Spatial fish consumption paradigms across K erala

SHYAM S. SALIM ${ }^{1 *}$, ANU UNNY ${ }^{2}$, ATHIRA N.R. ${ }^{1}$, SHINU A.M. ${ }^{1}$, TONY GEORGE ${ }^{2}$, ANEESH T.M. ${ }^{2}$, ARYASREE S. ${ }^{2}$, KRISHNAPRIYA S. ${ }^{2}$ and MEHAROOF MOHAMMED ${ }^{1}$

Received: 28 December 2020; Revisedaccepted: 31 December 2020

Abstract

The present paper attempts to assess the spatial pattern of fish consumption and its attributes in Kerda The study was conducted across different district locales in Kerala viz., urban coastal (Trivandrum), rural coastal (Alappuzha), noncoastal urban (K ottayam) and noncoasta rural (Palakkad) districts. A total of 1440 consumption households were coveredfor the study. The consumer profiles revealed that 57% of respondents were of middle age group ($35-55$ years) with collegiate education (27\%). More than 40% consume fish on a daily basis. The result reveled that the fish consumption increased over the years on account of better fish availability (62\%) accessibility (52%) and affordability (48%). The fish accessibility was less than one km as opined by 52% of consumers. The consumption attributes indicated that sardine was the most preferred species of fish followed by mackere and anchovies. The constraints in fish consumption as perceived by the consumers induced that from lack of fresh fish, to high price, wide fluctuations in price, irregular supply and lack of hygiene in purchase sources were limiting factors in augmenting fish consumption. Different statistical and econometric tools such as conjoint anal ysis, preference assessment index and discriminant analysis have been deployed for analyzing the data

Key words: Fish consumption, Conjoint Analysis, Preference Assessment Index Discriminant Analysis

INTRODUCTION

Fisheries sector plays a very important role in the growth of national economy and continues to show an impressivegrowth rate when compared to other food producing sectors in the country. The Indian fisheries sector focuses on the economic paradigms such as improving fish production efficiency, improving the welfare of fishermen, ensuring equity,

[^0]augmenting export and trade, generating employment and ensuring food security. Fish assumes to bea major constituent of the diet of people. On one side fish continues to be a poor man's spotein ensuring food security and on other sideit offers a delicacy of huge prices. It has been identified that about 60 per cent of the Indian populaceconsumefish and consumption patterns varies spatiotemporall y across different social fabrics (Shyam et.al, 2013). The consumption assessment indi cated that themarinefish is more preferred than others and the urban areafish consumption ismorethan therural popul ace(Shyam, 2020).

Kerala, isoneof themajor fish producing and consuming states in the country where the per capitafish consumption is four times than thenational average(Shyam, 2016). Thedemand and supply rel ations areon par over the years. Thesupply side is catered by varied fishery resources including marine and inl andresources. Thedemand continuestosurge duetovaried fish consumption preference, income and demand (Shyam, 2013). However, over theyears it has been noticed that thereis a mismatch between the fish supply and demand. The fish consumption demand is met by fish arrivals from different neighbouring states and sometimes throughimports. Thestudy indicated that on an average, 40 percent of the domestic demand ismet fromoutsidefish arrivals. Theseoutsidearrivals ensure that the fish is available, accessible and affordable throughout all seasons(Shyamet al., 2017). Notwithstanding the fact that Kerala's net deficit in ensuring adequate fish supply, thereare al arming issues over the quality of fish and the heal th concerns facing by fish consumers.

The fish demand and supply reationship are often bol stered by the doctrines of fish avail ability, accessibility and affordability. The avai labil ity necessitates that thefish qual ity isn't hampered by long distance travel and additives. The accessibility doctrine assumes significancethat the consumers needn't to trave long to purchasefish and it is availablenext door. The affordability factor assesses the real isation of price across species, size, period, product form, method of fish catch and season. It's of significance to ascertain whether the fish
consumption in Kerala is impacted by these doctrines of fish avail ability, accessibility and affordabil ity. Inthis context, the present study de ves into assess the trends and pattern of fish consumption across the four district localesin Kerala, attributes of fish consumption, therebytodeterminethemajor constraints facing by consumers towards fish consumption. The overall objectives of the proposed study is to anal yse the fish consumption paradigms across four selected study arees, with special focus on (1) Anal ysing the trends and pattern of fish consumption, (2) Identifying major factors that drive peopl ein fish consumption, and (3) Assessing major constraints of consumption.

METERIALS AND METHODS

Thestudy was based on the primary data collected from four districts in Keral a covering coastal - non-coastal and urban rural locale Accordingly, 1440 consumer household urban coastal (Trivandrum), rural coastal (Alappuzha), non-coastal urban (Kottayam) and non-coastal rural (Palakkad) districts were studied using a well-structured questionnaire post reconnaissance studies. Purposive random sampling method was implied for sel ecting thestudy locales (Fig. 1).

