Polyunsaturated fatty acids Linolelaidie acid Linolenie acid y-Linolenie acid	7 7 7 7 7 7 7 7 0н	7 9 11 13 6 6 6	$\frac{18:1\Delta^9}{20:1\Delta^{11}}$ $\frac{14:1\Delta^{13}}{14:1\Delta^{15}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{18:2\Delta^{6,9,12}}{18:2\Delta^{6,9,12}}$	18:1n9 cis 20:1n11 22:1n13 24:1n15 18:2n6 tans 18:2n6 tans 18:2n6 cis 18:3n6	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{38}O_2 \\ C_{20}H_{38}O_2 \\ C_{24}H_{40}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45 280.45 280.45 278.43 208.5
Oleie acid Oleie acid Erucie acid Brucie acid n-6 Polyunsaturated fatty acids Linolelaidie acid Linolelai acid Unoleie acid Cis-11,14 Econdenciacid Cis-11,14 Econdenciacid	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 9 11 13 6 6 6 3 8	$\frac{18:1\Delta^9}{20:1\Delta^{11}}$ $\frac{14:1\Delta^{13}}{14:1\Delta^{15}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{18:2\Delta^{6,9,12}}{18:2\Delta^{6,9,12}}$ $\frac{20:2\Delta^{11,14}}{20:2\Delta^{8,11,14}}$	18:1n9 cis 20:1n11 22:1n13 24:1n15 18:2n6 tans 18:2n6 cis 18:3n6 20:2n6 20:3n6	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{38}O_2 \\ C_{20}H_{38}O_2 \\ C_{24}H_{40}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45 280.45 278.43 308.5 208.5
Dieie acid Oleie acid Erucie acid Erucie acid n-6 Polyunsaturated fatty acids Linolelaidie acid Linolelie acid Unolenie acid Cis-11,14/Eicosatienoicacid Cis-811,14/Eicosatienoicacid	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 9 11 13 6 6 6 3 8 5 2	$\frac{18:1\Delta^9}{20:1\Delta^{11}}$ $\frac{14:1\Delta^{13}}{14:1\Delta^{15}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{6,9,12}}$ $\frac{20:2\Delta^{11,14}}{20:2\Delta^{5,8,11,14}}$	18:1n9 cis 20:1n11 22:1n13 24:1n15 18:2n6 tans 18:2n6 cis 18:3n6 20:2n6 20:2n6 20:3n6	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{38}O_2 \\ C_{20}H_{38}O_2 \\ C_{24}H_{40}O_2 \\ C_{24}H_{46}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45 280.45 278.43 308.5 306.48 201.47
