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Abstract: Globally there has been tremendous progress in space technology 

especially in the field of satellite remote sensing applications during the past 

five decades. Satellite based sensors provide a repetitive and synoptic coverage 

of inaccessible / larger areas which generated a time series database useful in 

identification and mapping of environment and resources. These databases 

form a scientific tool for various stakeholders to device suitable strategies for 

management of coastal and marine resources. This chapter analyses the various 

applications of satellite remote sensing and numerical modelling on 

identification and mapping of mangroves, coral reefs, fishing and molluscan 

grounds in the coastal marine ecosystems with relevant case studies and 

illustrations. The mapping methods for mangroves explains the classification 

protocols, advantages in using different remote sensing techniques and the 

comparison of different mapping techniques. In case of reef mapping, the 

vulnerability mapping of reefs due to extreme events is also discussed. Fish 

movement in a dynamic environment and the mapping of these movements 

with the help of proxy indicators are also detailed. Molluscan mapping is done 

based on the biomass differences during different seasons and their physical 

attributes.  
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13.1 Introduction  
  

Tropical coastal waters of the world are rich in diverse resources such as 

mangroves, coral reefs, fishes and other invertebrates. Proper monitoring and 



 

 

assessment of these resources are important for their management. With the 

advent of technologies in Satellite Remote Sensing (SRS), coastal resource 

managers utilize this technique for resource assessment and mapping in a geo-

spatial platform which form a useful database supporting their decision making. 

The mapping technique required for each resource is different and various 

approaches are available for implementing such techniques. In this chapter, we 

are discussing the various approaches utilized globally for coastal resource 

mapping with the help of some case studies.  

13.1Mapping of mangroves  
  

Mangroves are unique ecotones (Dahdouh-Guebas 2001) occurring along the 

sheltered inter-tidal coastlines, mudflats and riverbanks in association with the 

brackishwater margin between land and sea, and whose biogeographic 

distribution is generally confined to the tropical and subtropical regions. Nearly 

75% of the mangrove density is found in just 15 countries between 5° N & S 

latitude (Giri et al. 2007, Spalding 1997) and only 6.9% are protected under the 

existing protected areas network. They sustain diverse species of flora and 

fauna in large proportion. Their importance is recognizable in various 

ecosystem services specifically in:  

I. Forestry (provision for wildlife reserves, medicinal plants, timber 

products, feed supplement) (Giri et al. 2007),  

II. Fisheries (provision of fishing areas, supporting aquatic food chains, 

aquaculture and as breeding, spawning, hatching and nursing grounds 

for the juveniles of many commercial fish and crustacean species 

(Robertson and Duke 1987, Tong et al. 2004),  

III. Environmental conservation (coastal protection from storm, reduction 

of shoreline and river bank erosion, sediment stabilization, absorption 

of pollutants, store floodwaters, recharge groundwater aquifers, carbon 

storage and exports), and  

IV. Human inhabitation, recreational opportunities and aesthetics (Barbier 

and Sathiratai 2004, Saenger et al. 1983, Giri et al. 2007).  

Historically, the extent of riparian vegetation has been mapped using 

simple aerial photograph interpretation (API) and field observation. These 

conventional techniques of mapping are time-consuming, costlier, subjective, 

and difficult to repeat on account of inaccessibility to muddy terrain and 

prevalence of a number of tidal creeks and channels in these ecosystems. These 

disadvantages limited the further applications of the traditional techniques to 



 

 

large catchments where continuous monitoring of riparian vegetation is 

required (Yang 2007).   

  

13.2.1  Remote sensing of Mangroves  
  

The remote sensing (RS) facilities provide timely and cost-effective data over 

inaccessible areas (Everitt et al. 1991, Mumby et al. 1999), complementing 

field surveys, which are of higher information content, especially in the case of 

mangroves (Giri et al. 2007). A combination of RS and ground-truth 

measurements, analysed within a geographic information system (GIS) 

platform, is found to be highly advantageous (Dahdouh-Guebas et al. 2005a, b, 

Satyanarayana 2007). The remote sensed data adopted for mangrove 

classification can be grouped mainly into Satellite (optical), aerial- based and 

photographic images (Dahdouh-Guebas et al. 2000).   

  

13.2.1.1 Satellite Remote Sensing of Mangroves  

  

Satellite Remote Sensing (SRS) of mangroves are economic, less 

timeconsuming, provides better coverage, repeatability, provide information on 

surrounding land uses and their temporal changes so that the wetlands can be 

monitored seasonally or yearly. Globally, SRS is a reliable tool for the 

estimation of mangroves (Dahdouh-Guebas et al. 2000; Kovacs et al. 2005, 

Dahdouh-Guebas et al. 2000). The quality of the satellite products is generally 

dependent on the weather conditions and nature of the vegetation examined 

(Blasco et al. 2001). SRS applications in mangrove management are used for 

three purposes: resource inventory particularly species identification (Vaiphasa 

et al. 2005) or leaf-area index estimation, change detection, selection and 

inventory of aquaculture sites (Green et al. 2000). Recently SRS evolved as the 

best technique for mangrove assessment and mapping, comparison of two 

appropriate techniques for accurate mapping of mangroves and to study the 

effects of shrimp farming to mangrove environments.  

  

13.2.1.1 Mangrove Distribution vis-à-vis SRS:  

  

Characterization of any vegetation pattern includes measurement of variations 

through time as well as across space (John 2011). Meza Diaz and Blackburn 

2003 described the spectral-response signal variations of the mangrove canopy 



 

 

as a function of a series of optical (leaf area index, background reflectance, leaf 

inclination), biophysical (internal leaf structure, the number of cell layers, 

intercell spaces, air–water interfaces, cell size), chemical (water, cellulose, 

lignin, protein content, key leaf pigments chlorophyll a and b, carotenoids) and 

environmental (distance from the sea or the estuary bank, frequency and 

duration of tidal inundation, salinity, composition of soil) properties. Periodic 

climatic changes, species composition, distribution pattern, growth form, 

density, and stand height in mangroves are also responsible for the spectral 

response.   

