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Abstract 
‘Plastisphere’ the term used to denote diverse microbial phyla 

inhabiting the outer surface of plastic debris, is recently emerged as hot 
research topic in environmental investigations. A growing body of research 
is actively involved in exploring holobiome of ‘Plastisphere’ and its 
impacts on three different components of ‘one health’. Further, a group of 
researchers are exploring the possibility of ‘Plastisphere’ as a niche for 
potential hydrocarbon degrading microbes and their functional genes to 
have possible applications in bioremediation research. A large number of 
microscopical and molecular tools are now being applied and developed for 
mining ‘Plastisphere’. Nevertheless, there are many gaps in the current 
knowledge of ‘Plastisphere’, demanding detailed further investigations 
focusing on three way interactions between plastics, microbes, and various 
consumers. The present review is intended to provide a comprehensive 
information on various aspects in ‘Plastisphere’ research.  
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1. Introduction 
‘One Health’, a concept aiming the optimal 

health and well-being of all species, require an 
integrative effort of multiple disciplines (OHITF, 
2008). Three major components requiring integral 
connections in ‘One Health approach’ are humans, 
animals and environment. An interdisciplinary 
collaboration between these three components are 
necessary to have a more holistic understanding and 
more effective actions against various public health 
threats (APHA, 2017). However, the third component 
(environment) remains as the most often neglected or 
less considered partner (Musoke et al., 2016). The 
World Health Organization (WHO) recently made a 
rough estimation that thirteen million human deaths 
annually are being attributed by preventable 
environmental causes (WHO, 2019). The report also 
showed that 23% of total mortalities and 24% of global 
human disease burden are caused by environmental 
factors, and diseases due to environmental burden are 
15 times greater in developing countries compared to 
developed countries. Recent studies have shown that, 
proper utilization of data, expertise and management 
approaches of various environmental professionals is 
necessary to have a deep understanding of the root 
cause of many diseases, and to have a better protection 
of natural resources to benefit the health (Eddy et al., 
2013; Musoke et al., 2016). Pollution is recognized as 
the most serious global environmental threat causing 
severe health consequences in both humans and 

animals (Pandey et al., 2019). Among different 
pollutants, plastic pollution is the most highly visible 
environmental issues in today’s world (Vince and 
Hardesty, 2016). It is estimated that almost 5 to 13 
million tonnes of plastic has been passed into the ocean 
in 2010 alone (Jambeck et al., 2015), contributing to 15 
to 51 trillion floating plastic particles circulating in the 
marine environment (van Sebille et al., 2015). This 
increasing stream of contamination and its ill effects on 
health has increased public awareness of plastic 
pollution in environment (World Economic Forum, 
2016). Accordingly, various research efforts are being 
carried out worldwide, for exploring the influence of 
plastic litter on different components of ‘one health’ 
and on reducing the impacts of plastic pollution 
through effective remedial measures. The present paper 
is designed to provide an overview of an emerging and 
exciting research topic in plastic pollution namely, 
“Plastisphere’.  
 
2. ‘Plastisphere’ 

Plastic pollutants are usually linked to the direct 
health hazards in larger animals following ingestion or 
entanglement damages (Watts et al., 2015; 
Hermabessiere et al., 2017; Jeong et al., 2018).  
Microbial interactions with plastics are completely 
different and poorly studied (Zettler et al., 2013; Prinz 
and Korez, 2020). Scientists have coined the term 
‘Plastisphere’ to denote assemblage of different 
microbial taxa inhabiting outer surface of plastic debris 
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(Zettler et al., 2013). Even though colonization on 
plastic materials have been reported in the early 1970s 
(Carpenter and Smith, 1972; Carpenter et al., 1972), 
there was a long 25 year gap for getting close attention 
to the plastic associated microbes. It was Dang and 
Lovel (2000) who explored initial stages of biofilm 
formation on plastic plates in marine waters. 
Afterwards, comparison of biofilms formed on 
different substrates including plastics materials 
following short-term exposure experiments was done 
by Dang et al. (2008); Lee et al. (2008). These three 
early studies highlighted that plastic in the 
environment, as with any other available substrate will 
be colonized by diverse bacterial taxa. Followed to 
these findings, there has been an increasing interest in 
‘Plastisphere’ evidenced by a gush of publications in 
this field.  
 