Oleic acid Oleic acid Erucic acid Erucic acid n-6 Polyunsaturated fatty acids Mervonic acid n-6 Polyunsaturated fatty acids Mervonic acid Linolelaidic acid Linolelaidic acid Cis-II,14/Eicosafienoicacid Cis-II,14/Eicosafienoicacid Cis-II,14/Eicosafienoicacid Cis-II,14/Eicosafienoicacid Cis-II,14/Eicosafienoicacid Cis-II,14/Eicosafienoicacid Cis-II,14/Eicosafienoicacid Cis-II,14/Eicosafienoicacid	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 2 2 3 2 2 3 4 2	7 9 11 13 6 6 6 3 8 5 2 10	$\frac{18:1\Delta^9}{20:1\Delta^{11}}$ $\frac{14:1\Delta^{13}}{14:1\Delta^{15}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{18:2\Delta^{6,9,12}}{20:2\Delta^{11,14}}$ $\frac{20:2\Delta^{5,8,11,14}}{20:2\Delta^{5,8,11,14}}$	18:1n9 cis 20:1n11 22:1n13 24:1n15 18:2n6 tans 18:2n6 cis 18:3n6 20:2n6 20:3n6 20:3n6 20:4n6 22:2n6	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{38}O_2 \\ C_{20}H_{38}O_2 \\ C_{24}H_{46}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45 280.45 278.43 308.5 306.48 304.47 336.55
Oleic acid Cis-11-eicosenoic acid Erucic acid Nervonic acid n-6 Polyunsaturated fatty acids Linolelaidic acid Linoleic acid y-Linolenic acid Cis-11,14/Ecosatienoicacid Cis-8,11,14/Ecosatienoicacid Arachidonic acid Cis-13,16/Decosatienoicacid n-3 Polyunsaturated fatty acids	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 9 11 13 6 6 6 3 8 5 2 10	$\begin{array}{c} 18:1\Delta^9\\ 20:1\Delta^{11}\\ 14:1\Delta^{13}\\ 14:1\Delta^{15}\\ \end{array}\\ \\ 18:2\Delta^{9,12}\\ 18:2\Delta^{9,12}\\ 18:2\Delta^{6,9,12}\\ 20:2\Delta^{11,14}\\ 20:2\Delta^{8,11,14}\\ 20:2\Delta^{5,8,11,14}\\ 22:2\Delta^{13,16}\\ \end{array}$	18:1n9 cis 20:1n11 22:1n13 24:1n15 18:2n6 tans 18:2n6 cis 18:3n6 20:2n6 20:3n6 20:4n6 22:2n6	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{28}O_2 \\ C_{22}H_{42}O_2 \\ C_{24}H_{46}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45 280.45 278.43 308.5 306.48 304.47 336.55
Dieie acid Oleie acid Cis-11-eieosenoie acid Erucie acid n-6 Polyunsaturated fatty acids $\begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 9 11 13 6 6 6 3 8 5 2 10	$\frac{18:1\Delta^9}{20:1\Delta^{11}}$ $\frac{14:1\Delta^{13}}{14:1\Delta^{15}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{18:2\Delta^{9,12}}{20:2\Delta^{11,14}}$ $\frac{20:2\Delta^{8,11,14}}{20:2\Delta^{5,8,11,14}}$ $\frac{20:2\Delta^{15,16}}{22:2\Delta^{15,16}}$	18:1n9 cis 20:1n11 22:1n13 24:1n15 18:2n6 tans 18:2n6 cis 18:3n6 20:2n6 20:3n6 20:3n6 20:4n6 22:2n6 18:3n3	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{28}O_2 \\ C_{22}H_{42}O_2 \\ C_{24}H_{46}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45 280.45 278.43 308.5 306.48 304.47 336.55 278.43
