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Abstract

Mitochondrial oxidative phosphorylation genes play critical role in 
energy metabolism, aerobic potential and thermogenesis. These 
genes were thought to evolve neutrally, however increasing 
evidence suggests that mitogenome is susceptible to selection and 
adaptive variation. Organisms that have encountered selective forces 
to improve their metabolic potential or adapt to cooler environment 
can be suitable candidates to study the pattern and impact of 
selection on mitochondrial genome. Tunas, billfishes, butterfly 
mackerel and opah are the only teleost fishes to exhibit regional 
endothermy. They might have experienced strong selective forces to 
enhance their metabolic potential making them a suitable candidate 
group to search for positive selection. Mitochondrial protein coding 
genes of 16 regionally endothermic teleosts retrieved from NCBI 
GenBank were used to examine the pattern of selection using 
different ω-based approaches implemented in DATAMONKEY and 
TreeSAAP to analyze the changes in physicochemical properties of 
the amino acids. We found evidence for positive selection in different 
mitochondrial protein subunits across several branches of the 
phylogeny. Changes found in the subunits ND5 and ND6 might have 
modified the proton pumping efficiency and assembly of complex I 
respectively and the substitutions found in the subunit ATP6 might 
have an impact on the rotor performance of the complex V. Further 
studies on assessment of metabolic consequences of OXPHOS 
substitutions are essential to understand the importance of these 
substitutions on the performance of the fishes.
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Introduction

Regional endothermy, the capacity of an organism to produce 
body heat endogenously, retain and/or warm selected tissues 
higher than the ambient temperatures, have been well 
documented in mammals and birds. The occurrence of regional 
endothermy in other clades remained overlooked until Davy 
(1837) recorded elevated body temperature than the ambient 
waters in skipjack tunas, which were conventionally regarded 
as cold blooded or ectotherms. It is now known that at least 
four lineages of teleost fishes (Legendre and Davesne, 2020) 
have evolved distinct specializations to increase their body 
temperature, viz., opah (Lampris guttatus, Lampridiformes), 
butterfly mackerel (Gasterochisma melampus, Scombridae), 
billfish (Istiophoridae and Xiphiidae) and tunas (Scombridae). 
Larger body size, pelagic lifestyle, open-sea predation and fast 
swimming capacity are other similar features common to these 
groups. They have the ability to migrate longer distances and 
dive vertically below the thermocline thereby coming across a 
wide temperature range. In spite of several shared morphological 
and physiological adaptations, these lineages do not share a 
recent common ancestor and are consistently regarded to be 
phylogenetically distinct (Orrell et al., 2006; Santini and Sorenson, 
2013; Legendre and Davesne, 2020). The authors also recently 
confirmed the phylogenetic separation of regional endothermic 
teleosts using mitochondrial data. Hence, regional endothermy 
cannot be considered as a plesiomorphic character or a primitive 
trait, which remained unchanged during the evolutionary process 
(Wagele, 2005). Various advantages of regional endothermy 
in teleosts have been proposed including enhanced vision 
and neural activity as in cranial endothermy (Block and Carey, 
1985), deep cold water foraging (Fujioka et al., 2018; Stoehr 
et al., 2020), higher digestion and absorption rate (Stevens and 
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McLeese, 1984; Goldman, 1997), higher rate of gonadal and 
somatic growth and rapid recuperation from anaerobic burst 
(Brill, 1996). However, increased swimming performance and 
ecological niche expansion, which enabled the endothermic 
teleosts for large scale migration, is the most accepted adaptive 
benefit of regional endothermy (Dickson and Graham, 2004; 
Watanabe et al., 2015). This might be the major driving force 
for the convergent evolution of regional endothermy (Fujioka 
et al., 2018; Stoehr et al., 2020; Legendre and Davesne, 2020) 
in distinct teleost fishes as well as in extinct Mesozoic marine 
organisms like mosasaurs, plesiosaurs and ichthyosaurs (Bernard 
et al., 2010) at least at the phenotypic level.