The schedule elicited the information on the personal profile, income, expenditure, fish consumption pattern, major preferred spedies, major buying source, thefactors which drive people to consume fish and the factors affecting the fish consumption. Inorder to anal ysethedata, theprimarystatistical tool of percentageanal ysis, conjoint analysis, garretteranking etc. have been employed. Conjoint anal ysis, discriminant

Fig. 1. Study area
anal ysis and preferenceassessment index methods have been carried out tofind out the consumer preferences and thepattern of fish consumption among the respondents.

Analytical tools

The tools of analysis used for the study are indi cated bel ow:

Conjoint analysis

Conjoint anal ysis is defined as the method in which a consumer or a decision-maker eval uates and estimates confined number of alternatives systematical ly (Akpinar etal 2009). Theanal ysis is applied for the fields of food product choice, marketing, consumer preferences on market segments, consumers' willingness to pay for different product and quality attributes. Conjoint analysis mainly consists of three fundamental processes(Boughanmi etal 2007). First of theseis defining the ideal product features set, which provides the consumer with maximumutility. Second is determining theleve of reationship between combinations of theproduct. Third is usage after the market margin simulation, profitability anal yses and segmentation anal ysis. Thestarting point of conjoint anal ysis relies on total utility theory, according to which it can be said that the total utility is afunction of the priceutility and qual ity utility (Padillaetal,2007).

Twodifferent cal culation methods sareused in theconjoint anal ysisin order to determinethesignificancelevel of product characteristics. First one is the determination of differences between partial utility values (part-worth values) of every feature In partial utility modd, every featurelevel of theproduct isfreefromeach other and regardingfeetureleve partial beneits constitutethetotal utility of the consumer. General consumer evaluation on the product or serviceand thus, contribution of every characteristic to this preferenceis determined by partial utility (part-worth). Part-worth contribution model (additive part-worth), which is used widespread in the conjoint analysis can beexplained asfollows:

$$
\operatorname{Pre}_{i \mathrm{jkl}}=\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}}+\mathrm{c}_{\mathrm{k}}+\mathrm{d}_{\mathrm{l}}
$$

Where,
Pref $_{\mathrm{ijk}}=$ Consumer preferenceor total utility
$\mathrm{a}_{\mathrm{i}}=$ ProductA featurepart-worth in leve i
$b_{j}=$ Product B feeture part-worth in level j
$c_{k}=$ Product C featurepart-worth in level k
$d_{1}=$ Product D feature part-worth in level I is expressed so
In this study, thefull concept method was chosen for the collection of data that is evaluated in the conjoint anal ysis. Accordingly, question cards are prepared for every featurelevel and are provided to consumers, which includefeatures that are determined regarding the product and level of every feature. Thus, the degree of participation of consumers to every alternative and the level of perception for each alternative are determined.

Preferenceassestmentindex (PAI)

A compositepreferenceassessment index (PAI) approach was also used in this study to evaluate driving forces that are influencing consumer preferencewhich lead to an increasein the demand for various types of fishes.(Shyam et al ,2019) The composite index approach cal cul ates preference indices using aggregate data for a set of indicators. An indicator represents a characteristic or a parameter of a system and it is a pragmatic, observabl emeesure of a concept. Using the set of indi cators described in Tables, we quantitative y assessed the preferenceindex based on the systems using the combination of indi vidual indi cators. Sinceeach indicator was meesured on adifferent scale, they werenormal ized (rescal ed from0 to 1) by using the following equations
$\mathrm{X}_{\mathrm{ij}}=\frac{\mathrm{X}_{\mathrm{ij}}-\min _{\{ }\left\{\mathrm{X}_{\mathrm{ij}}\right\}}{\max _{\mathrm{i}}\left\{\mathrm{X}_{\mathrm{ij}}\right\}-\min _{\{ }\left\{\mathrm{X}_{\mathrm{ij}}\right\}}$; if X_{i} increases with preference
\qquad
$y_{i j}=\frac{\max _{i}\left\{X_{i j}\right\}-X_{i j}}{\max _{i}\left\{X_{i j}\right\}-\min _{i}\left\{X_{i j}\right.} ;$ if $y_{i j}$ decreases with preference .(2)
Where, $x_{i j}$ and $y_{i j}$ are the variables representing effects on thepreferenceindices. Thevalues after normali sation were transformed into a four point Likert scale, categorised as 0 -$0.25,0.26-5,0.6-0.75$ and 0.76 - 1 which areassigned scorevalues 1 (low), 2 (moderate), 3 (high) and 4 (very high) respectively. Themean values of the different species as well as thedifferent parameters of preference were cal cul ated and were combined to develop a compositepreferenceindex.

Discriminantanalysis

Discriminant anal ysis (DA) involves the determination of a linear equation likeregression that will predict which groupthe
casebel ongsto (Ramayah et al, 2009, Sohail et al, 2009). It is shown as follows:

$$
D=v_{1} x_{1}+v_{2} x_{2}+v_{3} x_{3}+\ldots \ldots . . v_{i} x_{i}+a
$$

$\mathrm{D}=$ discriminatefunction, $\mathrm{V}=$ thediscriminant coefficient of weightfor that variable, $X=$ respondent's scorefor that variable, $a=$ constant, $i=$ thenumber of predi ctor variables.

