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Cyprinid herpesvirus-2 (CyHV-2) is a linear double-stranded DNA virus in the
genus Cyprinivirus of family Alloherpesviridae. The virus is known to be highly
pathogenic to ornamental goldfish (Carassius auratus), crucian carp (C. carassius)
and Gibel carp (C. auratus gibelio), and also to the hybrids of goldfish and other
carps. Cyprinid herpesvirus-2, having the smallest genome (290.3 kb) among
Cyprinivirus, causes herpesviral hematopoietic necrosis disease (HVHND) that
results in huge economic losses in aquaculture industry as the disease can cause
high mortality (50-100%) among the affected fish. The disease was initially
reported as the cause of epizootics in juvenile goldfish of Japan during 1992 and
1993. To date, this disease has been reported around the world including Europe,
North America, Oceania and Asia. Huge economic losses due to the CyHV-2
infection among cultured gibel carp in China, during 2011-2012, mass mortality
in crucian carp during 2012 in Italy, 95% mortality in goldfish during 2014 in
France, 85% mortality in goldfish during 2016 in Poland had been reported.
Strategies for controlling the spread of CyHV-2 are thus urgently required to limit
economic damage. Furthermore, the review will shed light on lacunae in current
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knowledge as well as on the perspectives that merits further investigations on
CyHV-2 research. The paper forms the first comprehensive overview of CyHV-2
causing a serious economically significant fish disease and, will be helpful for the
researchers to get all related information from a single manuscript.

Key words: Cyprinid herpesvirus-2, CyHV-2, goldfish, Carassius sp., herpesviral haematopoietic
necrosis, goldfish haematopoietic necrosis virus.

Introduction

Fish, crustaceans and mollusks represent the vital global
aquaculture industry of 80 million tonnes in 2016 with an
estimated total farm gate value of US$ 232 billion (FAO
2018). Further, the growing international aquaculture
development and increasing global trade in live aquatic ani-
mals including food and ornamental fish and aquatic prod-
ucts facilitate wide geographical relocation of aquatic
animal species and their pathogens. Ornamental fish indus-
try is responsible for the movement of billions of live fish
worldwide annually. This is a multibillion-dollar industry
in more than 125 countries with an involvement of >2500
species and has an estimated wholesale and retail value of 1
billion and 3 billion USD, respectively (Dey 2016. High-
density aquaculture and chronic stress provide
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opportunities for the emergence of new diseases. The com-
mon cause of infectious disease aetiological agents in aqua-
culture industry is bacteria (54.9%), viruses (22.6%),
parasites (19.4%) and fungi (3.1%) (Reviewed in Kibenge
et al. 2012). Generally, viruses affecting aquatic or terres-
trial animals co-evolve with their hosts for their long-term
survival within their natural range that negatively affect
aquaculture. Viruses are the principal pathogens that nega-
tively affect aquaculture worldwide. During 1960s, studies
on aquatic animal virology such as establishment of fish cell
lines for the isolation of fish viruses (Wolf & Quimby 1962)
and demonstration of crustacean viruses using electron
microscope (Vago 1966) were initiated. The viral diseases
in aquatic animals are mainly detected and confirmed in an
opportunistic manner, for example, herpesvirus was
detected during mass mortalities of wild aquatic animal
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species (Hedrick et al. 2000). Data on viruses of farmed
aquatic animal species lag behind that of viruses terrestrial
animal viruses. Consequently, there is a wide knowledge
gap in many viral diseases of ornamental fish, even though
viral diseases are recognized to cause significant economic
losses with 100% mortality rates to the ornamental fish
trade (Bernoth & Crane 1995; Cardoso et al. 2019).