13.2.1.1 Change Detection in Mangrove Areas using SRS:  

  

Tong et al. 2004 suggested that the physical and structural attributes of 

mangrove trees can be used for delineating the mangrove forests from 

mangrove mixed with shrimp farms utilizing Système Pour l’Observation de la 

Terre  (SPOT) data. Attempts were made to estimate biochemical and 

biophysical parameters of wetland vegetation using satellite data (Artigas and 

Yang 2006, Filippi and Jensen 2006). Wang et al. 2004 inferred that greater 

spectral distinction between species found during periodic climatic changes 

may be considered as an attribute for mangrove species wise identification 

using remote sensing.   

  

13.2.1 Aerial Photography of Mangroves  
  

When the high spatial resolution of aerial photography is useful for 

discriminating substrates along narrow ecotones (Manson et al. 2001), their 

expensive data acquisition protocol/methods particularly for large-scale 

coverage, intensive pre and post-processing methods and the lack of global 

appeal (Lucas et al. 2002), compared to other sensors may be emphasized as 

their disadvantages. But, when the archives of aerial photographs which already 

exist for many coastal locations become the only source of data for assessing 

long-term, historical distribution changes of such study areas (Dahdouh-Guebas 

et al. 2000, Dahdouh-Guebas et al. 2004a,b), these data become invaluable.  

Kanniah et al. 2007 remarked that accurate discrimination among 

mangrove species was possible using aerial photographs (Kairo et al. 2002) or 

images from airborne sensors such as CASI (Compact Airborne Spectrographic 

Imager) (Green et al. 1998, Wang et al. 2004), MASTER (MODIS/ASTER 



 

 

Airborne Simulator) and AVIRIS (Airborne Visible/Infra-Red Imaging 

Spectrometer) (Vaiphasa and Ongsomwang 2004). Chavaud et al. 1998 mapped 

mangrove communities using colour aerial photography, multispectral satellite 

ASTER, and airborne hyperspectral AVIRIS data to find that aerial 

photography is the best mapping technique.   

13.2.3 Different  techniques  employed  in  Satellite 

based Mangrove mapping  

13.2.3.1  Multispectral Sensor Based Mangrove Mapping  

  

Multi-spectral data acquisition sources such as Landsat Thematic Mapper (TM) 

and the SPOT satellite were used for coastal studies in countries such as Kenya 

(Brakel 1984), Bangladesh (Borel 1985), Ecuador (Terchunian et al. 1986), 

Thailand (Silapathong and Blasco 1992), Australia (Dale et al. 1996) and the 

Bay of Bengal (Blasco et al. 1994). SPOT is used for better discrimination and 

mapping of mangroves in most tropical and subtropical countries (Spalding 

1997, Green et al. 1998, Gao 1999, Tong et al. 2004) TM and SPOT data have 

been used for studying water turbidity and depth in marshes, as well as the 

seasonal dynamics of inundation and turbidity (Bustamante et al. 2009), apart 

from land-cover mapping and changes in large coastal sheds (Klemas 2011a). 

Optical-based multispectral data, specifically Landsat TM images are the most 

common and important data source for wetland classification and monitoring 

(Harvey and Hill 2001, Phillips et al. 2005, Baker et al. 2006, Wright and 

Gallant 2007). Ahern and Teckie 1987 preferred Landsat TM over Landsat 

Multispectral Scanner (MSS) in detecting forest mortality that occurred due to 

forest fires and insect attack.   

One of the major works in India on mapping of mangroves using 

Landsat MSS data and IRS-1A LSS data was carried out by Venkataratnam and 

Thammappa 1993 along the coastlines of Andhra Pradesh to monitor the areas 

of prawn farming. The commercial high spatial resolution (<5 m) multispectral 

satellite sensors such as IKONOS and QuickBird were used for discriminating  

mangrove species with an accuracy of 75.3% and 72.2%  respectively to 

provide a baseline database for their future monitoring and management 

(Neukermans et al. 2008,Wang et al. 2004). Species specific distribution maps 

and species delineation maps along coast lines have been attempted to 

successful results using MSS by Green et al. 1998, Kovacs et al. 2001 and 



 

 

Simard et al. 2006. Gao 1998 used a combination of aerial photographs at a 

nominal scale of 1:12500 and SPOT satellite image to identify the temperate 

mangroves.   

13.2.3.1 Hyperspectral Sensor and Radar Based Mapping of Mangroves  

Relatively low species diversity in mangrove vegetation makes them an ideal 

focus for development and calibration of new methodologies in SRS based 

classification using AVHRR (Advanced Very High Resolution Radiometer), 

MODIS (Moderate Resolution Imaging spectro radiometer) and WiFS 

(WideField Sensor). Hyperspectral remote sensing is also a wonderful tool used 

in detecting and mapping coastal vegetation species and in discriminating 

between multiple species (Vaiphasa et al. 2005). High-resolution imagery, 

which contain hundreds of narrow spectral bands located in the visible, NIR, 

mid-IR, and sometimes thermal portions of the electromagnetic (EM) spectrum 

(Jensen et al. 2007), is more sensitive to within-class spectral variance which 

adds to its efficiency in SRS (Ozesmi and Bauer 2002).  

Hyperspectral imaging systems are available for airborne as well as 

satellite-borne applications, thereby assisting in species discrimination on a 

global scale (Pengra et al. 2007).    

Table 13. 1 Comparison of the prominent hyperspectral sensors used in 

mangrove mapping.  