Fishes exhibiting regional endothermy are highly migratory 
and therefore should experience high energy expenditure when 
compared to the non-migratory species (Gross et al., 1987; 
Sun et al., 2011). This group of teleosts with high aerobic 
capacity possesses high mitochondrial content, indicating the 
association of mitochondrial genes to thermoregulation and 
energy metabolism (Dalziel et al., 2006). The mitochondria under 
aerobic conditions generates up to 95% of a cell’s energy in the 
form of ATP in eukaryotes through Oxidative phosphorylation 
(OXPHOS). Vertebrate mitochondrial genome comprises 13 
protein coding genes and the peptides encoded together with 
the peptides of nuclear origin assemble into five multimeric-
protein complexes (Barshad et al., 2017). The peptides of 
mitochondrial origin includes, seven subunits (ND1-6, ND4L) of 
complex I or NADH dehydrogenase, one cytochrome b subunit 
(cytb) of complex III or bc1 complex, three cytochrome oxidase 
subunits (COI-III) of complex IV or cytochrome c oxidase and 
two ATP subunits (ATP6 and 8) of complex V or ATP synthase 
(Wallace, 2007). These large protein complexes are involved in 
the electron transport chain and the phosphorylation of ADP to 
ATP there by playing a major role in tissue bioenergetics (Little, 
2009). Besides this OXPHOS plays an important role in energy 
consuming processes like ion pumping and muscle contraction, 
thereby assisting overall metabolic and swimming performance 
of the fishes (Sun et al., 2011).

The evolution of mitochondrial genome under the assumption of 
neutrality is now being increasingly questioned suggesting that 
the genetic variation of the mitochondrial DNA is not solely shaped 
by random genetic drift. In spite of the functional constraints, the 
mitochondrial protein coding genes are susceptible to selection 
and adaptation in accordance to the environmental conditions 
like high temperature (Morales et al., 2017), low temperature 
(Cheviron et al., 2014; Stier et al., 2014), reduced oxygen level 
or hypoxia (Scott et al., 2010), availability of nutrients (da 
Fonseca et al., 2008), anoxia (Tomasco and Lessa, 2011), high 
energy demands for flight (Shen et al., 2010), variation in gene 
expression (Mishmar et al., 2003; Morales et al., 2015) and 
high altitude (Hochachka et al., 1983; Yu et al., 2011) in diverse 

organisms including humans. Even though marine organisms 
are less studied unlike other terrestrial organisms, patterns of 
selection in mitochondrial DNA have been reported in several 
marine species in response to various factors like sea surface 
temperature as in Japanese sand lance (Deng et al., 2019), 
temperature clines as in North Pacific walleye Pollock (Grant 
et al., 2006; Atlantic herring, Teacher et al., 2012; European 
anchovy, Silva et al., 2014; Marbled rockfish, Xu et al., 2017), 
latitudinal clines as in killer whale (Foote et al., 2011; Pacific 
salmon, Garvin et al., 2011), osmotic environment as in Killifish 
(Brennan et al., 2016), hydrological and physiological factors 
as in Prochilodus sp. (Moyer et al., 2005).

Given the significant roles of OXPHOS genes in energy production 
and thermoregulation, it is possible that any amino acid 
change may influence the protein function causing significant 
fitness and metabolic consequences in the species (Ballard 
and Pichaud, 2014). Hence, we hypothesize that variations in 
energy requirements might have induced selection pressures 
on the mitochondrial OXPHOS genes so that they can meet 
the metabolic demand and adapt to the new environment. 
Despite being phylogentically distinct, such mitochondrial 
energy adjustments have also been reported in birds and 
mammals wherein, the convergent evolution of the trait like 
thermogenesis regulation occurred. In this study, we take the 
benefit of complete mitogenome sequences of teleost regional 
endotherms that are deposited in the GenBank and make an 
attempt to analyze the pattern of selection experienced by the 
OXPHOS genes during the course of evolution.