The major viral pathogens that are considered potential
rising threats to global aquaculture mainly include iri-
doviruses, reoviruses, rhabdoviruses, nodaviruses and her-
pesviruses (Murray 2013). Of these, herpesviruses are
recognized as important pathogens and even though over
14 known herpesviruses are associated with disease out-
breaks; there are still many more disease-causing fish her-
pesviruses that are yet to be characterized (Hanson et al.
2011). A general overview of herpesviruses that infect fish
along with details of the two most characterized her-
pesviruses, namely Cyprinid herpesvirus] (CyHV-1) and
Cyprinid herpesvirus3 (CyHV-3) has been given by Hanson
et al. (2011). However, scientific data on the disease caused
by Cyprinid herpesvirus2 (CyHV-2), the aetiological agent
of a highly contagious viral disease, namely herpesviral
haematopoietic necrosis disease (HVHND), are very scat-
tered in spite of massive damage caused by the disease to
production of goldfish (C. auratus) and many other Cypri-
nids (Panicz et al. 2019). Besides goldfish, recently, the dis-
ease has been reported from other species of the same
genus like C. gibelio (Prussian carp) (Doszpoly et al. 2011;
Xu et al. 2013) and C. carassius (crucian carp) (Fichi et al.
2016; Zhao et al. 2019), posing threat for food security also,
especially in China where more than 2.5 M metric tons of
crucian carp and Prussian carp are produced (FAO 2014).
Thus, considering the significance of fish trade worldwide,
and emerging data on CyHV-2 infections from various
countries, improvements in its diagnosis and prophylaxis
are called for to limit its occurrence and impacts to aqua-
culture. This necessitates a comprehensive knowledge of
various characteristics of CyHV-2 such as aetiology, host
range, distribution, transmission, pathology, immunology,
diagnosis, prevention and control measures. The present
paper delineates these aspects along with the recent
advances by assembling and collating all available literature
of this highly contagious and lethal viral disease. Further-
more, the information in this review will shed light on lacu-
nae in current knowledge as well as on future perspectives
on CyHV-2 research.

CyHV-2 infections in fish: early history and
worldwide distribution

In the spring of 1992 and 1993, a new disease occurred
causing severe mortality among cultured goldfish (C. aura-
tus) in Japan. A herpesvirus was later isolated from these
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moribund fish and the pathogenicity of the viral isolate was
confirmed through experimental infection (Jung & Miya-
zaki 1995). The disease was named as herpesviral
haematopoietic necrosis (HVHN) or goldfish haematopoi-
etic necrosis virus (GHNV) due to the characteristic mani-
festations of mnecrosis in the haematopoietic tissue of
affected fish. Apart from HVHN, CyHV-2 has been recently
associated with a new epizootic causing severe mortality
among allogynogenetic crucian carp in China and it is des-
ignated as haemorrhagic disease of gill (Zhu et al. 2018).
Since the first report in 1992-1993, CyHV-2 infections have
been reported from various countries worldwide including
USA (Groff et al. 1998; Goodwin et al. 2006a), Taiwan
(Chang et al. 1999), Australia (Stephens et al. 2004), UK
(Jeffery et al. 2007; Ito et al. 2013), Hungary (Doszpoly
et al. 2011), China (Wang et al. 2012; Luo et al. 2013; Zhu
et al. 2018; Jiang et al. 2020), Czech Republic (Danek et al.
2012), Italy (Fichi et al. 2013), Japan (Ito ef al. 2013), India
(Sahoo et al. 2016), Switzerland (Giovannini et al. 2016),
Germany (Adamek et al. 2017), France (Boitard et al.
2016), Netherlands (Ito et al. 2017), Turkey (Kalayc1 et al.
2018) and Poland (Panicz ef al. 2019). Even though the dis-
ease was initially reported from C. auratus, CyHV-2 infec-
tions from other species like crucian carp (C. carassius),
Prussian carp (C. gibelio) (Danek et al. 2012; Luo et al.
2013; Fichi et al. 2013; Ito & Maeno 2014) and allogyno-
genetic crucian carp (Wu et al. 2013) have been reported
recently (Fig. 1). Details of CyHV-2 infections reported
worldwide are given in Table 1. CyHV-2 outbreaks usually
occur during spring and autumn season where the water
temperature ranges from 15-25°C. The disease usually
fades away when the temperature falls below 10°C or rises
above 30°C. CyHV-2 decreases its pathogenicity when the
temperature exceeds 27°C (Goodwin et al. 2009). Recently,
Ouyang et al (2020) reported an outbreak of CyHV-2 dis-
ease in gibel carp, C. auratus gibelio at a non-permissive
temperature of 10°C. The disease can cause severe mortality
to all sizes of fish (Wu et al. 2013). Various stress factors
like high stocking density, handling events, transport and
holding at wholesalers can act as the predisposing factors
for CyHV-2 infections (Goodwin et al. 2009; Davison et al.
2013).