Hyperspectral 

sensors used  
Advantages in using the 

technology  
References  

Radar  All-weather capabilities, 

sensitivity to changes in canopy 

structure and density,  increased 

spatial resolution,  time series data 

source  

Baghdadi et al.  
2001, Novo et al.  
2002  

LiDAR   Measure vegetation structure, 

canopy  height, biophysical 

attributes over large areas  and 

mangrove colonization rates   

Lefsky et al.  
2005, 2002  

  

AVHRR , MODIS 

and WiFS  
Sensor-derived phenology 

studies  
Jaganathan et al. 

2010  

  

Based on the above mapping technologies, a lot of application studies occurred 

at global level. Some of the research works using hyperspectral technology are 

summarized in Table 13.2  

  

Table 13.2 Case studies on hyperspectral sensor based mapping of mangroves.  

 Hyperspectral  sensor   Study area  Ecological  Cited  



 

 

 technique  significance  
Hyperion   Australia  8-class species 

communities  
Demuro 

and 
Chisholm  
2003  

AIRSAR    Integration of 

ecological data to 

upgrade mapping 

accuracy  

Vaiphasa 

et al. 2005 

Lucas et 

al. 2002  

Radar   Ganges 

delta of  
Bangladesh  

Delineation of  

flooding 

boundaries within  

Mangrove stands  

Wang and  
Imhoff  
1993  

Phased array L-band  
synthetic aperture radar  
(PALSAR)  

Guinea,  
West Africa  

Object-based 

image analysis 

(OBIA) 

approach in 

classifying and 

mapping   

Fransisco 

et al. 2013  

AVIRIS sensor  

  

Everglade, 

Florida  
Mapping to  
species level,  

Delineation of the 

invasive lather 

leaf  

Hirano et 

al. 2003  

CASI and AIRSAR  Daintree 

estuary,  

Australia  

Mangrove 

zonation and 

green-biomass 

with accuracy 

of 71%  

Alex et al. 

2003  

LIDAR  Hunter region, 

Australia  
Delineation of  

invasive 

Phragmites from 

low marsh 

plants  

Yang and  
Artigas,  
2010  

Lidar and IKONOS  Greater 

everglades  
Estimation of the 

green biomass of 

mangrove 

vegetation  

Chadwick 

2011  

INSAR and LIDAR  Columbia  Measurement of  
the 3-D vegetation 

structure and 

biomass   

Simrad  et 

al. 2008  

MSS and LIDAR  Savanna 

river swamp 

forest  

Detection of 

changes in 

vegetation 

cover  

Jensen et 

al.1987  

 
  

Though useful in many aspects, the hyperspectral remote sensing is 

disadvantageous in many ways. The high-dimensional characteristics of 

hyperspectral data causes low output classification accuracy. The high 



 

 

sensitivity to within-class spectral variance make separation of spectrally mixed 

land-cover types more difficult (Jensen et al. 2007). Apart from complicated 

image-processing procedures, low signal-to-noise ratios and voluminous data 

necessitating the use of specific software packages added to their 

disadvantages.  The negativities will be added up more in tropical climatic 

conditions on account of a range of additional challenges related to prolonged 

periods of cloud cover, combined with low accessibility, high temperatures and 

humidity during ground validation campaigns.   

Reviews of works from India is concentrated on the mangroves 

situated at Pichavaram & Muthupet estuary (Selvam et al. 2003), Ennore creek 

(Chaves and Lakshumanan 2008), Curtorim  village in south Goa district 

(Pawar and Kolapkar, 2013), Indian coast as a whole (Nayar and bahuguna, 

2001) etc. The majority of the studies revolved around change detection 

analysis (Ajithkumar 1998, Selvam et al. 2003, Chaves and Lakshumanan 

2008) where in Landsat images and IRS images complemented with ground 

truthing were processed using supervised classification to discriminate the 

mangrove age group wise for strategic analysis from a conservation point of 

view.   

  

13.2.3 Scientific protocols followed for mapping mangroves  

The imagery obtained from various data acquisition sources needs to be 

classified based on the user requirement. Various classification methods have 

been used to distinctly separate the images to identify various species of 

mangroves (Fig.13.1). Green et al. 1997 used the classification methods such as 

visual interpretation, (after conversion to a vegetation index), pixel-based, and 

principal component analysis [PCA]) to identify mangrove habitat categories.  

  
Fig. 13.1 Various classification protocols followed for mangrove mapping  

  

13.2.4 Pixel-based techniques   

Kanniah et al. 2007 in an attempt to classify mangroves of Malaysia using 

perpixel classification approaches, identified that Maximum Likelihood (ML) 

classifier is the most robust per-pixel classification method in accurate 

mangrove mapping. Saito et al. 2003, attempted to test and select the best 

methodological approach to discriminate and map the mangroves and related 



 

 

coastal ecosystems in the United Arab Emirates (UAE) by comparing three 

classifiers, namely Minimum Distance (MD) classifier, Maximum Likelihood 

(ML) classifier and Mahalanobis (MHB) classifier of which the latter gave 

satisfactory global results for coastal water content in the study area.   

Sub-pixel classification (linear mixture modelling): Linear mixture 

modelling is an image classification technique to map the relative abundance of 

surface materials present within a pixel. The proportion maps of forest species 

derived from the LMM (linear mixture modelling) of remotely sensed data 

can be utilized for forest management such as harvesting plan and ecological 

conservation when such images are combined with age or stand maps of forest 

species (Kanniah et al. 2007).  

13.2.4.1 Object based classification  

Object-based classification methods incorporate spatial neighbourhood 

properties, by segmenting/partitioning the image into a series of closed objects 

which coincide with the actual spatial pattern and then proceed to classify the 

image. Fransisco et al. 2013 used object based classification to segregate 

different mangrove species in Guinea coast.  