Garretterankingmethod

The Garette Ranking Technique was employed to rank the constraints. The order of merit given by the consumers was transmitted into scores. (Garrette, and Woodworth, 1969). For converting the scores assigned by the exporter towards theparticul ar problem, per cent position was worked out using theformula:
Percent position $=100 \mathrm{X}\left(\mathrm{R}_{\mathrm{ij}}-0.5\right)$
N_{j}
Where,
$\mathrm{R}_{\mathrm{ij}}=$ rank given for the i th problem by the j th consumer in State
$\mathrm{N}_{\mathrm{j}}=$ number of attributes

RESULTS AND DISCUSSION

Demographic Profile

Respondent socio-demographic information includes gender, age and educational qualification (Table 1). A total of 1440 respondents wereincl uded in this study. Theresult s indi cates that majority of therespondents aremale (71.3%) than female (28.7\%). Trivandrum has more of femal e respondents (54\%) than male (46\%) (Table 1). In Palakkad district, only male respondents were avail lable for the study.

Table 1. Gender, age and educational qualification details of the respondents

Particular	Coastal Rural	Non Coastal Urban	Non Coastal Rural	Coastal Urban	Total
Gender					
Male	199 (55)	304 (84)	360 (100)	164 (46)	1027 (71.3)
Female	161 (45)	56 (16)	0 (0)	196 (54)	413 (28.7)
Total	360	180	360	360	1440
Age (years)					
<35	122	22	2	45	191 (13.26)
35-55	158	252	212	228	850 (59.02)
>55	80	86	146	87	399 (27.74)
Total	360	360	360	360	1440 (100.00)
Educational qualification					
Illiterate	10 (3)	0 (0)	40 (11)	3 (0.83)	53 (3.68)
Primary	57 (16)	4 (1)	120 (33)	30 (8.33)	211 (14.65)
High School	86 (24)	14 (4)	130 (36)	109 (30.28)	339 (23.54)
Higher Secondary	39 (11)	38 (11)	50 (14)	124 (34.44)	251 (17.43)
Collegiate	116 (32)	168 (47)	20 (6)	81 (22.50)	385 (26.74)
Professional	52 (14)	136 (38)	0 (0)	13 (3.61)	201 (13.96)
Total	360 (100)	360 (100)	360 (100)	360 (100)	1440 (100)

(Figure in parenthesis indicate percentage to total)

AgeProfile

Theage profileof therespondents point out that 59.02\% of the respondents came under the age group frequency of 35-55, followed by 27.74% of therespondents in greater than 55 age group and 13.26% of them come under the less than 35 age group category (Table1).

Educational Status

Theeducational status of the respondents shows that most of themarecollegiate (26.74\%). 23.54\% of therespondentshaving high school level education and 17.43\% having higher secondary level education. Among the respondents only 14.65% possessed primary education and 13.96% are professionals. The level of education of the respondents was high as indi cated by a low level of illiterates (3.68\%) in the sample(Table1).

Household Expenditure Pattem

The average monthly expenditure of the respondents were studied (Fig. 2) and the results shows that Coastal urban (₹ 16452) has the highest average monthly house hold expenditure followed by non-coastal urban (₹ 14150), noncoastal rural ($₹ 12205$) and coastal rural ($₹ 11629$).

In coastal rural households themonthly mean expenditure on food is ₹ 5,636 were it ranges from 12,000. Themonthly meen expenditureonfish is ₹ 2,149 wereitranges from5,700 to aminimum of 300 . Whereas in Non-coastal rural therespondents spend central part of their income towards the category of education. In Noncoastal urban the respondents spend more on food on an average of ₹ 7761.42 (63.88%), followed by Fue/Electricity (13.60\%), Health Care (8.11\%), Education (7.19\%) and Clothes (7.23\%) and in coastal urban the expenditureishigh onfood (33\%), followed by shelter (16\%), education (12\%), dothes (10\%) and others (10\%) (Fig. 2).

Fish Consumption Profile

1. Frequency of consumption

The results show that 36.88% of the respondents consume fish daily, followed by 21.32% consumefish weekly, 20.76\% consume fish twice in a wedk and 15.76% consume fish alternatively (Table 2). Comparing the area wise fish consumption Coastal rural (54.17%) and coastal urban (36.88\%), non-coastal urban consumewedkly (34.44) and noncoastal rural consumetwicein a wedk (39.17\%).

2. Quantity of fish consumption

The average annual per capita fish consumption across the study locales was found to be 27.84 kg ranging from 20.63 in the case or rural non-coastal to 34.83 kg in the case of urban coastal. Theannual per capita consumption in thecoastal rural and non-coastal urban was found to be 31.94 and 23.96 kg , respectively. The results of the quantity of fish consumption and averagespecies composition weredearly indi cated in Table 3and4.