3. ‘Plastisphere’ Community  

The first study exploring ‘Plastisphere’ 
community composition using NGS approaches was 
done by Zettler et al. (2013). Later, more studies 
characterizing ‘Plastisphere’ community were carried 
out from different environments. A summary of major 
studies characterizing ‘Plastisphere’ community is 
represented in Table 1. Altogether, these studies have 
shown that ‘Plastisphere’ represent a new distinct niche 
for microbes. Plastisphere’ community is unique in its 
composition from the surrounding environment 
(Amaral-Zettler et al., 2015; De Tender et al., 2015; 
Frere et al., 2018). Photoautotrophic bacteria like 
cyanobacteria are reported to dominate the surface 
‘Plastisphere’ (Zettler et al., 2013; De Tender et al., 
2017; Dussud et al., 2018a), while the seafloor and 
subsurface ‘Plastisphere’ are dominated by 
Bacteroidetes and Proteobacteria (Zettler et al., 2013; 
Bryant et al., 2016; Dussud et al., 2018a). Further, 
taxonomic composition of ‘Plastisphere’ vary with 
various factors viz., season, geographical location, 
polymer type, surface roughness (rugosity), 
hydrophobic surface and size of plastic material (De 
Tender et al., 2015; Oberbeckmann et al., 2016;  
Hoellein et al., 2017; Frere et al., 2018). Studies 
focusing on the successive colonization stages of 
plastics showed that, initial colonization was mainly by 
γ-Proteobacteria and α-Proteobacteria (Oberbeckmann 
et al., 2015), while members of Bacteroidetes become 
increasingly abundant as time progresses (Lee et al., 
2008). The carrying capacity of ‘Plastisphere’ 
community remains unknown with conflicting results 
from various studies (Frere et al., 2018; Amaral-Zettler 
et al., 2020). However, most of the studies indicated a 
lower richness and greater evenness among 
‘Plastisphere’ (McCormick et al., 2014; Amaral-Zettler 
et al., 2015). In brief, there are many gaps in current 
knowledge of ‘Plastisphere’ holobiome which needs to 
be evaluated in future studies, to have a clear 
knowledge on the ecological impacts of ‘Plastisphere’ 
(Amaral-Zettler et al., 2020).  

4. Tools in ‘Plastisphere’ Research 
Early studies of ‘Plastisphere’ relied primarily 

on bright field microscopy, which identified 
morphologically distinct organisms (Sieburth, 1975). 
Now, scanning electron microscopy (SEM) is used to 
have a useful firsthand and a detailed look at microbes 
on plastic surfaces (De Tender et al., 2017). However, 
taxonomic resolution of microbial communities is very 
limited with this approach (De Tender et al., 2017). 
Among microscopical methods, epifluorescence 
microscopy using phylogenetic probes via 
Fluorescence In Situ Hybridization (FISH) has the 
potential to 1) provide taxonomic information about 
community 2) to give spatial structure of community 
and 3) to provide actual abundance data rather than 
relative abundance (De Tender et al., 2017). However, 
this method will not be accurate for the communities 
that are not growing actively as it relies on 
phylogenetic probes against ribosomal RNA. Further, 
there is a limitation in number of different fluorophores 
(up to 3) that could be used simultaneously. Therefore, 
various tools are being developed now to overcome 
these limitations in epifluorescence microscopy viz., (1) 
enhancing the signal through nested FISH technique 
using multiple probes, catalyzed reporter deposition 
FISH (CARD-FISH) or next-generation in situ 
hybridization chain reaction (HCR) (Choi et al., 2014; 
Harrison et al., 2014; De Tender et al., 2017), (2) use 
of different fluorophores (6 or more) through 
Combinatorial Labelling and Spectral Imaging FISH 
(CLASI-FISH) etc (Mark Welch et al., 2016; De 
Tender et al., 2017; Schlundt et al., 2020). 
Conventional microbiological methods using 
cultivation dependent and enrichment methods has 
been applied in “Plastisphere’ research. However, 
major limitation of this method is uncultivable nature 
of >99% microbes in environment by standard 
cultivation techniques. Application of culture 
independent methods using advanced molecular tools, 
like use of clone libraries, Denaturing Gradient Gel 
Electrophoresis (DGGE), Terminal restriction fragment 
length polymorphism (T-RFLP) and high-throughput 
sequencing have increased our understanding of 
‘Plastisphere’ (De Tender et al., 2017). Among high-
throughput sequencing technologies, amplicon 
sequencing via Illumina MiSeq is the most widely used 
method. However, shotgun metagenomics is the most 
comprehensive method for mining both functional and 
phylogenetic diversity, with additional benefit of 
discovering metabolic functions of microbes (Bryant et 
al., 2016; Bouchez et al., 2016). A detailed review on 
merits and demerits of different tools in ‘Plastisphere’ 
research was given by De Tender et al. (2017). 
Presently, SEM is the most commonly used technique 
to visualize ‘Plastisphere’ communities. However, high 
throughput next-generation sequencing (NGS) methods 
are now gaining momentum as the preferred method for 
profiling ‘Plastisphere’. 
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Table 1: Microbial communities enlisted on “Plastisphere 