13.2.4.2 Fuzzy classification  

Mangrove mapping can also be realized through fuzzy classification of the 

contrast-stretched multispectral image. This fuzzy method takes into account 

the affinity of a pixel and its neighbours to several image classes (Melagni et al.  

2001).   

13.2.4.3 ISODATA classification  

An unsupervised Iterative Self-organizing Data Analysis (ISODATA) 

classification was used to discriminate mangroves from other types of 

vegetation to each Landsat image subset by Green et al. 1998. A case study is 

explained in Fig 13.2. 

  
Fig 13.2 ISODATA Unsupervised classification of Puthuvypin mangrove 

patches. Landsat 8 is used here with OLI sensor multi spectral (11 Bands 

including PAN) and medium scale resolution (30 m; PAN 15 m) remote 

sensing data during 13 Jan 2015 and Survey of India Toposheet No.58 B8 

scale1:50,000 data have been used in this study and plotting was done with 

ENVI and ArcGIS software.  

  



 

 

13.2.4.4 Neural network classifications  

Artificial Neural Networks (ANN) has been used in SRS applications to 

classify images, extract biophysical characteristics and incorporate multisource 

data (Benediktsson et al. 1993). The ability to incorporate non-normally 

distributed numerical and categorical GIS data and image spatial information, 

the considerable ease in using multidimensional datasets, and the efficacy in 

capturing some of the inherent nonlinearity in such data (Gopal et al. 1999) 

make the method more advantageous in classification. ANN was used to 

discriminate conifer stand age in southern Brazil and to measure 

photosynthetically active radiation (PAR) (Weiss and Baret 1999). They found 

that ANNs predicted biophysical variables more accurately than NDVI-based 

methods. Gopal et al. 1999 used ANNs and remote sensing to detect conifer 

forest change after a long drought in the Lake Tahoe Basin in California. Other 

ANN land cover mapping studies exhibited overall accuracy rates from 85 to 

95% (Benediktsson et al. 1993, Yoshida and Omatu 1994).   

  

  

Fig 13.3 Maximum Likelihood classification of Puthuvypin mangrove patches. In 

this study we modified the low resolution multi-spectral bands to high resolution 

(15 m) bands using PCA pan-sharping method. High resolution Landsat data are 

geo-rectified using SOI toposheet and ground control points. Landsat 8 data having 

spectral radiance is converted to reflection by using the formula:  

after radiometric correction and finally sub setting the mangroves.  

  
Fig 13.4 Support vector machine supervised classification of Puthuvypin mangrove 

patches in Kerala is cited as an example.   

In the case study presented above for Puthuvypin mangroves at Kochi in India, 

unsupervised and supervised classification were applied to mangrove patches. 

ISODATA unsupervised classification method used 60 classes to evaluate the 

mangrove patches. The features such as dense and sparse mangroves, associates, 

mud flats, buildings, water classes and unclassified classes present in the 

mangroves patches were estimated (7) and classified. The supervised maximum 

likelihood and support vector machine (SVM) classification methods were 

resorted to understand the performance in each class and maximum number of 

polygons were created using the supervised classification for good result. Both 

classifications estimated the different features and unclassified classes. All the 

three classifications resulted in some misclassification for buildings nearby coastal 



 

 

areas and mud flat because mangrove patches are in wetland area where there are 

some buildings and the pixel size available to differentiate them is only 15 m in 

resolution. Buildings and mud classes intersect at different pixels so that the 

polygon resulted in misclassification of these two classes. The SVM classification 

method resulted in misclassification of sparse mangroves into mud flats and 

buildings. The Maximum likelihood classification gave the best results for 

mangrove patches in the study area differentiating all the features into respective 

classes.  

13.2.4.5 Indices  

  

Vegetation indices are transformations of original multispectral data into a 

single channel that represents greenness and/or biomass. The ideal vegetation 

index is highly sensitive to vegetation dynamics, insensitive to soil background 

changes, and only slightly influenced by atmospheric path radiance 

(Richardson and Everitt, 1992). Most of the vegetation indices take advantage 

of the relationship between the red and near-infrared reflectance from healthy 

green vegetation (Bruce and Jensen 1998) to compute a greenness measure 

where higher values typically represent greater biomass. Though many 

vegetation indices such as near-IR to red ratio (Tucker 1979), NDVI (Rouse et 

al. 1974), perpendicular vegetation index (PVI), difference vegetation index 

(DVI), soil adjusted vegetation index (SAVI), transformed soil adjusted 

vegetation index (TSAVI) and Greenness vegetation index are used, the most 

common is NDVI.   

The NDVI whose value varies between -1 and 1 stands as proxy for the 

above-ground biomass, primary productivity and vegetation health and in turn 

can reflect their health or photosynthetic activity. (Kovacs et al. 2005, Jensen et 

al. 1991). In remote sensing analysis, vegetation indices are often used to 

highlight wetlands. Many of these indices are highly correlated with one 

another, i.e. redundant in information content (Perry and Lautenschlager 1984).   

Relationship between biophysical variables to indices:  

Several research works exploring the relationship between various 

vegetative indices and biophysical variables are summarised in Table 13.3  

Table 13.3 Various vegetation indices used for classifying mangroves 

 
Vegetation  Indices  Significance/relationship  References used in 

classifying mangroves   

 



 

 

In situ biophysical 

properties (LAI) and 

pixel-based   

Positively correlated  Green et al. 1998,  

Fransisco et al. 2013  

LAI estimated with  

Landsat Thematic 

Mapper (TM) data 

and NDVI  

Positively correlated  Liu and Huete 1995, 

Lymburner et al.  

2000  

Simple NIR/Red ratio 

and LAI and TM data  

Positively correlated 

Changes in canopy LAI 

can be detected using TM 

data.  