Oleie acid Oleie acid Erucie acid Nervonie acid n-6 Polyunsaturated fatty acids Linolelaidie acid Linoleie acid y-Linolenie acid Cis-11,14-Ecosatiencie acid Cis-11,14-Ecosatiencie acid Cis-11,14-Ecosatiencie acid Arachidonie acid Cis-11,14-Ecosatiencie acid Arachidonie acid Cis-11,14-Ecosatiencie acid	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 9 11 13 6 6 3 8 5 2 10 6 8	$\frac{18:1\Delta^9}{20:1\Delta^{11}}$ $\frac{14:1\Delta^{13}}{14:1\Delta^{15}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{20:2\Delta^{11,14}}{20:2\Delta^{8,11,14}}$ $\frac{20:2\Delta^{5,8,11,14}}{20:2\Delta^{13,16}}$ $\frac{18:2\Delta^{9,12,15}}{20:2\Delta^{11,14,17}}$	18:1n9 cis 20:1n11 22:1n13 24:1n15 18:2n6 tans 18:2n6 cis 18:3n6 20:2n6 20:3n6 20:3n6 20:4n6 22:2n6 18:3n3 20:3n3	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{28}O_2 \\ C_{22}H_{42}O_2 \\ C_{24}H_{46}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45 280.45 278.43 308.5 306.48 304.47 336.55 278.43 306.48 304.47
Oleie acid Oleie acid Erucie acid Erucie acid Nervonie acid n-6 Polyunsaturated fatty acids Linolelaidie acid Linoleie acid y-Linolenie acid Cis-11,14/Ecosatiencie acid Cis-81,14/Ecosatiencie acid Aschidonie acid Cis-13,16/Decosatiencie acid n-3 Polyunsaturated fatty acids Linolenie acid Cis-11,14/T/Ecosatiencie acid Cis-11,14/T/Ecosatiencie acid Cis-11,14/T/Ecosatiencie acid Cis-11,14/T/Ecosatiencie acid Cis-11,14/T/Ecosatiencie acid Cis-11,14/T/Ecosatiencie acid Cis-11,14/T/Ecosatiencie acid Cis-11,14/T/Ecosatiencie acid Cis-11,14/T/Ecosatiencie acid	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 9 11 13 6 6 3 8 5 2 10 10 6 8 2	$\frac{18:1\Delta^9}{20:1\Delta^{11}}$ $\frac{14:1\Delta^{13}}{14:1\Delta^{15}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{18:2\Delta^{9,12}}{18:2\Delta^{9,12}}$ $\frac{20:2\Delta^{11,14}}{20:2\Delta^{8,11,14}}$ $\frac{20:2\Delta^{5,8,11,14}}{20:2\Delta^{13,16}}$ $\frac{18:2\Delta^{9,12,15}}{20:2\Delta^{11,14,17}}$ $\frac{20:2\Delta^{5,8,11,14}}{20:2\Delta^{5,8,11,14,17}}$	18:1n9 cis 20:1n11 22:1n13 24:1n15 18:2n6 tans 18:2n6 cis 18:3n6 20:2n6 20:3n6 20:3n6 20:4n6 22:2n6 18:3n3 20:3n3 20:5n3	$\begin{array}{c} C_{18}H_{34}O_2 \\ C_{18}H_{34}O_2 \\ C_{20}H_{28}O_2 \\ C_{22}H_{42}O_2 \\ C_{24}H_{46}O_2 \\ \end{array}$	282.46 282.46 310.51 338.57 366.62 280.45 280.45 278.43 308.5 306.48 304.47 336.55 278.43 306.48 304.47 336.55