Material and methods

The complete mitogenome sequences of 16 endothermic 
teleosts representing four families (Xiphiidae, Istiophoridae, 
Scombridae and Lampridae) (Johnson, 1986; Nelson, 2006) 
were retrieved from NCBI GenBank (Table 1). Initially datasets 
for thirteen protein coding genes (COI-III, ND1-6, ND4L, ATP6, 
ATP8 and Cytb) were made, aligned separately, edited manually 
and concatenated excluding the stop codons with the Clustal 
X v1.81 algorithm. The pattern by which protein coding genes 
undergoes selection is usually estimated by the ratio of non-
synonymous to synonymous substitutions (dN/dS or ω). The 
genes in question are thought to be under (i) positive selection 
if the ratio is >1, (ii) negative or purifying selection if the ratio 
is <1 and (iii) neutral if the value equals 1 (Zhang et al., 2006). 
We calculated the dN/dS ratio using DnaSP software 6.12.01 
(Rozas et al., 2017). The final concatenated matrix of 11,379bp 
was used to create an unrooted phylogenetic tree using the 
maximum likelihood method in RAxML v.8.2.10 (Stamatakis, 
2014) with the GTRCAT model for each partition. A 10000 
nonparametric bootstrapping replicates were used to analyze 
the support for nodes. The phylogenetic tree reconstructed 
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server) (Weaver et al., 2018). The threshold P-value were set to 
p<0.05, <0.1 and posterior probability value >0.9 for MEME, 
FEL and FUBAR respectively.

TreeSAAP uses a sliding window approach to compare the 
expected amino acid replacement patterns to the observed 
replacements at the positively selected sites assumed from a 
phylogenetic tree under the assumption that every amino acid 
replacement has equal probability to occur (Woolley et al., 2003). 
These are then used to analyze the significant changes caused 
by the replacements in the physicochemical properties of the 
amino acids using different models under neutral conditions. 
Replacement of each amino acid and subsequent change in 
physicochemical property is classified into eight categories 
based on the magnitude. Categories 1-3 represent the most 
conservative (minimal effect on the amino acid property or 
stabilizing selection) and categories 6-8 represent the radical 
changes (destabilizing selection) which can bring about changes 
in the protein biochemistry and are exposed to the selection 
pressures (Teacher et al., 2012). A z-test was utilized to estimate 
the kind of selection at each sliding window and the significance; 
negative values indicating purifying (or negative) selection and 
positive values indicating positive selection or the occurrence of 
higher amount of non-synonymous mutations under neutrality 
(Morales et al., 2015). To minimize the detection of false positive, 
only the amino acid replacements with magnitude category ≥6, 
z-scores less than or greater than 3.09 with significance value, 
p<0.001 and the amino acid positions supported by at least 
two separate methods were considered to be under positive 
selection (McClellan et al., 2005; Sun et al., 2018). Finally, the 
construction of 3D homology model of protein subunits was done 
using the SWISS-MODEL server (Schwede et al., 2003) using 
the best hit templates. The sites undergoing positive selection 
were located in the three-dimensional protein subunit structure.

Results and discussion

The average dN/dS ratio for the concatenated protein coding 
genes of 16 teleost species was found to be 0.0447, a value 
much less than 1, a signature for negative purifying selection 
in which the evolutionary pressures conserves the protein in 
its ancestral state (Yang and Bielawski, 2000). However, this 
statistical method to identify molecular adaptation is found to 
be highly biased and hence not satisfactory (Ngatia et al., 2019). 
Due to their functional constraints and active involvement in 
the cell metabolism, mitochondrial protein coding genes are 
highly conservative. Therefore, few amino acid changes which 
can even lead to positive selection and further adaptation are 
masked by the sites undergoing purifying selection (Meiklejohn 
et al., 2007; da Fonseca et al., 2008).

The unrooted phylogenetic tree constructed via Maximum 

Table 1. The GenBank accession numbers of the endothermic teleost species used in 
this study

No Accession Number Species Family Suborder

1 KY400011.1 Thunnus obesus

Scombridae Scombrioidei
2 KF906721.1 Thunnus orientalis

3 KF906720.1 Thunnus thynnus

4 AP006033.1 Gasterochisma melampus

5 AB470301.1 Xiphias gladius Xiphiidae

Xiphoidei

6 KJ510416.1 Istiompax indica

Istiophoridae

7 AB470306.1 Istiophorus platypterus

8 NC030010.1 Kajikia albida

9 AB470304.1 Makaira mazara

10 AB470303.1 Tetrapturus angustirostris

11 AP006035.1 Istiophorus albicans

12 KU315126.1 Kajikia audax

13 KU315120.1 Makaira nigricans

14 NC030009.1 Tetrapturus georgii

15 NC030007.1 Tetrapturus pfluegeri

16 AP002924.1 Lampris guttatus Lampridae Lampriformes 
(order)

using the maximum likelihood method was used along with 
the sequence alignment in further analysis to infer the sites 
undergoing positive selection using various methods.