Herwitz et al. 1990  

LAI and NDVI  Positively correlated  Green et al. 1997  

Simple NIR/Red ratio 

and NDVI and LAI  

Positively correlated  Chen and Cihlar 1996  

Stepwise regression 

combining six TM  

bands    

Accurate method for green 

vegetation mapping  

Lawrence and Ripple 

1998  

SPOT and four   Positively correlated   Jensen et al. 1991  

vegetation indices 

namely simple ratio, 

NDVI, perpendicular 

vegetation index, and 

the greenness 

vegetation index  

 
  

Due to saturation at high levels of vegetation biomass and chlorophyll 

concentration (Gitelson and Kaufman 1998, Huete et al. 2002) and deviation in 

phenology curves with changing atmospheric conditions (Tanre et al. 1992), 

extracting reliable phenological information using vegetative indices is difficult 

(Weiss and Baret 1999). A better method was suggested by Jeganathan et al. 2010 

wherein MERIS Terrestrial Chlorophyll Index (MTCI), which is a function of 

chlorophyll concentration and leaf area index was estimated, and was directly 

related to canopy chlorophyll content.   

13.3 Monitoring and Mapping of Reefs Using SRS Techniques  

The SRS data of SPOT, Landsat, IRS, LISS II, and LISS III are used for 

coral reef mapping also. Using the spectral data from the satellites, the coral reefs 

were identified and mapped as described in the case of mangroves described 

above. Individual/group of corals and reefs were identified using Landsat MSS 

data. There is an interesting case study done in the Great Barrier Reef. The reef 

was classified using this technique and analysed in micro-brain image processing 



 

 

system (Bastin 1988). Daniel et al (1986) mapped the shallow water in the Great 

Barrier Reef region using SRS data and illustrated it as a potential tool for coral 

reef mapping. There is a spectral difference between the living and nonliving 

corals which may appear in turquoise blue and greenish blue tone respectively on 

SPOT FCC of band combination 2, 3 & 4. In LISS III, the band combination of 3, 

2, & 1 are found to be useful. More details of reef categories such as fringing, 

patch and reef spread could be mapped more accurately using IRS-LISS III data by 

visual analysis supported by proper ground truthing.  

The Indian satellites IRS – 1C, 1D, P4 and P6 with their improved spatial 

resolution (PAN – 5.8 m, LISS III – 23.6 m, LISS IV – 5.8 m, WiFS – 188 m and 

AWiFS – 56 m), extended spectral range (inclusion of middle infrared band in 

LISS – III) and increased repeatability (5 days for WiFS data) have opened up new 

applications in coastal zone. The information available from merged PAN and 

LISS III, IV data about coral reef zonation, especially for atolls, patch reef and 

coral pinnacles, is valuable for coral reef conservation plans. Presently, the reef 

validation experiments using radiometers are happening at various locations to 

develop a database on spectral signatures produced by different reef groups, dead 

reefs and sand in different optical conditions and to develop sensors for 

hyperspectral satellites which can support reef mapping at an accurate scale (Fig 

13.5).  

   

Fig. 13.5 Radiometric measurements underwater for developing spectral 

signatures of corals and reef components 

  

   

13.3.1   Mapping of Reef Vulnerability due to Extreme Events   

Corals are known to be very sensitive to temperature rise. The large scale mortality 

and bleaching could be therefore attributed to increase in seawater temperature 

(Krishnan et al. 2011). The reefs in some islands of Andaman and Nicobar in India 

suffered severe damage following a tropical Storm in the Bay of Bengal off 

Myanmar coast during 13–17 March 2011(Krishnan et al. 2012). Surveys were 



 

 

conducted at eight sites in Andaman, of which five were located in the Ritchie’s 

Archipelago where maximum wind speed of 11 ms
-1

 was observed; and three 

around Port Blair which lay on the leeward side of the storm and were not exposed 

to wind speed of more than 9 ms
-1

. Corals in the shallow inshore reefs were broken 

and dislodged by the thrust of the waves. Significant damage in the deeper regions 

and offshore reefs were caused by the settlement of debris and sand brought down 

from the shallower regions. The fragile branching corals (Acropora sp.) were 

reduced to rubbles and the larger boulder corals (Porites sp.) were toppled over or 

scarred by falling debris. The reefs on the windward side and directly in the path of 

the storm winds were the worst affected. The investigation exposed the vulnerability 

of the reefs in Andaman to the oceanographic features which generally remain 

unnoticed unless the damage is caused to the coastal habitats.  

Fast currents generated by eddies, tidal and ocean currents and gyres, quite 

close to coral islands are considered as physical factors that induce local water 

movements, flush toxins and remove thermal stratification in coral reef locations 

and hence are assumed as high reliability factors of resistance to coral bleaching. 

Physical damage to the coral reef structures due to eddies is not yet documented. 

Mesoscale eddies are quite common in the seas surrounding the Andaman and 

Nicobar Islands, however their presence in such close proximity to the coast as 

observed in this event has not yet been recorded. Eddies occurring in coral reef 

areas are known to cause thermal stress related bleaching due to the upwelling 

associated with the eddy circulation. Models evaluating the hydrographic effects of 

eddy on island waters have explained the dispersal of larvae due to high-velocity 

shear currents generated by the approaching eddy. Cross-frontal advection has 

been documented for cold core and warm core eddies.  

   

13.4 Mapping of Fishing Grounds  

  

Primarily, fish stock in a region is controlled by the ‘spawning successes’, 

‘growth’ and ‘recruitment’. At every stage in these controlling factors there is a 

withdrawal of fish biomass in the form of natural and fishing mortality. The 



 

 

Cushing's triangle on fish migration explains various life cycle activities from 

recruitment to fishing as governed by physical oceanographic processes.  (Fig 

13.6). But in addition to this, there are various environmental factors affecting the 

fish stock too. Therefore, fishery managers tend to practice an ‘Ecosystem 

Approach to Fisheries’ (EAF). Numerical modelling and SRS has got numerous 

applications which can support EAF type of fisheries management (Grinson et al. 