 

Sl. No Broad category Microbial phyla Reference 
1 Bacteria Bacteroidetes (Flavobacteriaceae), Planctomycetes 

(Planctomycetaceae), α Proteobacteria (Phyllobacteriaceae, 
Rhodobacteraceae), γ Proteobacteria (Alteromonadaceae), β 
Proteobacteria 

Dang et al., 2008; Dang 
and Lowel, 2016; De 
Tender et al., 2017; 
Pinto et al., 2019 

γ Proteobacteria (Acinetobacter sp., Alteromonas sp., Vibrio sp., 
Pseudoalteromonas sp., Psuedomonas sp., Idiomarina sp., 
Oceaniserpentilla sp., Psychrobacter sp.), α Proteobacteria 
(Albidovulum sp., Devosia sp., Erythrobacter sp., Filomicrobium 
sp., Henriciella sp., Hyphomonas sp., Labrenzia sp., 
Nitrotireductor sp., Parvularcula sp., Pelagibacter sp., 
Rhodovulum sp., Roseovarius sp., Rubrimonas sp., Thalassobius 
sp., Thalassobius sp.) Bacteroidetes (Amoebophilus sp., Fulvivirga 
sp., Haliscomenobacter sp., Hellea sp., Lewinella sp., 
Marinoscillum sp., Microscilla sp., Muricauda sp., 
Sediminibacterium sp., Tenacibaculum sp.), � Proteobacteria 
(Bacteriovorax sp., Bdellovibrio sp.), Planctomycetes 
(Blastopirellula sp., Phycisphaera sp.) 

Zettler et al., 2013 
 

γ Proteobacteria (Thiotrichales and Alteromondales), 
Bacteroidetes (Flavobacteria) 

Oberbeckmann et al., 
2014 

Bacteroidetes (Lewinella sp.), � Proteobacteria (Nannocystaceae), 
Verrucomicrobia  

Oberbeckmann et al., 
2016 

α Proteobacteria, β Proteobacteria, γ Proteobacteria, 
Actinobacteria, Acidobacteria, Bacteroidetes, � Proteobacteria 

Debroas et al., 2017 

γ Proteobacteria (Alcanivorax sp., Aestuariicella hydrocarbonica, 
Alteromonas sp., and Thalassolituus sp., Marinobacter sp., 
Neptiniibacter sp. and Maricurvus sp.), α Proteobacteria 
(Phycisphaerae, Planctomycetia and Sphingobacteriia), 
Bacteroidetes (Tenacibaculum sp.) 