Fig. 2. Average monthly expenditure
Table 2. Frequency of fish consumption

Coastal Rural	Non Coastal Urban	Non Coastal Rural	Coastal Urban	Total
$195(54.17)$	$28(8.89)$	$56(15.56)$	$248(68.89)$	$531(36.88)$
$75(20.83)$	$52(14.44)$	$12(3.61)$	$86(23.89)$	$226(15.69)$
$33(9.17)$	$122(33.89)$	$141(39.17)$	$3(0.83)$	$299(20.76)$
$50(13.89)$	$124(34.44)$	$110(30.56)$	$23(6.39)$	$307(21.32)$
$5(1.39)$	$4(1.11)$	$4(1.11)$	$0(0)$	$13(0.90)$
$2(0.56)$	$16(4.44)$	$8(2.22)$	$0(0)$	$26(1.81)$
$0(0)$	$10(2.78)$	$28(7.78)$	$0(0)$	$38(2.64)$
$360(100)$	$360(100)$	$360(100)$	$360(100)$	$1440(100)$

(Figure in parenthesis indicate percentage to total)
Table 3. Average fish consumption

Monthly	Coastal Rural	Non Coastal Urban	Non Coastal Rural	Coastal Urban	Total
Less than one	28	68	105	21	$222(15.42)$
One-Two	68	78	68	56	$270(18.75)$
$2-3 \mathrm{~kg}$	138	141	121	$549(38.13)$	
$3-5 \mathrm{~kg}$	84	57	51	$279(19.38)$	
Morethan five	42	16	15	47	$120(8.33)$
Total	360	360	360	360	$1440(100.0)$

The average species composition in the monthly per capita fish consumption basket was anal yzed and the results indi cate that among the species, sardine (0.53%) is the most consumed fish in the selected areas of study. Comparing the differentstudy locations, in coastal rural, sardineconsumption was the highest (0.61%) than other areas (Table4). Being the coastal area, the avail ability and the low price of sardinewas the major reason for the highest consumption rate.

3. Accesstobuyingfish

The results of access to buying fish (Table 5) indi cates that majority of consumers of fish that is 33.82% of therespondents trave 1 kmto 2 km and 33.78% trave less than 1 kmto buyfish. Comparing the different sel ected areas of study, Coastal rural (47.22%) and coastal urban (46.67%) travel less than 1 km to
buyfish whereas Non Coastal rural (39.44\%) trave 2 to 5 km to buy fish and noncoastal urban (39.17\%) trave 1 to 2 km . The results reveal s that majority of the respondents were in close access to fish buying source

4. Source of purchase

Source of purchase is found to be multiple across different consumers. Among the respondents the main source of purchaseistheretail marke(32.29%), fol lowed by fish vendors at door step (30.82\%) (Table6). When comparing the study locations, themajor sources of purchaseis different. In Coastal rural (45.28\%) and coastal urban (31.39\%) areathemain source of purchase isfish vendors at the door step. Non-coastal urban (34.44\%) and noncoastal urban (43.61\%) has retail marketsas themajor source of purchase(Table6).

Table 4. Average species composition in the monthly per capita fish consumption basket

Species	Coastal Rural	Non Coastal Urban	Non Coastal Rural	Coastal Urban	Total
Anchovies	0.24	0.15	0.14	0.33	0.22
Carps	0.03	0.08	0.02	0.03	
Crab	0.02	0.04	0.01	0.03	0.03
Cephalopods	0.12	0.06	0.03	0.16	0.09
Mackerd	0.3	0.18	0.22	0.42	0.28
Seabass/ Milk fish/ Mullat	0.02	0.08	0.03	0.005	0.03
Clam/ Mussel/ Oyster	0.05	0.05	0.02	0.02	0.04
Pearl spot	0.12	0.12	0.05	0.005	0.07
Porfret	0.12	0.05	0.02	0.16	0.09
Prawns/ Shrimp	0.22	0.15	0.12	0.18	0.17
Ribbon fishes	0.11	0.05	0.03	0.14	0.08
Sardine	0.61	0.48	0.39	0.63	0.53
Seer fish	0.08	0.05	0.05	0.15	0.08
Sharks	0.01	0.02	0.02	0.005	0.01
Solefish	0.05	0.02	0.03	0.02	0.03
Thread fin breams	0.16	0.09	0.11	0.22	0.15
Tuna	0.12	0.12	0.11	0.23	0.14
Tilapia	0.12	0.12	0.13	0.03	0.10
Others	0.16	12	0.18	0.16	0.16
Total	2.66		1.71	2.9	2.32

Table 5. Distance travelled to buy fish

Distance (km)	Coastal Rural	Non Coastal Urban	Non Coastal Rural	Coastal Urban	Total
Less than 1	$170(47.22)$	$81(22.50)$	$68(18.89)$	$168(46.67)$	$487(33.82)$
1 to 2	$151(41.94)$	$141(39.17)$	$118(32.78)$	$134(37.22)$	$544(33.78)$
to 5	$30(8.33)$	$120(33.33)$	$142(39.44)$	$42(11.67)$	$334(23.19)$
Morethan 5	$9(2.50)$	$18(5.00)$	$32(8.89)$	$16(4.44)$	$75(5.21)$
Total	$360(100)$	$360(100)$	$360(100)$	$360(100)$	$1440(100)$