2011b, 2012) Spatially, the EAF approach indicates mapping of spawning, nursery 

and fishing grounds which may be different in space and time. Identification and 

mapping of these grounds or the resource is very important in managing the 

fishery.  

   
Fig. 13.6 The Cushing's triangle on fish migration.  

 

Fig. 13.7 Schematic diagram explaining the eddy process and its linkage to fish 

ground mapping.  

 

13.4.1  Identifying  and  Mapping  Fish  Habitats Using 

Oceanographic Processes  

Oceanographic processes such as fronts, eddies, meanders, rings and primary 

productivity linked to them are keys to the identification of Potential Fishing Zones 

(PFZ). Altimeter satellite remote sensing data could identify mesoscale features 

(Eddies). Such data products can supplement the SST-Ocean colour based PFZ and 

provide information in cloudy conditions too. Near Real Time and Delayed time 

maps of Mean Sea Level Anomaly (NRT & DT-MSLA) from  the Archiving 

Validation and Interpretation of Satellite Oceanography (AVISO) (http://www. 

aviso.oceanobs.com/) can be used for the purpose. The merged SLA data from 

multiple satellite products are produced by Salto/Duacs and distributed by AVISO. 

SLA data are provided with spatial resolution of 1/3° latitude/longitude. Updated 

series is used for the study as this data keeps adding measurements up to four 

different satellites whenever a new satellite becomes available.   



 

 

             For the satellite-derived SST, MODIS Global Level 3 Mapped Thermal IR 

daytime SST from Aqua and Terra sensors, available at the Physical Oceanography 

Distributed Active Archive Centre (PODAAC) site of NASA (http://podaac.jpl. 

nasa.gov) can be used. For chlorophyll, MODIS Global Level 3 Standard Mapped 

Image (SMI) eight day composite maps from Ocean Colour Web of GSFC-NASA 

(http://oceancolor.gsfc.nasa.gov/ ) can be used (Fig 13.7). Both the maps have 4 km 

spatial resolution, sufficient enough to recognize changes in the study domain. The 

above data overlaid with SLA maps examined the productivity linked to eddies for a 

case study in Andaman Sea (Anand et al. 2014). A sample output mapping the eddy 

zones and fish availability as part of the case study is provided in the Fig. 13.8. 

Productive habitats and their quality can also be assessed using the satellite data 

based oceanographic processes for providing improved potential fishing zone (PFZ) 

advisories (Grinson 2011a).   

 

  

  
Fig. 13.8 A schematic diagram indicating the relevance of mesoscale eddies for 

providing improved advisories in fishery.  

  

  

 Fig. 13.9 Science behind location of spawning, nursery and fishing ground.  

 

13.4.2 Role of hydrodynamics in assessing fishing ground  

Knowledge of local hydrodynamics is a pre-requisite to modelling coastal 

processes, given that physical drivers such as tides and currents control them. 

There is a major role of diffusion and related physical processes in dispersal and 

recruitment of marine populations. Tidal flows can move larvae passively in peak 

tidal velocities. Physical processes influence the distribution of larval fish on a 

variety of scales, ranging from few meters to thousands of kilometers. The basic 

idea in fish larval transport studies is to characterize the passive movement of 

larvae during the planktonic larval duration (PLD) phase of the species studied. 

http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/


 

 

During the pelagic larval phase, the larvae may be dispersed or retained in passive 

response to physical forcing. It is a phase that larvae are considered as “poor 

swimmers” because the hydrodynamic (HD) forcing on them exceeds their 

swimming ability.  

Biological processes such as fish larval transport can be modelled based on 

a clear understanding of the physics of a water body (Grinson 2014). There are few 

larval transport studies in the coastal waters in particular regions. A study 

combining observational data with a two-dimensional numerical model product 

had been carried out to determine the fate of fish eggs released in a semi enclosed 

basin (Grinson et al. 2011b). Fish eggs were treated as passive particles in the 

model, and were released from probable spawning sites identified during 

exploratory surveys (Fig 13.9).  

Numerical modelling of fish egg dispersion at the Patos Lagoon estuary in 

Brazil was carried out by Martines and Toan. 2007. There are various HD models 

to provide the spatial and temporal current patterns. Digitized bathymetry maps 

were used for defining the study domain. Inputs such as tide and wind are given in 

the model as the major physical forces driving the current. Simulation will produce 

the HD variables as output at every grid point for the time interval required. The 

currents generated in these models can be validated using observed data at certain 

grid points to ascertain the model accuracy.   

This HD input, along with the physical forcings, is applied to larval 

transport models to deduce the dispersion pattern of larvae. The role of currents in 

geological structures such as mounts in an open area such as Mangalore coast is 

explored to see the role of fish aggregation creating fishing and nursery 

grounds.Numerical and particle transport models was used for generating 

hydrodynamics and further for identifying areas of fish aggregation. Validations of 

the models were done with in situ observations. Likelihood retention areas of 

larval aggregations indicated formation of nursery grounds (Fig 13.10).  

  
Fig 13.10 Mangalore fishing grounds mapped with the help of HD and fish larval 

transport models. The red colour indicates the aggregation of fishes in the fishing 



 

 

grounds, on release from spawning grounds at Mulki and Netravathi, after 

completion of their larval duration phase  

  

13.5  Remote Sensing of Molluscan Settling Grounds  

In the past, there were numerous studies based on observational data on species 

diversity pattern in benthic environment. Apart from their spatial complexity and 

extent, their burrowing mode of life and the associated difficulty in species level 

sampling were the major constraints in inventorising macro-faunal species. Despite 

their ubiquity, tremendous ecological and economic importance, very little is 

known about macro-faunal diversity relationships of these ecological engineers. 