Dussud et al., 2018a 

Bacteroidetes, γ Proteobacteria (Vibrionaceae), α Proteobacteria 
(Rhodobacteraceae),  

Schlundt et al., 2020 

Bacteroidetes (Flavobacteriaceae, Winogradskyella sp,), γ 
Proteobacteria (Vibrionacea, Pseudoalteromonadaceae, 
Oceanospirillales, Glaciecola sp.), α Proteobacteria, ε 
Proteobacteria, Verrucomicrobia 

Delacuvellerie et al., 
2019 

α Proteobacteria (Erythrobacter sp., Roseobacter sp.) Pinto et al., 2019 
2 Blue algae/ 

Cyanobacteria 
Cyanophyta (Phormidium sp., Pleurocapsa sp., Prochlorococcus 
sp., Rivularia sp., Synechococcus sp.) 

Zettler et al., 2013;  

Cyanophyta (Stanieria sp. and Pseudophormidium sp.) Oberbeckmann et al., 
2014 

Cyanophyta (Phormidium sp., Rivularia sp., Leptolyngbya sp.) Bryant et al., 2016; 
Oberbeckmann et al., 
2016 

Cyanophyta (Microcystis sp.) 
 

Muthukrishnan et al., 
2019 

3 Fungi Ascomycota, Basidiomycota, Zygomycota  De Tender et al., 2017 

Chytridiomycota, Cryptomycota, Ascomycota  Kettner et al., 2017 

Basidiomycota (Malassezia sp.) Amend et al., 2019 

4 Protozoa Ciliophora (Ephelota sp.) Kobayashi et al., 2011; 
Zettler et al., 2013 

Radiolaria (Circorrhegma sp.), Ciliophora (Thiobios sp.) Zettler et al., 2013; 
Carson et al., 2013 

5 Diatoms/Microalg
ae 

Ochrophyta (Licmophora gracilis, Cylindrotheca closterium) Briand et al., 2012 

Bacillariophyta (Sellaphora sp., Mastogloia sp.) Ochrophyta 
(Amphora sp., Nitzschia sp.)  

Muthukrishnan, 2013 

Bacillariophyta (Mastogloia sp., Pleurosigma sp.), Ochrophyta 
(Cyclotella sp.) 

Zetter et al., 2013 

Bacillariophyta  (Bacillariophyceae) Oberbeckmann et al., 
2014 

Ochrophyta (Amphora sp., Nitzschia sp. and 6 other genera), 
Haptophyta (7 genera), Dinoflagellata (Ceratium sp.) 

Reisser et al., 2014 
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6 Microalgae Dinoflagellata (Ostreopsis sp., Coolia sp., Alexandrium sp.) Maso et al., 2003 

Dinoflagellata (Alexandrium sp., Ceratium sp.) Zetter et al., 2013; 
Reisser et al., 2014 

Dinoflagellata (Pfiesteria sp.) Kettner et al., 2017 
7 Brown algae Phaeophyceae Oberbeckmann et al., 

2014 
8 Green algae Chlorophyta (Micromonas sp.) Zettler et al., 2013 

Chlorophyta (Ulva sp.) Kettner et al., 2017 
 
5. Impact of ‘Plastisphere’ in Environment 

and Animals 
‘Plastisphere’ research is mainly focused to have 

a better understanding on the impact of plastic 
pollutants on different ecosystem functions. Among 
various areas, impact of ‘Plastisphere’ on 
biogeochemical cycling of different ecosystems is an 
active area of interest (Roager and Sonnenschein, 2019; 
Rogers et al., 2020). Incorporation of plastics and its 
degradation intermediates into carbon cycle through 
microbial interactions is known to affect 
biogeochemical carbon cycling (Rogers et al., 2020).  
Impact of ‘Plastisphere’ on health of aquatic and 
marine animals is another burning issue.  

It was found that metabolic/derivative products 
of plastic degradation by ‘Plastisphere’ will decrease 
size of plastic litters, thus can be better transported 
through different components of food webs (Jorgensen, 
1995; Zettler et al., 2013). This will increase the chance 
of carrying over of these polymers and their leachates 
(derivatives/microplastics) into various food source and 
a broader range of consumers (Botterell et al., 2019). It 
was reported that derivatives/microplastics ingested by 
aquatic animals will become further enriched with gut 
microbiota that have biodegradation properties for 
these pollutants, contributing further decreasing of size 
and more dissemination into different food web 
components (Lu et al., 2019).  