(Figure in parenthesis indicate percentage to total)
Table 6. Source of purchase

Source of purchase	Number of respondents				
	Coastal Rural	Non Coastal Urban	Non Coastal Rural	Coastal Urban	Total
Landing centre	$19(5.28)$	$20(5.56)$	$6(1.67)$	$47(13.06)$	$86(5.97)$
Retail market	$86(23.89)$	$124(34.44)$	$157(43.61)$	$98(27.22)$	$465(32.29)$
Fish vendors at door step	$163(45.28)$	$54(15)$	$108(30.00)$	$113(31.39)$	$444(30.82)$
Wholesale market	$34(9.44)$	$14(3.89)$	$14(3.89)$	$30(8.33)$	$92(6.39)$
Online	$11(3.06)$	$15(4.17)$	$5(1.89)$	$22(6.11)$	$53(3.68)$
Super market	$15(4.17)$	$120(33.33)$	$6(1.67)$	$22(6.11)$	$163(11.32)$
Way side market	$32(8.89)$	$13(3.61)$	$64(17.78)$	$28(7.78)$	$137(9.51)$
Total	$360(100)$	$360(100)$	$360(100)$	$360(100)$	$1440(100)$

(Figure in parenthesis indicate percentage to total)

Major Drivers in Buying Fish-ConjointAnalysis

Conjoint analysis was attempted to assess the consumer preference with threefactors of 20 factor level s generating 320 combinations. In the iterative process using the fractional factorial design, the combinationswere reduced to 50 (making amenable for further analysis and deducing meaningful conclusions). The three factors chosen, included source of busing fish, reasons therein for the sourceand thedrivers for buying fish. The fish quality set composed for the conjoint anal ysis is given in the Table 7 below.

Table 7. Drivers of buying fish

Factor	Factor Levels
Source of buying fish	Landing Centre
	Retail Market
Whol esale Market	
	Online Fish vendors at door step Supermarkets WaysideMarket
Reasons for source of purchase	Distance Freshness Variety of species Credit Cheap
Trust	
Time	

In thestudy, the conformity of the modd was estimated under the conjoint analysis with the actual consumer preferences wereeval uated $a s 0.95$ according to the Pearson R. Thestatistics show there ationship between the applied modd and the observed outcomes.

When the outcomes of the anal ysis were interpreted, it was found that the source of purchase of fish is the most important factor in determination of theconsumer choiceinthe fish consumption. The impact of source of purchase of fish (SOP) on buying decision was about 56.00%. Reasons for the buying source of purchase (RCBS) are the second most important factor (31.44%), foll lowed by the drivers for buying fish registering 12.56% significance Theresult of the conjoint analysis areindi cated in Fig. 3and Table8.

Fig. 3. The results of conjoint analysis

Table 8. Conjoint analysis results

Factors	Part worth value	Significanceleve (\%)
Source of buying fish		
Landing Centre	0.101	
Retail Market	0.553	
Wholesale M arket	0.412	
Online	0.243	56.00
Fish vendors at door step	0.516	
Supermarkets	0.322	
Wayside Market	0.434	
Reasons for source of purchase		
Distance	0.255	
Freshness	0.565	
Variety of species	0.452	
Credit	0.253	31.44
Cheap	0.320	
Trust	0.312	
Time	0.202	
Drivers for buying Fish (Marine/ Inland)		
Price and affordability	0.410	
Taste and preference	0.515	
Availability	0.456	12.56
Accessibility	0.562	12.56
Tradition	0.111	
Quality and nutrition	0.522	
Total worth constant	3.452	
Total (\%)	Significance $=0.0000$	100.00
Pearson's R $=0.95$	Significance $=0.0098$	

Part-worth or marginal utility valueof every factor level shows the effect of the concerning level on consumer preferences. Thefactor level, which has the highest part-worth, is the most preferableal ternative by consumers.

The sources of buying fish, which is the first most important factor in consumption preference, havethehighest part-worth scorefor the retail market (0.553), followed by the fish vendors at the door step (0.516). Theconsumers preferred to buy fish from the way sidemarkes hol ds the third position in the source of buying fish (0.434) and havegot prominence over theother sources, rather than travel to buy fish they buy fish whiletravelling creating a flexible pattern for buying as well as consumption of fish. Whol esal emarkets having a part worth score of 0.412 hol ds thenext major source of buying fish followed by super markess (0.322), onl inepurchase(0.243) and landing centre (0.101). The results indi cates that majority of the consumers chooseretail markes for buying fish regardless of other sources. The qual ity, good taste and cheap rate may the reasons can be acknowledged as the effective factors in the consumers decision in the preference of the buying place Theresul ts al so indi cates that fish vendors at doorstep, whole sal emarkes etc. and even theonlineserviceshaveconsiderable importance in choosing the purchase place by the consumers for fish consumption.