Codon based methods, which could estimate site specific dN/dS 
in the concatenated mitochondrial protein coding genes were 
used to detect the signs of selection. Mixed effects model of 
evolution (MEME) is a mixed effect model which uses maximum 
likelihood approach to identify both pervasive and episodic 
positive selection at each site by analyzing the distribution of 
dN/dS ratio to differ from sites to sites (the fixed effect) and 
also from branch to branch (the random effect) at a site (Murrell 
et al., 2012). Fixed Effects Likelihood (FEL) uses maximum 
likelihood method to deduce the dN/dS ratio of each site for 
a given sequence alignment and corresponding phylogenetic 
tree by assuming that the selection pressure acting on each 
site is constant across the whole phylogeny (Pond and Frost, 
2005). A Fast, Unconstrained Bayesian Approximation for 
Inferring Selection (FUBAR) is faster and robust method to 
detect positive selection even for larger datasets since it uses 
flexible parameters and thus are less susceptible to model 
requirements (Murrell et al., 2013). All the analyses discussed 
above were performed using DATAMONKEY (Adaptive Evolution 
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likelihood method confirmed the systematic placement of the 
species as per previous molecular methods (Fig. 1). Monophyly 
of the endothermic tunas is well supported with strong bootstrap 
values (Jondeung and Karinthanyakit, 2010) and the butterfly 
mackerel (Gasterochisma melampus) formed the basal scombrid 
(Jondeung and Karinthanyakit, 2010; Van Sebroeck, 2015). 
Within Xiphoidei, monotypic Xiphiidae formed a separate 
lineage from the Istiophorids (Santini and Sorenson, 2013). 
Opah (Lampris guttatus) formed a distinct lineage from all the 
other endothermic teleosts (Chen et al., 2003). The phylogeny 
built using the maximum likelihood method was used along 
with the nucleotide data to test the signals for positive selection.

Even though strong purifying or negative selection to conserve 
the function of the mitochondrial proteins was expected, several 
candidate sites which evolved under positive selection were 
identified in the present study (Table 2). Among the 3793 sites 
tested, MEME analysis found evidence for episodic positive or 
diversifying selection at 30 sites. FEL found evidence of pervasive 
positive or diversifying selection at 4 sites and pervasive purifying 
selection at 2808 sites. FUBAR found evidence of episodic 
positive selection at 2 sites and episodic purifying selection at 
3461 sites. Among the 36 codons identified by all the three 
methods 1, 1, 9, 2, 2, 4, 1, 3, 6 and 7 codons were found in 
the genes ND1, ND2, COI, ATP8, ATP6, COIII, ND4L, ND4, ND4 
and ND6 respectively. TreeSAAP detected 12 significant radical 
changes in physicochemical properties of amino acids in the 
genes COI (3), ATP8 (3), ATP6 (1), COIII (1) and ND5 (4). Cytb 
which forms the only membrane bound unit of the respiratory 
complex III (cytochrome bc1 complex) showed no evidence 
for positive selection. It catalyses the reversible transfer of 

electrons to cytochrome c from the ubiquinol (Q-cycle) along 
with the translocation of protons against the electrochemical 
gradient (Trumpower, 1990; Saraste, 1999; Ngatia et al., 2019). 
The extreme functional constraints due to its essential role in 
the respiratory chain (Iwata et al., 1998; Da Fonseca et al., 
2008) can explain the absence of positively selected sites in 
the present study.