The use of remote sensing and statistical analysis helped in identifying the 

relationships between various benthic macro-faunal groups on a spatio-temporal 

basis. Macro-faunal invertebrates are known as crucial barometer of the ecological 

values of coastal regions, since their habitat is strongly influenced by the benthic 

environment (Lee and Park 1998, Yap et al. 2003). Identification of changes in the 

macro benthos distribution is an important task for the conservation or 

rehabilitation of the economical and ecological properties of the tidal flats.    

  

13.5.1 Remote Sensing of Molluscs  

The seafloor and benthic habitats of molluscs have been mapped during the last 30 

years using hydro-acoustic systems such as single-beam echo-sounder, sidescan 

sonar and multi-beam echo-sounder etc (Bartholomä, 2006). The pure depth 

information of the acoustic return signal of these systems along with backscatter 

information and waveform were used for acoustic seabed classification (Markert et 

al. 2013) as these signals are influenced by the benthic fauna such as blue mussel 

and oyster beds, shell debris etc.   

Though acoustic techniques are considered as an efficient, low cost, easily 

repeatable remote sensing tool for mapping and monitoring of the seafloor over 

large areas, it is not efficient in monitoring the biological characteristics of the 

studied biotope. Since this section of the chapter focuses around the use of satellite 



 

 

remote sensing of molluscs, the use of acoustic remote sensing is not discussed in 

detail.  

GIS has been emphasized to be made a part of the ecosystem-based 

approach to aquaculture (Aguilar-Manjarrez et al. 2010). Chlorophyll-a  is a 

descriptor of the phytoplankton biomass which functions as a trophic resource 

explaining the variations in bivalve growth in most of the SRS based studies 

(Rosland et al. 2009).  

Key temporal hyperspectral characteristics of oyster reefs were identified 

using spectral analysis techniques which are repeatable and less subject to human 

inconsistencies. High resolution LiDAR (Light Detection And Ranging) data have 

been used for identifying shellfish habitat by taking into account the ability to 

combine or relate the distribution of different oyster data sets such as oyster 

densities and reef bed quality to other types of remotely sensed data developed for 

phytoplankton blooms and sediment loads in the water (Steven 2006).   

It is well known that hyperspectral SRS can acquire imagery at increased 

spectral resolution giving accurate mapping. Bolte (2011) prepared oyster habitat 

maps of Wolf Bay after habitat suitability analysis. Salinity, pH, temperature, 

dissolved oxygen, water depths and suspended sediments were used as variables to 

perform habitat suitability analysis. The study in turn emphasized that the 

difference in these variables’ influence on the habitat classifications reflects the 

sensitivity of the variables themselves to climate change.  

Thematic mapping, employing data from a variety of remote sensors 

coupled with decision support through GIS spatial analysis, provides more rigour 

and insight in aquaculture planning of molluscs. Using biophysical (SST, turbidity, 

chlorophyll and bathymetry) and logistic (distance to wharves, distance from river 

mouths) data obtained from satellite images.  Radiarta and Saitoh. 2008 undertook 

constraint mapping of scallop culture areas in Funka Bay, to quantify site selection.  

Thomas et al. 2011 observed that a method coupling dynamic energy 

budget approach with environmental data extracted from satellite images (i.e. 

chlorophyll-a concentration and temperature) is advantageous over traditional 

http://www.researchgate.net/researcher/21717192_I_Nyoman_Radiarta


 

 

measurements for mapping molluscs as they are inexpensive, spatially extensive, 

automatically repeated in time and validated.   

 Radiarta and Saitoh. 2008, attempted to correlate scallop fisheries and 

aquaculture production to the spring bloom and its coincidence with departure of 

ice and wind stress along the Hokkaido coast. For the purpose, ice concentrations 

were obtained via passive microwave data and chlorophyll with SeaWiFS. 

Although inter-annual variations in these interactions were observed, their 

relationship to scallop production has not yet been examined. IOCCG (2009) 

examined temporal variation in chlorophyll, turbidity, and temperature in Funka 

Bay, Japan to explain seasonal trends in the spring bloom and relate them to 

scallop production. Nath et al. 2000 used shellfish module to indicate site 

capability indices using 14 biophysical variables with which the site suitable for 

the aquaculture of pacific oyster is mapped. Satellite data has been used in bivalve 

condition index studies, where in the condition indices data sets were correlated 

with  remote sensed datasets such as temperature, chlorophyll and particulate 

organic carbon time series can be obtained from Goddard Earth Sciences Data and 

Information Services Center (GES DISC) from leased out land and wild.  

Using a wide range of remotely-sensed data from Landsat, MODIS, 

MERIS, and AVHRR marine culture areas in Sanggou Bay (Yellow Sea) and 

Huangdun Bay (south of Shanghai) were characterized, by examining the 

distribution of chlorophyll and turbidity for the regions offshore of the bays. The 

selection of suitable sites for molluscan farming based on GIS and remote sensing 

as in prawn and fish farming would enhance the  baseline information on the 

physico-chemical and topographic conditions as well as existing land use patterns, 

marketing channels etc.   

Satellite data were used to test model predictions against measured mussel 

growth in cultivated areas and later on, the mussel growth model was applied to all 

the pixels to assess site potential at a wider scale. This study provided the first 

example of a cultured shellfish growth model coupled to oceancolour input 

(IOCCG 2009). Choi et al. 2011 used remote sensing techniques to examine the 

http://www.researchgate.net/researcher/21717192_I_Nyoman_Radiarta


 

 

variables that influence the spatial distribution of macro-benthos in a tidal flat. 