The reasons for choosing the place of purchase has got the second most important factor in fish consumption. The freshness of the available fish in the purchase place has got thefirst place with highest part worth valueabout 0.565 . The variety of species is the second most with part worth value 0.452 . The cheap rateandtrust for thefish vendors hold holds thenext in consumer preferencewith part worth val ues of about
0.320 and 0.312 , respectively. Thedistancefor buying fish holds the next with a part worth val ue of 0.255 , followed by credit with a score of 0.22 . Among the reasons time has the lowest part worth scoreof about 0.202 which indi cates that time has no relevance in the reasons of buying fish.

The drivers for buying fish which is the highest factor have the third highest part worth value for quality (0.522), followed by the accessibility of fish (0.512). The taste and preferencehavea part worth value of about 0.515 and avai lability of about 0.456 whereas the price and affordability for fish consumption records only 0.410 utility values. Moreover tradition in consuming fish holds the lowest impactinfor buying fish with part worth values about 0.111 . Hence most of the consumers buy fish with regard to the qual ity of fish and the accessibility in buying fish.

In conjoint anal ysis, thedifferencebetween factor levels as much as the part-worth of every factor level represents the impact of regarding factors on consumer preferences. When the results are interpreted, it is concluded that the largest differencebetweenthe part-worth val ues arein thereesons for buying fish and thepreferences in theimportant parametersto buy fish. Accordingly, it can be concluded that consumers have tendency to buy fish variety providing the highest value due to these reasons.

Average and total utility or worth values of the combinations, which were designed in thescopeof the conjoint anal ysis and total worth val ue is composed of sum of factor leve scores Thecombination, which hasthehighesttotal worth, is defined as the product featureset providing the consumers with optimum utility. Feature set, which has the lowest total worth value, provides the consumers with minimum level of benefit. In other words, thefactor and factor level having the highest total utility is preferred by consumers with priority. (Boughanmi etal , 2007,Vriensetal ,1998,Wirth etal ,1991 and andAkpinaretal , 2009

Thecombination, which has thelowest total utility val ue, is the product set that consumers prefer least and from these the overall results interpret that the optimumfish qual ity set, which provides the consumers with optimum benefit is the variety of fish from the retail fish markets which are highly nutritious, good qual ity and taste The optimum fish qual ity set is represented in theTable9.

Table 9. Optimum fish quality set

Optimumfish quality set		
Source of purchase	Retail Market	Total Worth Utility
Reasons for the place of purchase	Freshness	
Drivers of buying fish	Quality	1.1571

PreferredSpecies and Major Driversin Fish Consumption
Preference index is the composite index which takes into account numerous parameters which determine fish consumption likeavai lability, accessibility, qual ity, nutrition, tradition etc. Thepreferenceindex for thedifferent species of fish by the respondents is furnished in Table 10.

Table 10. Preference index of major species

$\begin{aligned} & \frac{\ddot{y}}{\ddot{y}} \\ & \stackrel{y}{n} \end{aligned}$	Parameters							
		$\begin{aligned} & \text { 을 } \\ & \frac{5}{5} \\ & \hline \end{aligned}$					U	
Sardine	0.660 .710 .48		0.66			0.19	0.65	61
Mackere	0.770 .550 .48		0.79	0.76		0.2	0.42	. 58
Prawn	0.560 .680 .54	0.54	0.69		0.65	0.29	0.43	. 56
Tuna	0.630 .750 .65		0.46	0.	0.6	0.1	0.40	54
Thread fin breams	0.560 .850 .75	0.76	0.51	0.32	0.33	0.45	0.32	. 54
Stolephorous	0.720 .630 .55		0.67		0.33		0.5	. 53
Pearl spot	0.70 .790 .64	0.57	0.38	0.40	0.35	0.12	0.64	. 51
Pomfret	0.420 .450 .75	0.56	0.82	0.46	0.66	0.25	0.18	0.51
Ser fish	0.550 .560 .80	0.60	0.72	0.30	0.60	0.14	0.12	0.49
Soles	$0.35 \quad 0.40 .42$	0.52	0.6	0.45	0.35	0.32	0.65	0.45
Squid	0.480 .550 .50	0.52	0.45	0.30	0.38	0.15	0.68	0.45
Clam/ Musse/ Oyster	0.350 .250 .60	0.58	0.52	0.32	0.31	0.20	0.70	. 43
Crab	0.520 .480 .75	0.31	0.45	0.30	0.52	0.15	0.17	0.41
Carps	0.320 .310 .58		0.45	0.25	0.35	0.25	0.65	0.40
Tilapia	0.520 .450 .42	0.32	0.31	0.21	0.35	0.2	0.72	0.39

The results indi cates that among the different species Sardine remains the most preferred fish with a high score of 0.61 , followed by mackerd (0.56), tuna (0.59), prawn (0.54), Stolephorous (0.53), porfret (0.51), sol efish (0.51), seer fish (0.49), threadfin breams (0.489 and crab (0.41). Despite any income group, there exists a high uniformity between the respondents in buying mackerd as well as sardine. Themost preferred species in fish consumption is indi cated intheFig. 4.