‘Plastisphere’ communities can further affect the 
health of aquatic animals by disrupting intestinal 
homeostasis, proper functioning of host gut microflora, 
and through production of key biogeochemical 
compounds like methane (Rogers et al., 2020). 
Nevertheless, the current knowledge is insufficient to 
draw a clear picture of this kinds of impacts (Jacquin et 
al., 2019). To have a better understanding on the 
environmental impacts of ‘Plastisphere’, detailed 
investigations on three dimensional interactions 
between plastics, microorganisms, and consumers need 
to be targeted in future (Rogers et al., 2020). 

 
6. Plastisphere’: A Vector for Potential 

Pathogens and Diseases  
It has been now increasingly recognized that 

plastics can serve as a vector for the transport of 
numerous pathogens over long distances than 
biodegradable materials (Quilliam et al., 2014). This 
long distance transportation can potentially 
introduce many invasive and pathogenic microbes into 
different ecosystems. This kind of a ‘vector potential’ 

was initially suspected after the observation of high 
abundance of Vibrio spp. on plastic fragments 
recovered from the North Atlantic and report of 
Escherichia coli on plastic in beach waters 
(Oberbeckmann et al., 2014).  

Since then, presence of different potential 
pathogens such as members of Vibrio spp. Aeromonas 
spp., Arcobacter spp. and Campylobacteraceae has 
been reported from different environmental plastic 
litters worldwide, in both temperate and tropics 
including both marine and fresh water environments 
(McCormick et al., 2014; De Tender et al., 2015; 
Kirstein et al., 2016; Oberbeckmann et al., 2016; 
Harrison et al., 2018; Jiang et al., 2018; Amaral-Zettler 
et al., 2020). In addition to pathogens posing risk to 
humans from marine activities, plastic has been shown 
to transport potential protistan coral pathogens 
(Goldstein et al., 2014) and many other known fish and 
shellfish pathogens (Virsek et al., 2017). Roughly one 
third of the plastic-associated bacterial or archaeal 
sequences identified by Oberbeckmann et al. (2016) 
were assigned to the genus Tenacibaculum sp. 
(Flavobacteriaceae) that harbors several fish 
pathogens. Dussud et al. (2018b) found that half of the 
putative pathogens in plastic samples belonged 
to Vibrio spp., and 20% and 11% were identified 
as Tenacibaculum sp. and Staphylococcus aureus 
respectively.  

Recent study by Sun et al. (2020) showed a 
higher relative abundance of bacteria belonging to 
Vibrio sp., Pseudoalteromonas sp. and Alteromonas sp. 
on microplastics than those in their surrounding 
seawater and sediments, indicating that microplastics 
might act as vectors for enrichment of potential 
pathogens, enhancing the ecological risk of 
microplastics to mariculture industry.  

Phototrophic species responsible for harmful 
algal blooms were also reported in ‘Plastisphere’ (Maso 
et al., 2003; Maso et al., 2016; Casabianca et al., 
2019). Further, plastic pollutants are recognized to play 
an important role in the emergence and dispersal of 
antimicrobial resistant (AMR) pathogens and AMR 
genes into different ecosystems (Moore et al., 2020). 
As plastics and microplastics can harbor many 
chemicals, organic pollutants, heavy metals and 
pharmaceuticals (Katole et al., 2013), it can act as a 
perfect platform for the co-selection of AMR genes and 
AMR phenotypes (Li et al., 2018). The hypothesis was 
then confirmed by Arias-Andres et al. (2018), who 
showed that horizontal gene transfer between 
phylogenetically distinct microbes in ‘Plastipshere’ - 
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Fig 1: Schematic representation of an overview of current ‘Plastisphere’ research: Major research questions and 

possible answers/uses in “Plastisphere’ research projects are indicated in second column and third column 
respectively.  

 
occur much faster than free living microbes. Yang et al. 
(2019) found that ‘Plastisphere’ communities harbor 
higher abundance of multi-drug resistance genes, 
aminoglycoside resistance genes and unclassified AMR 
genes. However, most of evidences for role of plastics 
in dissemination of diseases and AMR pathogens stems 
from molecular sequence data. Pathogenicity or 
virulence of these pathogens is not confirmed 
(Oberbeckmann et al., 2016). Therefore, exact role of 
plastic debris as a fomite for pathogenic microbes 
warrants further research (Amaral-Zettler et al., 2020).  
 