Among the 13 protein coding genes, ND genes encoding the 
subunits of the mitochondrial complex I, (NADH dehydrogenase 
complex or Respiratory complex I or NADH: ubiquinone 
oxidoreductase) harbored highest number of candidate sites 
under positive section. Mitochondrial complex I, is the first and 
largest membrane bound multimeric enzyme of the respiratory 
complex with total mass of about 1000Da (Walker, 1992; 
Nakamaru et al., 2003). It comprises 46 subunits (bovine 
enzyme) of which seven are coded by mitochondrial DNA and 
includes the hydrophobic components designated as ND1-
ND6 and ND4L (Carroll et al., 2003; Lenaz et al., 2006). The 
enzyme comprises three different regions: a dehydrogenase 
and hydrogenase like components constituting the hydrophilic 
peripheral arm which protrudes into the matrix/cytoplasm and 
a hydrophobic transporter component which is embedded 
within the inner mitochondrial membrane, together making 
an L-shaped structure (Mathiesen and Hagerhall, 2002). The 
subunits encoded by the mitochondrial genome are embedded 
within the membrane arm and possess a minimum of one bound 
ubiquinone (Shinzawa et al., 2010). The core subunits that abode 
the catalytic function are highly conserved from prokaryotes 
to humans indicating similar energy production mechanism 
of complex I for all species (Efremov and Sazanov, 2011). The 

Fig. 1. Phylogenetic tree obtained from the concatenated sequences of 13 coding regions 16 endothermic teleost species. Numerals at the nodes 
indicate the bootstrap value
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Table 2. Outline of the results obtained from various tests conducted on the OXPHOS genes of sixteen regionally endothermic teleosts to detect signals of positive selection

Gene
Amino acid 
position

From codon to 
codon

From amino acid

to amino acid

MEME FEL FUBAR TreeSAAP Distribution of

amino acid

replacements

across lineages

 P

value

 P

value
Posterior 
probability Physicochemical properties (Category)

ND1 245 GCC-ACC Ala-Thr 0.1 Makaira nigricans

ND2 220 CTC-ATT Leu-Ile 0 Tetrapturus angustirostris

COI 21 GTA-CTG Val-Leu 0 Tetrapturus pfluegeri

COI 117 GGG-GCC Gly-Ala 0.06 Tetrapturus pfluegeri

COI 262 TCA-GCC Ser-Ala 0.09 Coil tendencies (6) Thunnus thynnus

COI 331 GCT-TCT Ala-Ser 0.01 Istiophoridae

COI 338 CTT-ATA Leu-Met 0.08 Tetrapturus pfluegeri

COI 390 GTT-ATG Val-Met 0.09 Thunnus thynnus

COI 416 GTA-CTC Val-Leu 0.06 Tetrapturus pfluegeri

COI 449 CTA-GTC Leu-Val 0.1 Tetrapturus pfluegeri

COI 481 GAA-TTA Glu-Leu 0.05 Chromatographic index (8), Hydropathy (8) Tetrapturus pfluegeri

COI 507 GAG-CAG Glu-Gln 0.1 Xiphoidei

ATP8 47 CCA-ACA Pro-Thr 0.05 Xiphoidei

ATP8  51 AAC-CCC Asn-Pro 0.03
Compressibility (6), Power to be at the 
C-terminal (6), Thermodynamic transfer 
hydrohphobicity (6)

Gasterochisma melampus

2 ACA-GTA Thr-Val 0.08 Solvent accessible reduction ratio (7) Istiophoridae

ATP6 112 GCA-GTA Ala-Val 0.07 Kajikia albida

COIII 50 CTT-CCT Leu-Pro 0.09 Compressibility (6) Lampris guttatus

COIII 98 TTC-TTA Phe-Leu 0.04 Istiophorus albicans

COIII 121 ATT-CTA Ile-Leu 0.09 Tunas

COIII 175 TTC-CTC Phe-Leu 0.07 Kajikia albida

ND4L 24 ACC-TAC Thr-Tyr 0.01 Xiphoidei

ND4 422 GCA-CAC Ala-His 0.08 Lampris guttatus

ND4 446 ATC-GCC Ile-Ala 0.04 0.094 Gasterochisma melampus

ND5 17 ACA-TCA Thr-Ser 0.08 0.084 Xiphoidei

ND5 337 ACT-CCT Thr-Pro 0.07 Compressibility (6) Lampris guttatus

ND5 404 GCC-ACC Ala-Thr 0.08 Xiphoidei + Scombroidei

ND5 538 ACA-GCA Thr-Ala 0.01 Xiphoidei + Scombroidei

ND5 604 ACC-GCC Thr-Ala 0.05 Hydropathy (6), Solvent accessible reduction 
ratio (8), Surrounding hydrophobicity (8) Tunas