Table 1. Nomenclature of fatty acids

VISTAS IN MARINE BIOTECHNOLOGY - 5th - 26th October, 2010 Marine Biotechnology Division, CMFRI, Cochin

chain elongation to synthesize fatty acids with longer hydrocarbon chain, e.g., stearic acid ($C_{18}H_{36}O_2$), arachidic acid ($C_{20}H_{40}O_2$), and so on. These SFAs, on desaturation yield unsaturated fatty acid analogues. In general, fatty acid synthesis takes place in cytoplasm of liver, adipose, central nervous system, and lactating mammary gland tissues of human. Glycolytic breakdown of glucose y**ields acetyl CoA through** pyruvate (CH₃COCOOH) by aerobic glycolysis that is starting material for fatty acid synthesis. Acetyl CoA serves as substrate to synthesize citrate that transported out of mitochondria to cytosol and generates acetyl CoA. The overall reaction of anabolism of fatty acids to form unsaturated faty acids is as follows:

Figure 1. Synthesis of unsaturated fatty acids from acetyl CoA

Fatty acids are stored in adipocytes as triacylglycerol that must be hydrolyzed to release free fatty acids.

Polyunsaturated fatty acids and their importance in health and disease

To prevent cancer

Among dietary factors postulated to influence cancer development are long chain polyunsaturated \dot{u} -3 fatty acids, found in fish. Earlier studies revealed inverse relation between marine fatty acid consumption and mortality rates of prostate (Hebert et al., 1998) and breast cancer (Hebert et al., 1996). The mechanisms proposed how the intake of marine fatty acids might lower the risk of cancer is the inhibition of eicosanoid biosynthesis from AA, a \dot{u} -6 fatty acid. Prostaglandins converted from AA by the cyclooxygenase-2 enzyme, notably PGE₂, have been linked to carcinogenesis viz., mammary tumor development, proliferation of breast and prostate cancer (Erickson, 1986). Tumor cells typically produce large amounts of AA-derived PGE2, which may impede immune system function, possibly through their role in the generation of suppressor T cells (Erickson, 1986). Marine fatty acids were reported to inhibit cyclooxygenase-2 and the oxidative metabolism of AA to PGE2. EPA and DHA also inhibit lipoxygenases which metabolize AA to HETEs and leukotrienes. 12-HETE

has been linked to the suppression of apoptosis, stimulation of angiogenesis, stimulation of tumor cell adhesion, and expression of the invasive phenotype. It is apparent that both EPA and DHA can inhibit the biological activity of eicosanoids and androgens (Liang et al., 1992), which are known to have a stimulating effect on cell growth and uncontrolled cell proliferation (Ghosh & Myers, 1997). It is well established that in animal models and in human cancer cell lines, EPA and DHA were found to suppress cell growth. However, because intakes of fish and marine fatty acids are highly correlated, it is difficult to disentangle the effect of fatty acids from the effect of fish *per se*.

To combat atherosclerosis and cardiovascular diseases

Eating ù-3 fatty acids abundantly available in marine fish were reported to protect human beings from heart failure (*European Heart Journal.* doi:10.1093/eurheartj/ehp111). Researchers in the USA and Sweden followed 39,367 Swedish men, aged between 45-79, from 1998 to 2004. They recorded details of the men's diet and tracked the men's outcome through Swedish inpatient and cause-of-death registers. PUFAs in the diet have long been considered essential to the growth and proper nutrition of humans and other vertebrates. It was reported that atherosclerosis and thrombosis represent essential fatty acid deficiencies, but rather that the polyunsaturated fat may affect these pathological processes through other mechanisms. There is evidence from epidemiology that marine n-3 PUFA is associated with a reduced risk of coronary heart disease. This was originally found in Greenland Eskimos with an extremely high intake of n-3 PUFA (10–14 g/day) and later also reported in several other populations (Schmidt et al., 2005; Kris-Etherton et al., 2002) including Western populations with an average intake of marine n-3 PUFA below 0.2–0.4 g/day. Recently, a meta-analysis was published on fish consumption and CHD mortality from 13 cohort studies including a total of 222,364 individuals with an average of 11.8 years of follow-up (He et al., 2004). Fish consumption was inversely related with fatal CHD and sudden cardiac death (He et al., 2004).

Estimation of fatty acids in laboratory

Broadly fatty acid estimation is divided under the broad categories, viz., (1) lipid extraction and acid-catalyzed transesterification of fatty acid to methyl esters (FAMEs) and *N*-acyl pyrrolidides; and (3) gas-liquid chromatography and gas chromatography-mass spectrometry (GC/MS) analysis of FAMEs. Below are illustrated the details under each head.

Lipid extraction

Lipid from the crude sardine oil was extracted by using CHCl₃-CH₃OH-H₂O (Bligh, & Dyer, 1959). In brief, about 10 g tissue together with chloroform methanol mixture (2:1) ratio is homogenized, and CHCl₃-CH₃OH mixture (15 times) was added and mixed (to 1/3rd of the total volume). The resulting solution was filtered, and the filtrate was collected. The process was repeated two more times with rest of the CHCl₃-CH₃OH mixture. To the filtrate, add distilled water (20% of the total volume of the filtrate) and leave overnight. The water-soluble residue diffuses away from the solvent and occupies the top position in the separating funnel. Solvent containing lipid (bottom layer) is collected by filtering through anhydrous Na₂SO₄. Evaporate to dryness and make up the volume using CHCl₃. On extraction with CHCl₃-CH₃OH, lipid (bottom layer) is separated from the sample and is collected by filtering through anhydrous Na₂SO₄. After saponification of the dried extract PUFA is determined using gas chromatograph as illustrated below.