Aetiology

Cyprinid herpesvirus-2 (CyHV-2) is the aetiological agent of
HVHN/gill haemorrhagic disease in Carassius sp. It is the
first and only herpesvirus causing infection in goldfish hav-
ing a synonym as goldfish haematopoietic necrosis virus
(GFHNV) (Jung & Miyazaki 1995). CyHV-2 is a member
of the genus Cyprinivirus under the family Alloherpesviridae
of order Herpesvirales (ICTV 2018). Other members of the
genus Cyprinivirus are CyHV-1 (carp poxherpesvirus),
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Figure 1 Global distribution of Cyprinid Herpesvirus -2 (CyHV-2) from 1992-2019. l Japan — 1992; l USA — 1998; W Taiwan — 1999; | Australia —

2003; | New Zealand — 2006;

United Kingdom — 2007; M Hungary — 2011; W China — 2012; W Italy — 2013;

Switzerland — 2015; M France —

2016; M India —2016; M Germany —2017; | Turkey — 2018; i Serbia — 2018; M Poland — 2019.

CyHV-3 (koi herpesvirus) and Anguillid herpesvirus 1
(AngHV1/freshwater eel herpesvirus (ICTV 2018). Her-
pesviral Hematopoietic Necrosis Disease (HVHND) is
caused by Cyprinid Herpesvirus 2 (CyHV-2) is a member of
the Cyprinivirus genus. It is highly pathogenic to goldfish,
crucian carp and even the hybrids of goldfish and carp
(Hedrick et al. 2006; Davison et al. 2013).

Virion: structure, composition and genome

Like other herpesviruses, CyHV-2 has an icosahedral capsid
containing double-stranded DNA and a lipid envelope
bearing viral glycoproteins. The virus multiplies and assem-
bles in hematopoietic cells of spleen and kidney, and in gills
of infected fish (Hedrick et al. 2000). Maturing process of
CyHV-2 occurs in Golgi apparatus and final maturation
occurs through budding into trans-Golgi network vesicles
containing viral glycoproteins (Wu et al. 2013). Thus,
matured virions can be seen as enveloped virions within a
cellular vesicle inside the cytoplasm. Enveloped virions are
round, having a size of 170-220 nm, and can be also seen
in the extracellular spaces of infected cells (Jung & Miyazaki
1995). In infected cells, the virus forms characteristic spher-
ical or hexagonal intranuclear inclusion bodies comprising
of nucleocapsid having an edge-to-edge diameter of 115—
117 nm (Jung & Miyazaki 1995). Very recently, Gao et al.
(2020) have identified the structural proteins of CyHV-2
after purification of virions using a sucrose density gradient
in combination with ultracentrifugation. The viral proteins
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were then separated by SDS-PAGE and identified by mass
spectrometry. Results showed that CyHV-2 contained 74
proteins, including 3 capsid proteins, 18 membrane pro-
teins and 53 other proteins.