7. Plastisphere’: A New Niche for 

Bioremediation Research 
There has been increasing interest in exploration 

of microbes and microbial enzymes for plastic and 
other hydrocarbon degradation purpose, to provide 
solutions to the increasing pollution problem. In this 
aspect, much attention has recently turned to the 
members of ‘Plastisphere’. Exposure experiments for 
checking the microbial colonization of plastic showed a 
decrease in plastic buoyancy with concurrent increase 
in bacterial counts (Webb et al., 2009; Lobelle and 
Cunliffe, 2011; Cozar et al., 2014). These findings 
arose interest in researchers to know whether 
‘Plastisphere’ may degrade either the plastics and/or 
plastic-adsorbed co-pollutants in natural environments. 
The first study exploring ‘Plastisphere’ microbes by 
Zettler et al. (2013) showed presence of ‘pits and 
grooves’ in plastic, using electron microscopy 
suggestive of microbial degradation of plastics. Two 
other studies characterizing microbial community on 
plastic surfaces (Carson et al., 2013; Reisser et al., 
2014) also identified the presence of ‘pits’ and 
‘grooves’ in plastic surfaces. Oberbeckmann et al. 
(2016); Kirstein et al. (2018) hypothesized that 
uncovering the rare species on ‘Plastisphere’ will be the 
first necessary step to identify efficient microbes 

having potential for plastic degradation. Recently, 
Syranidou et al. (2017) developed microbial consortia 
capable of degrading weathered polystyrene and 
polyethylene fragments from ‘Plastisphere’. Similarly, 
Bryant et al. (2016) reported for the first time that 
many candidate genes involving in hydrocarbon 
degradation were abundant in ‘Plastisphere’, suggesting 
the possibility of these microbes to serve as the source 
of potential hydrocarbon degrading microbes/functional 
genes. Further, the possibility of finding such potential 
microbes is increased in ‘Plastisphere’ near oil 
reserves/mangroves (Lustosa et al., 2018; Streit, 2018; 
Urbanek et al., 2018). Delacuvellerie et al. (2019) 
showed that ‘Plastisphere’ in marine ecosystem hosts 
potential specific microbial degraders of low-density 
polyethylene (Alcanivorax borkumensis). Dussud et al. 
(2018b) identified that 34.4% of the total microbial 
sequences on ‘Plastisphere’ belonged to putative 
hydrocarbonoclastic bacteria (HCB), compared to 4.1% 
in control seawater. In short, many researchers have 
now pointed out the potential of ‘Plastisphere’ in 
hydrocarbon biodegradation (Amaral-Zettler et al., 
2015; De Tender et al., 2017; Dussud et al., 2018b; 
Oberbeckmann et al., 2018; Delacuvellerie et al., 2019; 
Kirstein et al., 2019), and further findings in this arena 
is awaited. 
 
8. Conclusion 

‘Plastisphere’ is the term used to denote various 
microbial taxa inhabiting outer surface of plastic debris. 
An overview of current ‘Plastisphere’ research is 
represented schematically in Fig 1. Research have 
shown that ‘Plastisphere’ represents a new distinct 
niche for microbes, with unique microbial communities 
from that of its surrounding environment. Further, 
‘Plastisphere’ composition is driven by different spatial 
factors, seasonal effects and substrate type. Presently, 
SEM is the most commonly used technique to visualize 
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‘Plastisphere’ communities. However, high throughput 
next-generation sequencing methods are now becoming 
more preferred method for profiling ‘Plastisphere’. In 
parallel to the research exploring taxonomic 
composition of ‘Plastisphere’, impacts of ‘Plastisphere’ 
on different components of ‘one health’ i.e. human, 
animals and environment remains as an active area of 
research. A different line of research exploring 
‘Plastisphere’ for plastic degrading microbes and genes 
are also getting attention. Still, gaps existing in the 

current knowledge of ‘Plastisphere’ and its critical role 
in different ecosystem components make it a burning 
research topic and warrants future attention.  
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