Fig. 4. Preferred species in fish consumption

DrivingForces of FishConsumption- DiscriminantAnalysis

Driving forces that influenceconsumer preference whichlead to an increase in the demand for various types of fish can be determined by analyzing the consumer satisfaction and preferences. The consumers arediverse in their consumption preferences. The discriminant analysis approach used for assessing the choices of the respondents for consumption
and the study identifies the different drivers of fish consumption (Table 11).

Table 11. Discriminant analysis results

Parameters	Wilk's lambda	Significance
Availability	0.863	0.001
Accessibility	0.742	0.000
Quality	0.998	0.033
Nutrition	0.977	0.025
Taste and preference	0.620	0.000
Tradition	0.325	0.000
Meat substitute	0.281	0.000
Persuasion	0.424	0.000
Price	0.519	0.000
Others	0.203	0.000
	Structural Matrix	Unstandardized canonical
	(Canonical loadings)	discriminant function
		coefficient
Availability	0.532	2.31
Accessibility	0.458	1.30
Quality	0.795	0.79
Nutrition	0.556	0.43
Tasteand preference	0.433	0.20
Tradition	-0.210	0.38
Meat substitute	-0.189	0.18
Persuasion	0.245	0.79
Price	0.350	1.00
Others	-0.126	-0.10
Constant		-3.22

Canonical correlation 0.85 , Wilks lambda (\square) 0.147 Chi square (9 df) $18.307 \mathrm{p}<0.000$

The Wilks's Lambda statistic was used to test the significance of thefunction. Theval ueof Wilks'slambda0.147 which transforms to a chi-square of 18.307 with 9 degrees of freedom, ($p<0.001$) pointsout that themodd issignificant and explainstheconsumer preferencefor the consumption of fish.

TheDA table indi cates that qual ity is themost significant discriminant factor with highest Wilks' Lambda of 0.998 and highest canonical loading (0.795 or 79.5%) describing themajor driver of fish consumption preferences of the consumer followed by nutrition (0.556 or 55.6%), availability (0.532 or 53.2%), accessibility (0.458 or 45.8%), taste and preference (0.433 or 43.3%), price(0.35 or 35%), persuasion (0.245 or 24.5%), others (-0.126 or 12.6%), meat substitute (-0.189 or 18.9%) and tradition (-0.21 or 21%). The factors price and persuasion accounts only low impact among the respondents in fish consumption. Also the least preference is given for

Fig. 5. Driving forces of fish consumption
persuasion and moreover the study anal yzed that most of the respondents do not consume fish as a substitute to meat. The differentreasonsfor thefish consumption areclearly indicated asdiscriminant factorsin theFig. 5.

However, the respondents have also mentioned that avai lability of most of thefishes becamerareat present which indirectly indi cating the loss of fish diversity and abundance in water bodies nearby, loss of fishes in natural waters due to degradation of natural habitats, excess exploitation, use of illegal fishing gears, expansion of aquacultureinto natural waters etc.

Constraintsin Fish Consumption

The Garrette ranking results shows the constraints in fish consumption which isclearly furnished inTable 12. Themajor constraint in fish consumption was observed to betheirregular supply of fish in all theareas of study. Lack of fresh fish is the second main constraint in the coastal urban and non-coastal urban area whereas high priceis marked as the second major constraint inthecoastal rural andnon-coastal rural aress. The respondents opined that purchase and demand of thefish have not been reduced yet due to these reasons and their fish consumption has only increased fairly despitethehigh prices. But theirregul ar supply as well aspoor accessand other reasons have a good role in consumption pattern of the consumers. This makes themto depend on fish products and other sources for the consumption of fish. The study could easily come to the conclusion that fish has becomeone of theinevitablefood itemamong thepeople

Table 12. Factors constraining the increased fish consumption

Attributes	Coastal Rural		Non Coastal Urban		Non Coastal Rural		Coastal Urban		Total	
	$\begin{aligned} & \ddot{0} \\ & \text { Un } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\tilde{C}}{\check{C}} \\ & \propto \times \end{aligned}$	$\begin{aligned} & \mathscr{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \text {. } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{V}{\check{N}} \\ & \underset{\sim}{n} \end{aligned}$	$$	$\underset{\substack{\text { ¢ } \\ \text { ¢ }}}{\text { ¢ }}$
Irregular supply	54	I	68	I	76	I	61	1	64.75	I
Lack of fresh fish	48	IV	65	II	56	V	59	II	57.00	IV
Wide fluctuations in price	49	III	64	III	58	IV	58	IV	57.25	III
High price	50	11	66	IV	70	11	68	III	63.50	II
Poor access to buying	42	V	55	V	50	VI	51	VI	49.50	VI
Lack of hygiene in purchase sources	39	VI	41	VII	42	VII	50	VII	43.00	VII
Unavailability of preferred fishes	38	VII	48	VI	63	III	53	V	50.50	V
Restricted to social function	29	VIII	38	VIII	37	VIII	32	IX	34.00	VIII
Tradition	26	IX	29	IX	30	IX	23	X	27.00	IX
Lack of awareness	23	X	26	X	18	X	39	VIII	26.50	X