Comparative analysis of nucleotide sequences among dif-
ferent CyHV-2 isolates was carried out based on partial
sequence of DNA polymerase by Goodwin et al. (2006a)
and Li ef al. (2015) in the USA and China, respectively,
which showed that CyHV-2 isolated from both countries
were identical to ST-J1 isolated from Japan. However, Li
et al. (2015) observed that there were clear differences in
the predicted amino acid sequence of intercapsomeric tri-
plex proteins from ST-J1 and CyHV-2 strains from China.
Subsequently, Ito et al. (2017) pointed out that there are at
least 6 different lengths for various CyHV-2 isolates in a
region of viral genome namely; mA (marker A) region and
the same can be amplified by using the primers designed by
Boitard et al. (2016). The authors have also demonstrated
that CyHV-2 can be divided into pleural genotypes based
on the length of this mA region. Afterwards, the entire
CyHV-2 genome was sequenced by different groups (Davi-
son et al. 2013; Li et al. 2015; Zeng et al. 2016; Liu et al.
2018), and the results showed that the genomic DNA of
CyHV-2 is about 290 kb in length comprising 150 protein-
coding genes. The different strains of CyHV-2 namely, ST-
J1, SY-C1 (Davison et al. 2013; Li et al. 2015), CaHV (Zeng
et al. 2016), SY (Liu et al. 2018) contain many mutations,
insertions, deletions and rearrangements in their genome,
although all the strains share around 98% homological
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genome sequences (Liu et al. 2018). Overall, G + C content
of the genome is around 52%. Based on the differences in
genome Li et al. (2015) proposed that CyHV-2 can be
divided into 2 different genotypes namely China genotype
(C genotype) and Japan genotype (J genotype) according to
their isolation loci. These two genotypes shared a homology
of 98.8% in their genome. Furthermore, molecular epi-
demiological surveys indicated that dominant genotype of
CyHV-2 circulating in mainland China is closer to C geno-
type than the J genotype (Li et al. 2015). Recently, Liu et al.
(2018) showed that genome of the new CyHV-2 strain iso-
lated from allogynogenetic crucian carp of China had many
variations from C and ] genotypes with overall sequence
identity of 99.1% and 98.4%, respectively. Their study
pointed out that ORF10, ORF107 and ORF156 can be used
as the marks of SY strains. They also showed that 16 and 2
genes in the CyHV-2 genome may be transferred from the
host and bacteria, respectively, through horizontal transfer
analysis. Further, analyses of the amino acid sequence
homology of the core ORFs from the alloherpesvirus family
showed relatively higher similarity of 4 core ORFs (ORF33,
ORF79, ORF92 and ORF107) among different viruses (Liu
et al. 2018) within the family Alloherpesviridae.

Host range

Determining the host range and transmission of pathogens
is extremely important for the prevention of any infectious
diseases; however, literature related to the host range and
vertical transmission of CyHV are scanty. Generally, her-
pesviruses are characterized by a high level of host speci-
ficity (Hanson et al. 2011). Historically, the host species for
CyHV-2 was goldfish (C. auratus). CyHV-2 can infect all
the different life stages of goldfish such as egg, fry, finger-
ling and adult fish; of which, juvenile stages are more sus-
ceptible (Groff et al. 1998). An experimental challenge
study showed that all the three varieties of goldfish viz.,
Ryukin, Edonishiki and Ranchu, were susceptible to
CyHV-2 (Ito & Maeno 2014), whereas no disease was
observed in C. auratus langsdorfii, C. auratus buergeri, C.
auratus grandoculis and in common carp (Cyprinus carpio)
(Ito & Maeno 2014). However, natural CyHV-2 infections
are now reported from a wider range of cyprinid species
like crucian carp (C. carassius), Prussian carp (C. gibelio)
(Hedrick et al. 2006; Bergmann et al. 2010; Danek et al.
2012; Fichi et al. 2013; Luo et al. 2013; Ito & Maeno 2014)
and allogynogenetic crucian carp (Wu et al. 2013). Further,
in the spring season of 2015, Zhu et al. (2018) noted that
diseased Aristichthys nobilis (Bighead carp), Erythroculter
ilishaeformis, Culter alburnus, Hypophthalmichthys molitrix
(Silver crap) and Mpylopharyngodon piceus (Black carp) in
the Jiangsu province of China, had similar clinical features
of C. auratus suffering from gill haemorrhagic disease.
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Later, diagnosis by LAMP assay and electron microscopy
examination confirmed that these species were positive for
CyHV-2. These results suggested that the infection of
CyHV-2 is not now limited to goldfish (Zhu et al. 2018)
and the virus can cause cross-infection among different
species of fish. Wei et al. (2019) proved that CyHV-2 can
establish a persistent infection in some organs of asymp-
tomatic goldfish, especially the spleen and trunk kidney in
experimental infection studies.