ND6 11 GGT-TCT Gly-Ser 0.03 Xiphoidei

ND6 95 ATG-CTG Met-Leu 0.01 0.024 0.901 Gasterochisma melampus

ND6 103 GTG-GCG Val-Ala 0.03 0.021 0.96 Xiphoidei + Scombroidei

enzyme provides proton flux (about 40%) across the inner 
membrane to power the ATP synthesis by using the reducing 
potential of the NADH to convert quinine to quinol. Transfer 
to two electrons from the NADH to ubiquinone (Coenzyme Q, 
a fat soluble electron carrier) is coupled with the translocation 
of four protons across the mitochondrial membrane creating 
a proton motive force (Sazanov, 2007; Kampjut and Sazanov, 
2020). Increased susceptibility of the ND subunits or the genes 

to mutations and adaptive selection may be related to the 
location of the ND genes in the mitochondrial genome. They 
are placed immediately upstream to the origin of light strand 
replication (OL) and/or downstream to the origin of heavy strand 
replication (OH). During the process of replication these genes 
remain single stranded for much more time when compared to 
the other mitochondrial genes and hence they are vulnerable to 
high mutation rate (Marshall et al., 2008). Evidence for positive 
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selection in the ND genes of the complex I has been reported 
in several fishes (Teacher et al., 2012; Caballero et al., 2015; 
Consuegra et al., 2015; Jacobsen et al., 2016).

Eleven sites; COI (#262, #481), ATP8 (#51), ATP6 (#2), 
COIII (#50), ND4 (#446), ND5 (#17, #337, #604), ND6 
(#95, #103), which showed evidence for positive selection by 
more than any one of the four approaches used (MEME, FEL, 
FUBAR, TreeSAAP) were selected for further analysis to avoid 
false positives. However, seven sites among them were private 
or were found in the nodes leading to a single individual but 
not in other test individuals. Hence, the significance of these 
terminal mutations is unable to verify. Four positively selected 
sites were found to occur at the basal region of a particular 
lineage leading to multiple individuals and therefore are likely 
to play an important role in the evolution and adaptation of 
the species. Among them, three were found in the complex I 
(NADH dehydrogenase): (i) two sites in the gene ND5 (#17 
and #604) at the base of the branch leading to the suborder 
Xiphoidei and endothermic tunas respectively and (ii) one site 
in the gene ND6 (#103) at the base of the branch leading to 
the entire suborder Scombroidei and Xiphoidei. A significant 
mutation in the gene ATP6 (#2) was found at the base of the 
branch leading to the family Istiophoridae.

These sites were then located in the three-dimensional structure 
of the protein subunit predicted using appropriate templates. The 
best hit homology protein subunits or templates for each gene 
were: ND5 (SMTL ID: 6zkb.1.B), ND6 (SMTL ID: 6qc5.1.U) and 
ATP6 (SMTL ID: 6zpo.1.U). The sites that exhibited signatures 
for positive selection in the mitochondrial complex I (ND5 and 
ND6) (Fig. 2 and 3) are located in the trans membrane helix. 
The mitochondrial subunits ND2, ND4 and ND5 are supposed 
to be associated with proton pumping due to their sequence 
homology to bacterial Na+/H+ antiporters (Brandt, 2006) and 

possess H+ translocation sites favoring indirect proton pumping 
mechanism (Nakamaru et al., 2010). Also, the subunits ND2 
and ND4 are joined together by the ND5 arm facilitating a 
coordinated switch in proton pumping (Hunte et al., 2010). 
ND6 plays an important role in the assembly and arrangement 
of the complex I by forming salt bridges and hydrogen bonds 
to their neighboring subunits (Efremov et al., 2011). The 
subunit is also suspected to be involved in the formation of 
quinine-binding site within the membrane arm of the complex 
(Efremov et al., 2010).