CONCLUSION

Thestudy clearly point outsthat thefish consumption in Kerala issteadily increasing. The consumption analysis indi cates that the average annual per capita fish consumption across the study local es was found to be 27.84 kg ranging from 20.63 in the case or rural non-coastal to 34.83 kg in the case of urban coastal. Theannual per capita consumption in the coastal rural and non-coastal urban was found to be 31.94 and 23.96 kg ,
respectively. The study identified that irrespective of the increased price of fish, the fish consumption rate reached its peak as majority of the consumers consume fish on a daily basis. Thestudy al so point out that main source of purchaseis the retail market followed by fish vendors at door step. The main constraint in the consumption of fish was observed to be thelack of fresh fish, followed by consumption restricted due to high price, widefluctuations in price, irregular supply and lack of hygiene in purchase sources. As the demand-supply gap is widening up the study also identified imports from neighboring states coul d bedonewith proper qual ity assurance check for the imports along with developing appropriate regulatory measure for exports. Amidst of these there exists some structural problems in the fishing industry. The nonavai lability of fish in the domestic fish market will lead to a situation where in the domestic consumers are devoid of fish in themarket at affordableprices. Ensuring theavai lability and affordability of fish is thus highly important and could be augmented without any fail. The local fishermen of the area should have awareness about good handl ing practices in order tofetch qual ity standard and pricefor thefish. Moreover proper guidelines and practices could be adopted for increasing consumption and improving hygiene standards in the fish supply chain.

REFERENCES

Akpinar MG, Dagistan E, Mazlum Y, Gul M, Koc B and Yilmaz Y, 2009. Determining household preferences for fish consumption with conjoint analysis in Turkey. Journal of Animal and Veterinary Advances 8(11): 2215-2222.
Boughanmi H, Al-Musalami J, Al-Oufi H and Zaibet L, 2007. Estimating consumer preferences for valueadded fish products in Oman: A conjoint analysis. Journal of Food Products Marketing 13(2): 47-68.
Garrette HE and Woodworth RS, 1969. Statistics in psychology and education. Vakils, Fifer and Simons Pvt. Ltd., Mumbai, India, 329 pp.
PadillaCP, VillalobosA, Spiller and Henry, 2007. Consumer preference and willingness to pay for an officially certified quality label: Implications for traditional food producers. Agric. Tec. (chile) 67: 300-308.

Ramayah T, Rouibah K, Gopi M and Range GJ, 2009. A decomposed theory of reasoned action to explain Intention to use Internet stock trading among Malaysian investors. Comput. Hum. Behav 25(2): 1222-1230.
ShyamS Salim, 2013. Demand and Supply Paradigms for Fish Food Security in India. Seafood Export Journal 43(5): 34-40.
ShyamS Salim, 2013. Demand pattern and villingnessto payfor high value fishes in India. Journal of the Marine Biological Association of India 55 (2): 48-54.
ShyamS Salim, 2016. Fish consumption pattern in India: Paradigm shifts and Paradox of export trade(Fish consumption pattern in India, exports - Overview). Food and Beverage News, pp. 25-28.
Shyam S Salim, 2020. Demand pattem and willingness to pay for high value fish consumption: Case study from selected coastal cities in Kerala, South India. Indian J ournal of Fisheries 67(3): 135-143.
ShyamS Salim, MonolishaS and Sunil PV, 2020. Fish Consumption: Gauging the determinants of consumption and buying patterns across Kerala markets. J ournal of the Marine Biological Association of India 62(1): 21-28.
ShyamS Salim, AthiraNR, AthiraPR, SafeenaPK, RahmanM Ramees, Femandez Reeja, Remya R and Rosey Xavier Smitha, 2019. Assessing demand drivers in augmenting fish consumption in Ernakulum IndianJ ournal of Economics and Development 7(5): 1-8.
Sohail MS, Daud S (2009). Knowledge sharing in higher education institutions: Perspectives from Malaysia. VINE: J ournal of Information Knowledge Management System 39(2): 125-142.
Vriens M, Looschilder GH, Rosbergen E and Wittink D, 1998. Verbal vs. realistic pictorial representations for including designattributes in conjoint analysis. Journal of Product Innovation Management 15: 445-467.
Wirth FF, Halbrendt CK and Vaughn GF, 1991. Conjoint analysis of the mid-Atlantic food fish market for farm raised hybrid striped bass. Southem J ournal of Agricultural Economics 23: 155-164.
Wright KB, 2005. Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services. Journal of Computer-Mediated Communication 10(3) article 11.

[^0]: Shyam S Salim (*Corresponding author)
 shyam.icar@gmail.com
 1 Socio Economic Evaluation and Technology Transfer Division, ICAR - Central Marine Fisheries Research Institute, Kochi - 682 018, Kerala, India
 2 Department of Political Science, University of Kerala, Trivandrum, Kerala, India