Transmission

Horizontal disease transmission is the usual means of
CyHV-2 transmission between fish populations. This trans-
mission occurs either by direct fish to fish transmission or
possibly through a vector. However, possible role of vectors
in disease transmission studies has not been carried out for
CyHV-2. Direct fish to fish transmission can be through
contact with infected fish or fish asymptomatically carrying
CyHV-2 (Goodwin et al. 2009). Ito and Maeno (2014)
found that goldfish infected with CyHV-2 at 13—15°C water
temperature neither died nor acquired resistance to the dis-
ease, but act as carriers to infect other fish. Experimental
infection studies have revealed that spleen and trunk kidney
act as the primary site for persistent infection of CyHV-2 in
C. auratus (Wei et al. 2019). Vertical transmission is also
not confirmed in CyHV-2; however, an epidemiological
investigation documenting the occurrence of CyHV-2 in
offspring seeds, breeding fish, disinfected eggs and fry of
goldfish, suggested that vertical transmission is possible for
CyHV-2 in goldfish (Goodwin et al. 2009). Further, results
of different diagnostic methods namely, RT-PCR, LAMP
assay and electron microscopic examination have revealed
the presence of CyHV-2 in eggs of the diseased fish, further
suggesting that CyHV-2 can be transmitted vertically to off-
spring (Zhu et al. 2018). The vertical transmission of
CyHV-2 (Goodwin et al. 2009; Zhu et al. 2018) was poorly
studied unlike the horizontal transmission of CyHV-2, so
more research is needed to generate more information of
the same. So with the available data on literature, CyHV-2
infection is being transmitted to other to goldfish, crucian
carp, prussian carp and even the hybrids of goldfish by hor-
izontal route than vertical route.

Impact of infection on fish

Clinical signs

Infection with CyHV-2 is most severe in goldfish, where it
can cause 100% mortality in all ages with a daily mortality
rate of 1-5% especially at water temperature of 15-20°C
(Jung & Miyazaki 1995; Sahoo et al. 2016). Jung and Miya-
zaki (1995) reported only listlessness and staying at the
pond bottom in the affected goldfish. However, in further
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reports, typical signs and lesions were recorded. Chang
et al. (1999) observed only yellowish discoloration of skin
as a clinical sign in natural cases of CyHV-2 infection in
goldfish. Jeffery et al. (2007) described pale skin, bilateral
exophthalmia, pustules in fin and decaying white gill fila-
ments with bleached appearance as clinical signs in CyHV-
2 affected goldfish. Groff et al. (1998) recorded signs such
as lethargy, pale gills and anorexia, often with elevated res-
piratory efforts. The most common sign of the disease is
reported as anaemia as the virus attacks haematopoietic tis-
sues (Goodwin, ef al. 2006a). Thus, characteristic signs of
CyHV-2-infected fish include lethargic behaviour, gasping
at the surface with erratic swimming (spiralling/whirling),
lying down at the tank bottom before death, pale gills,
enophthalmos, patches of necrotic tissues on gills and gills,
and mortality in all sizes of fish (Sahoo et al. 2016) (Fig. 2a,
b,c,d). Recently, Adamek et al. (2017) described ascites in
affected goldfish. Similar clinical signs were described in
diseased Prussian carp viz., anorexia, lethargy, exoph-
thalmia, haemorrhagic spots on external surface, hyper-
aemia on submaxilla and abdomen, necrotic gills and gill
filaments, petechial and ecchymotic haemorrhages on oper-
cula, gills and around the base of fins, eyes, blood engorge-
ment in the inner membranes of both opercula, swollen
abdomen and vent inflammation (Danek et al. 2012; Wang
et al. 2012; Xu et al. 2013; Wu et al. 2013). Clinical signs

reported in CyHV-2-infected Crucian carp were haemor-
rhages at different points of body and fins, swollen anus
and presence of haemorrhages in gills and eyes (Fichi ef al.
2013).