The site which showed evidence for positive selection in the ATP6 
(Fig. 4) is located in the speculated internal helix loop region. 
ATP6 is a subunit of the membrane inserted F0 proton channel 
of the complex V (ATP synthase) which forms the final and fifth 
complex of the oxidative phosphorylation pathway (Saraste, 
1999). Complex V catalyzes the conversion of ADP to ATP by 
using the proton electrochemical gradient generated during the 
transport of protons from the intermembrane space to the matrix 
through the pore formed by the F0 region (Jonckheere et al., 
2012). A portion of the F0 region rotates during this process 
(rotary catalysis; Devenish et al., 2008) and the subunit ATP6 
plays an important role in the rotation of the protein (Spikes 
et al., 2020). Thus, changes occurring in the gene ATP6 will be 
associated with variations in the energy production (Sun et al., 
2018) and such selective changes associated with metabolism 
and energy kinetics have been reported in other taxa also 
(Fontanillas et al., 2005; da Fonseca et al., 2008; Kucharczyk 
et al., 2010; Finch et al., 2014; Jacobsen et al., 2015).

Altogether, changes in the subunits ND5, ND6 and ATP6 may 
affect the proton pumping, protein-protein interactions and 
functioning of the metabolic chain which can enhance the 
proton-pumping efficiency (da Fonseca et al., 2008; Ngatia et al., 
2019). Even though we could not identify the direct relationship 

Fig. 2. Three dimensional representation of the mitochondrial subunit ND5 of respiratory complex I created using SWISS-MODEL. Site showing 
positive selection is marked in bold
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of the positive selections detected to the functional implications 
and fitness consequences on the species, we could conclude 
that these variations can improve the overall ATP production, 
which could theoretically augment the heat production and 
metabolic potential of the individual. Temperature is one of 
the chief selective force acting on mitochondrial DNA (Ballard 
and Whitlock, 2004) and positive selection on mitogenome 
have been known to increase the aerobic capacity (Grossman 
et al., 2004) and thus adaptation to low temperatures (Blier 
et al., 2001; Mishmar et al., 2003; Ballard and Whitlock, 2004; 
Grossman et al., 2004; Jobson et al., 2004; Dalziel et al., 2006).

However, molecular evidence of positive selection does not 
always imply adaptation (Morales et al., 2015). It is a challenge to 
distinguish between random genetic drift and natural selection, 
because both the forces interplay mutually to shape genetic 
variation (Sun et al., 2018). Due to their co-evolution, the 
selective forces acting upon the nuclear genome may indirectly 
affect the mitogenome also (Blier et al., 2001; Levin et al., 
2014). Such patterns of co-evolution have been reported 
among cytochrome c oxidase (a mitochondrial DNA product) 
and cytochrome c protein (a nuclear DNA product) of primates 
(Osheroff et al., 1983), and also among the NDUFA1 (nuclear 
encoded) and ND1/ND4 (mitogenome encoded) subunits of 
humans (Gershoni et al., 2010). Moreover, OXPHOS coupling is 
not the only way to produce ATP and heat; protons can bypass 
the complex V or the ATP synthase by proton leak (uncoupling 
mechanism) to produce heat (Brand, 2000), a key factor, which 
distinguishes the ectothermic and endothermic mitogenomes 
(Brand et al., 1991). Reduction of OXPHOS efficiency to enhance 
thermo genesis has benefited human populations during their 
thermal niche expansion and their migration towards cooler 
habitats (Mishmar et al., 2003; Ruiz-Pesini et al., 2004). Increased 
aerobic potential can also be achieved by elevated enzyme 

quantity such as in tunas (Korsmeyer and Dewar, 2001; Dalziel 
et al., 2005). Hence, further studies including enzyme activity 
assays, protein structure mapping, nutritional and metabolic 
assessments and experimental evidences are essential in order 
to elucidate the substantial selective force and their functional 
consequences in endothermic teleosts.

Our study provided evidence for positive selection in teleost 
regional endotherms against a background of strong negative 
selection in the mitochondrial OXPHOS genes. These mutations 
might have facilitated improvements in thermo genesis, metabolic 
potential, successful thermal niche expansion and further 
adaptation to the new environment for this group of species. 
Moreover, the results obtained provide exciting opportunities 
for further research on co-evolution of nuclear genes, physiology 
and various other aspects which will eventually help us to 
understand how a species can adapt to climate change in future.
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