Fulton et al. 2010 sought to predict the location of a mussel habitat by establishing 

correlations between mussel counts and hydraulics, using a GIS-based numerical 

model. The spatial relationships between species occurrence and species- related 

factors were derived via weights-of-evidence model to produce a species habitat 

potential map for the study area.  

  

13.5.2 Case Study: Mapping of Clam Beds in Vembanad Lake Using 

GIS, SRS and in situ Data  

 

Spatio temporal distribution of shellfish population and their habitats were carried 

out using SRS and GIS. The study was conducted at Vembanad Lake; the largest 

humid tropical wetland ecosystem of the southwest coast of India, famous for its live 

clam resources and sub-fossil deposits. Sampling was conducted during pre and post 

monsoon to see the variability of biomass during both the seasons. Ten and twenty 

one stations were chosen for sampling during the post and pre monsoon season for 

the study. The protocol followed in the study is explained in Fig: 13.11. Inverse 

Distance Weighted interpolation was used for delineating the most correlated 

physico-chemical factors with the clam biomass in the study area. The spatial shift 

was evident as explained in the Figure 13.12. The biomass variation in relation to the 

physico-chemical variables is explained in the Table 13.4 which indicates the 

difference between two sites during the study season. 

 

 Fig.13.11. Methodology adopted for mapping clam distribution in Vembanad Lake 

 

 

Fig. 13.12 Clam biomass during pre-monsoon and post-monsoon in  

Vembanad Lake in Kochi, India  

 



 

 

Table 13.4 Comparative analysis of physico- chemical parameters of dredged and 

Non dredged area during pre-monsoon period 

Area 

 

Dredged Non dredged 

Temperature (
o 
C) 

 

31.5± .93 31.07 ± 0.56 

Turbidity (cm) 

 

87.94 ± 33.82 146.45 ± 40.80 

Salinity (ppt) 

 

9.31 ± 0.29 2.22 ± 1.33 

pH 

 

8.25 ± 0.42 7.5 ± 0 

Biomass (g/sq.m) 

 

381.78 ± 305.49 1014 ± 1165.63 

Hardness (ppm) 

 

16.16 ± 0.50 10.76  2.78 

 

13.6 Conclusion  

In marine environment, various life forms have acquired the potential for commercial 

application, utility and therefore face threat of excessive exploitation. The diversity is 

being eroded rapidly.  There are various attempts to identify these resources spatially 

and monitor them as a conservation measure. The development of numerical 

modelling and a number of SRS tools will address the conservation challenges such as 

species distributions and levels of species richness in different geo spatial contexts. 

The SRS applications may be used for mapping the resources directly or indirectly for 

estimation of species distributions and richness levels, but of also shedding light on 

the processes underlying them. Aerial photography is best for mapping mangroves 

which extends along a narrow stretch and where accurate discrimination among 

mangrove species is a prerequisite. The MSS based mangrove mapping is 

advantageous for tropical as well as subtropical countries and is useful in studies 

related to seasonal dynamics of inundation, physical parameters of water sheds along 

with mapping of changes in coastal sheds. Hyperspectral resolution imagery, though 

widely accepted a wonderful tool for mapping and discriminating mangrove species, 

their utility becomes limited in tropical climatic conditions. Vulnerability mapping of 

the reefs using SRS is going to help the planners in identifying the stressed reefs and 



 

 

managing them with special care. Fishery and molluscan habitat detection using SRS 

and modelling will potentially benefit the fisher folk to identify their fishing location 

with less scouting. Thus, the chapter calls upon operationalizing the SRS data based 

mapping and monitoring for sustainable management of mangroves, coral reefs, 

molluscs and fishes.  
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FIGURE CAPTIONS  

Fig.13.1Various classification protocols followed for mangrove mapping.  

Fig 13.2 ISODATA Unsupervised classification of Puthuvypin mangrove patches. 

Landsat 8 is used here with OLI sensor multi spectral (11 Bands including 

PAN) and medium scale resolution (30 m; PAN 15 m) remote sensing data 

during 13 Jan 2015 and Survey of India Toposheet No.58 B8 scale1:50,000 

data have been used in this study and plotting was done with ENVI and 

ArcGIS software.  

Fig 13.3 Maximum Likelihood classification of Puthuvypin mangrove patches. In 

this study we modified the low resolution multi-spectral bands to high 

resolution (15 m) bands using PCA pan-sharping method. High resolution 

Landsat data are geo-rectified using SOI toposheet and ground control 

points. Landsat 8 data having spectral radiance is converted to reflection 

by using the formula:  after  

radiometric correction and finally sub setting the mangroves  

Fig13.4 Support vector machine supervised classification of Puthuvypin mangrove 

patches in Kerala is cited as an example.  

Fig. 13.5 Radiometric measurements underwater for developing spectral 

              signatures of corals and reef components  

Fig. 13.6 The Cushing's triangle on fish migration.  

Fig. 13.7 Schematic diagram explaining the eddy process and its linkage to fish 

ground mapping   

Fig. 13.8 A schematic diagram indicating the relevance of mesoscale eddies for 

providing improved advisories in fishery  

Fig. 13.9 Science behind location of spawning, nursery and fishing ground.  

Fig 13.10 Mangalore fishing grounds mapped with the help of HD and fish larval 

transport models. The red colour indicates the aggregation of fishes in the 

fishing grounds, on release from spawning grounds at Mulki and 

Netravathi, after completion of their larval duration phase  

Fig.13.11. Methodology adopted for mapping clam distribution in Vembanad Lake 



 

 

 

Fig. 13.12 Clam biomass during pre-monsoon and post-monsoon in Vembanad Lake 

in Kochi, India  