Pathology-gross, histological and ultrastructural lesions

In contrast to clinical signs, there were several gross patho-
logical changes in internal organs of affected goldfish dur-
ing the first report itself viz., pale coloration of gills and
liver, ascites, splenomegaly with white nodular lesions,
swollen pale kidney and empty intestine (Jung & Miyazaki
1995). Jeffery et al. (2007) reported necrotic gills, abdomi-
nal distension, pale kidney and liver as well as splenomegaly
in affected goldfish. We have also observed severe, wide-
spread necrosis of hematopoietic tissues of trunk kidney
and spleen in CyHV-2 affected goldfish (Fig. 2e,f). Gross
pathological changes described in affected Prussian carp
included liver hyperaemia, splenomegaly, renal hypertro-
phy, empty intestine and petechial haemorrhaging of swim
bladder (Wang et al. 2012). In affected Crucian carp Fichi
et al. (2013) documented haemorrhages in heart, kidney,
swim bladder and ovary, and granuloma in spleen.

Typical histological lesions reported in goldfish infected
with CyHV-2 include extensive necrosis in spleen and kid-
ney, enlarged nuclei of kidney hematopoietic cells with

Figure 2 Cyprinid herpesvirus-2 (CyHV-2) infection in goldfish Carassius auratus. (a) Mass mortality of goldfish in a polyculture pond in a farm in
India during 2014; (b) External clinical signs of CyHV-2 affected goldfish Carassius auratus including haemorraghes on the body, ascites and protru-
sion of scales on the body surface; (c) CyHV-2 affected goldfish Carassius auratus showing enophthalmia (sunken eyes); (d) Inflamed and swollen gills
in CyHV-2 affected goldfish Carassius auratus; (e) swollen and enlarged kidney in CyHV-2 affected goldfish Carassius auratus; (f) enlarged liver with

white necrotic foci in CyHV-2 affected goldfish Carassius auratus.
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Figure 3 Histopathological lesions in affected tissues of a goldfish with Goldfish Herpesviral Hematopoietic Necrosis Disease. (a) and (b) Necrosis of
hematopoietic cells in the kidney (c) Spleen (d) Gills and other nuclei are enlarged with marinated chromatin (arrow).

marginated chromatin (Fig. 3) and focal patches of necrosis
in gill lamellae (Jung & Miyazaki 1995; Jeffery et al. 2007).
Karyopyknosis, karyorrhexis (Jung & Miyazaki 1995) with
pale basophilic to eosinophilic centres and peripherally dis-
placed chromatin were observed in diffuse necrotic areas of
kidney haematopoietic tissue, along with moderate
oedema, mild fibrin exudation and cellular debris (Good-
win et al. 2006a; Fichi et al. 2013; Adamek et al. 2017).
Lesions in spleen were characterized by mild to severe, mul-
tifocal to diffuse degeneration (Groff et al. 1998), coagula-
tive necrosis of lymphoid tissue (Jung & Miyazaki 1995;
Boitard et al. 2016; Adamek et al. 2017), hypertrophied
nuclei with marginated chromatin (Sahoo et al. 2016) and
deposition of high number of melanomacrophages (Ada-
mek et al. 2017). CyHV-2 causes diffuse hypertrophy and
hyperplasia of branchial secondary lamellar epithelium of
gills resulting in focally extensive fusion of adjacent lamel-
lae, massive necrosis and sloughing of epithelia in infected
fish (Groff et al. 1998; Stephens ef al. 2004; Adamek et al.
2017). No histopathological changes were observed in other
organs, including muscle, heart and brain, either in fish
from the natural outbreak group or those from the experi-
mental infection group by Jung and Miyazaki (1995).
Whereas Sahoo et al. (2016) reported severe necrosis of gill
lamellae, kidney and spleen of naturally infected goldfish
samples and also hypertrophied nuclei with margination of
chromatin material in spleen. In contrast, Goodwin et al.
(2006a) found granuloma in brain and mesentery tissue of
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naturally infected fish. Hypertrophied nuclei of cardiac
muscle cells containing marginated chromatin were
reported in another study (Lu et al. 2016). Similarly, multi-
ple focal necroses and necrotic area with enlarged nuclei
and prominent chromatin margination has been reported
in heart, small intestine, pancreas and skin by Chang et al.
(1999). Histological lesions in cultured gibel carp (C. aura-
tus gibelio) included acute hepatocellular necrosis, splenic
necrosis, kidney necrosis along with oedema in renal
glomerulus, hyperplasia of secondary lamellae with focal
necrosis in gills, acute necrotic myocarditis, oedema of
myocardial cells, accumulation of granulocytes within car-
diac lumen, necrosis and oedema in submucosa and
mucosa epithelium of intestinal tract and oedema of neu-
rons (Nanjo et al. 2016).