Extraction and derivatization of fatty acids to fatty acid methyl esters (FAME) and *N*-acyl pyrrolidides

The lipid extract thus obtained was saponified with 0.5 N KOH in CH_3OH . After removal of the nonsaponifiable material with *n*-hexane and acidification with 1 N HCl, the saponifiable materials were extracted with petroleum etherdiethyl ether (1:1 v/v) and transesterified to furnish fatty acid methyl esters (FAME) by reaction (30 min under reflux) with a methylating mixture (14% BF₃/ CH₃OH, 5 mL) in a boiling water bath under an inert atmosphere of N₂ (Metcalf, Schimtz, & Pleka, 1966). The FAME thus obtained was cooled to ambient temperature, and distilled water (20 mL) was added. The solution was extracted with *n*-hexane (10 mL X 6), and the upper *n*-hexane layer was removed and concentrated under an inert atmosphere of N₂. The resulting FAME concentrate was reconstituted in petroleum ether, flushed with N₂ in glass vials, and stored in deep freeze (-20°C) until required for GC/GC-MS analyses. Analysis was performed in triplicate.

Gas-liquid chromatography and gas chromatography-mass spectrometry (GC/MS) analysis of fatty acid derivatives

Quantitative and qualitative analyses of FAME obtained by transesterification were performed on gas chromatograph using a flame ionization detector (FID). FAMEs were identified by comparison of retention times with the known standards. In another process, FAMEs were derivatized to *N*-acyl pyrrolidides by condensation of fatty acid methyl ester with a mixture of pyrrolidine (1 mL) and acetic acid (0.1 mL) at 100 ?C under reflux (2 h) for GC-MS analyses (Andersson, 1978). The GC-MS analyses need to be performed by GC interfaced with mass spectrometer for confirmation of fatty acid identification.

Mass Spectroscopic Analyses of FAME Derivatives

The following are the mass spectrometric data of FAME derivatives.

Methyl Palmitate. EI-MS *m*/*z* (relative intensity, %): 270 (M+, 61.11), 239 (15.74), 227 (31.48), 213 (7.41), 199 (14.81), 185 (12.96), 171 (12.96), 157 (7.41), 143 (31.48), 129 (11.11), 87 (74.07), 74 (*100*), 55 (18.52).

Methyl Oleate. EI-MS *m/z* (relative intensity, %): 296 (M+, 20.00), 111 (76.67), 264 (33.33), 222 (26.67), 180 (18.33), 166 (23.33), 152 (23.33), 123 (23.33), 110 (38.33), 97 (75.00), 83 (70.00), 74 (66.67), 69 (78.33), 55 (*100*).

Methyl Linoleate. EI-MS *m*/*z* (relative intensity, %): 294 (M+, 52.46), 263 (24.59), 220 (8.20), 178 (13.11), 164 (19.67), 150 (21.31), 136 (18.03), 123 (18.85), 109 (37.70), 95 (70.49), 81 (*100*), 67 (91.80), 55 (50.82).

Methyl Linolenate. EI-MS *m*/*z* (relative intensity, %): 292 (M+, 16.67), 261 (5.00), 236 (6.67), 173 (6.67), 163 (6.67), 149 (20.00), 135 (20.00), 121 (25.00), 108 (56.67), 95 (58.33), 79 (*100*), 67 (56.67), 55 (35.00).

Methyl Arachidonate. EI-MS *m*/*z* (relative intensity, %): 318 (M+, 1.82), 290 (1.82), 264 (1.82), 175 (5.45), 150 (7.27), 133 (7.27), 105 (30.91), 91 (70.91), 79 (*100*), 67 (80.00), 55 (49.09).

Methyl Eicosapentaenoate. EI-MS *m*/*z* (relative intensity, %): 315 (M+, 1.67), 175 (6.67), 161 (8.33), 145 (11.67), 131 (18.33), 119 (31.67), 108 (31.67), 91 (70.00), 79 (*100*), 67 (68.33), 55 (48.33).

Methyl Docosahexaenoate. EI-MS *m*/*z* (relative intensity, %): 342 (M+, 0.60), 145 (4.20), 131 (6.60), 119 (10.80), 108 (11.40), 91 (28.20), 79 (*100*), 67 (20.40). (Chakraborty et al, 2010).

Mass Spectroscopic Analyses of N-Acyl Pyrrolidide Derivatives

The following are the mass spectrometric data of N-acyl pyrrolidide derivatives.

1-(*Pyrrolidin-1-yl*)*hexadecan-1-one*/*Palmitoylpyrrolidine*. EI-MS *m*/*z* (relative intensity, %): 309 (M+, 16.00), 294 (2.00), 168 (8.00), 140 (10.00), 126 (16.00), 113 (*100*), 98 (8.00), 70 (12.00), 55 (14.00).

1-(*Pyrrolidin-1-yl)octadec-9-en-1-one*. EI-MS *m/z* (relative intensity, %): 335 (M+, 27.56), 250 (8.62), 236 (10.34), 208 (6.90), 196 (5.17), 182 (12.07), 126 (53.45), 113 (*100*), 98 (18.97), 85 (8.62), 72 (20.69), 55 (27.59).

1-(*Pyrrolidin-1-yl*)octadeca-9,12-dien-1-one. EI-MS *m*/*z* (relative intensity, %): 333 (M+, 77.97), 290 (10.17), 236 (15.25), 222 (20.34), 182 (16.95), 168 (15.25), 140 (22.03), 126 (44.07), 113 (100), 98 (25.42), 70 (42.37), 55 (49.15).

1-(*Pyrrolidin-1-yl*)octadeca-9, 12, 15-trien-1-one. EI-MS m/z (relative intensity, %): 331 (M+, 44.00), 182 (22.00), 168 (24.00), 140 (26.00), 126 (60.00), 113 (100), 98 (30.00), 72 (64.00), 55 (42.00).

1-(*Pyrrolidin-1-yl*)*icosa-5,8,11,14-tetraen-1-one*. EI-MS *m*/*z* (relative intensity, %): 357 (M+, 18.97), 232 (10.34), 180 (10.34), 126 (13.79), 113 (100), 85 (17.24), 70 (22.41), 55 (27.59).

1-(*Pyrrolidin-1-yl)icosa-5,8,11,14,17-pentaen-1-one*. EI-MS *m*/*z* (relative intensity, %): 355 (M+, 3.85), 286 (7.69), 232 (7.69), 126 (13.46), 113 (*100*), 85 (17.31), 72 (26.92), 55 (21.15).

1-(*Pyrrolidin-1-yl*)octadeca-9,12-dien-1-one. EI-MS *m/z* (relative intensity, %): 381 (M+, 3.91), 312 (7.05), 272 (7.29), 232 (16.22), 218 (15.76), 192 (8.24), 166 (23.67), 153 (22.85), 113 (*100*), 98 (46.62), 72 (21.98) (Chakraborty et al, 2010).

Conclusions

Research on exploring sources long-chain PUFAs, viz., DHA, EPA, and AA for use in nutrition have received considerable attention. These PUFAs, which are usually low in abundance in human, are regarded as essential and must be supplied in diet. The importance of PUFAs in human nutrition has been extensively investigated during the past 20 years. DHA is one of the important PUFAs, which maintains structural and functional integrity in larval cell membranes in addition to the neural development and function, while AA and EPA are involved in, respectively, the production and modulation of eicosanoids. Docosahexaenoic acid (22:6ù-3), which is a vital component of the phospholipids of cellular membranes, especially in the brain and retina, is necessary for their proper functioning. The ù-3 fatty acids favorably affect atherosclerosis, coronary heart disease, inflammatory disease, and perhaps even behavioral disorders. Membrane fluidity is essential for proper functioning of these tissues. In the retina, where ù-3 fatty acids are especially important, deficiency can result in decreased vision and abnormal electroretinogram results. The ù-3 fatty acids are essential fatty acids, necessary from conception through pregnancy and infancy and, undoubtedly, throughout life. AA has been an essential function of producing eicosanoids, making it an essential fatty acid because prostaglandins (PGF2R) are produced from 20:4n6, and has roles in reproduction. AA is the basis for cyclo-oxygenase (COX) action to produce PGF2R. AA, being a major component of phosphoinositol, was reported to have a vital role in the transduction signal mechanism. An imbalance in ù-3/ù-6 ratio can accentuate ù-3 fatty acid deficiency state, as shown by earlier studies. The ratio may have increased in industrialized societies because of increased consumption of vegetable oils rich in ù-6 fatty acids, ie, linoleic acid (18:2n26), and reduced consumption of foods rich in ù-3 fatty acids. Another important feature of ù-3 fatty acids is their role in the prevention and modulation of certain diseases that are common (Importance of n23 fatty acids in health and disease (*W. E. Connor Am J Clin Nutr* 2000;71(suppl):171S–5S). Below is appended a partial list of diseases that may be prevented or ameliorated with ù-3 fatty acids:

- Coronary heart disease and stroke
- Cancers of the breast, colon, and prostate
- Retinal and brain development);
- Immunostimulant
- Hypertension

The first two functions are extremely important and are related directly or indirectly with other diseases as listed earlier.

Suggested Reading

Bligh, E.G., Dyer, W.J. (1959). Canadian Journal of Biochemistry and Physiology, 37, 911-917.

- Chakraborty, K; Vijayagopal, P., Chakraborty, R.D., Vijayan. K.K. (2010) Enrichment of eicosapentaenoic acid concentrates from sardine oil by bacterial (*Bacillus circulans*) lipase isolated from seaweed *Turbinaria conoides*. *Food Chemistry* 120: 433-442
- Chakraborty R D., Chakraborty, K.; Radhakrishnan E.V.R. Variation in fatty acid composition of *Artemia salina* nauplii enriched with microalgae and baker's yeast for use in larviculture *J. Agric. Food Chem.* 55 (2007) 4043-4051.
- Chakraborty, K.; Paulraj, R. (2007) Eicosapentanoic acid enrichment from sardine oil by argentation chromatography. J. Agric. Food Chem. 55 7586-7595.

Connor W. E. (2000) Am J Clin Nutr 71(suppl):171S-5S

Erickson, K. L. (1986) Prog. Clin. Biol. Res. 222: 555–586

Ghosh, J., and Myers, C. E. Biochem. Biophys. Res. Commun., 235: 418-423, 1997

He, K.; Song, Y. Daviglus, M.L. (2004). Circulation 109: 2705-2711

Hebert, J. R. & Rosen, A. (1996) Cancer Detect. Prev. 20: 234-244

Hebert, J. R., Hurley, T. G., Olendzki, B. C., Teas, J., Ma, Y. & Hampl, J. S. (1998) J. Natl. Cancer Inst. 90: 1637–1647

Kris-Etherton, P.M.; Harris, W.S., Appel, L.J. (2002). Circulation 106: 2747-2757

Liang, T., and Liao, S. (1992) Biochem. J. 285: 285-562, 1992

Metcalf, L. D., Schimtz, A. A., & Pleka, J. R. (1966). Analytical Chemistry, 38, 514-515.

Schmidt, E.B. (1997). Dan. Med. Bull. 44: 1-22

Schmidt, E.B., Arnesen, H., Caterina, R. De, Rasmussen, H., Kristensen, S.D. (2005). Thromb. Res. 115: 163–17.