Electron microscopy of splenocytes, hematopoietic tissue
cells of kidney, epithelial cells of gill and brain cells of
infected fish generally reveals the presence of numerous typi-
cal enveloped spherical or hexagonal nucleocapsids either in
nucleus or in cytoplasm (Jung & Miyazaki 1995; Stephens
et al. 2004; Hine et al. 2006; Jeffery et al. 2007). Occasionally
extracellular virions can be demonstrated in-between pro-
cesses of virus-infected cells (Fig. 4). Major nuclear changes
in infected host cells include hypertrophy, inclusions, central
clearing of nucleoplasm and margination of chromatin (Jef-
fery et al. 2007). In cytoplasm, swelling of organelles and
membranes destruction can be noted. Goodwin et al.
(2006a) demonstrated hexagonal virions of 95 x 106 nm

805



R. S. Thangaraj et al.

Figure 4 Transmission electron micrograph of infected tissues in infected goldfish. (a) Enlarged nucleus with marginalized chromatin in liver cells;
(b) Enlarged nucleus with marginalized chromatin in kidney cells; (c) Fully formed virions had an outer membrane and electron dense core in liver cells
of infected goldfish; (d) Fully formed virions had an outer membrane and electron dense core in kidney cells of infected goldfish.

within the cytoplasm of infected tissues. Lovy and Friend
(2014) demonstrated different stages of viral morphogenesis
viz., empty capsids, capsids with an inner linear concentric
density, capsids with an electron-dense core and mature cap-
sids containing an envelope in the tissues fixed in 10% neu-
tral buffered formalin. In infected Prussian carp, Luo et al.
(2013) reported hexagonal, enveloped virus particles of 170—
220 nm in diameter in cytoplasm and extracellular spaces of
affected kidney tissue. Wu et al. (2013) detailed different
stages of CyHV-2 assembly in infected gill, spleen and kidney
of Prussian carp such as entire particles with electron-dense
cores and incomplete virus-containing empty cores. They
further described the maturing process of CyHV-2 through
Golgi apparatus, resulting in an enveloped virion within a
vesicle inside cytoplasm. The viral nucleocapsids in nuclei
and enveloped viral particles in the cytoplasm were approxi-
mately 95-110 nm and 170-200 nm in size, respectively.
Fichi ef al. (2013) demonstrated herpesvirus-like particles in
gills of infected crucian carp. In diseased gibel carp, ultra-
structural lesions of virus-infected cells included enlarged
nuclei and margination of chromatin (Xu et al. 2013). The
authors also measured virion assembly within nuclei of
haematopoietic cells as nucleocapsid and mature enveloped
virus of 90-120 nm and 170-200 nm in diameter, respec-
tively. Further, they described that the negatively stained
purified virions as hexagonal in shape having a diameter of
110-120 nm.
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Immune response inside host

Understanding the host immune response in viral infec-
tions can provide useful clues for diagnosis, control and
prevention. However, such studies pertaining to CyHV-2
infections in fish are very limited. It is proven that initial
load of viral dose entering the host plays a significant role
in host—viral interactions and thus determines the outcome
of CyHV-2 infection (Xu et al. 2014). In general, innate
immunity as well as adaptive immunity efficiently sup-
presses the disease progress at lower viral load infections
(Xu et al. 2014). Whereas, Nanjo et al. (2017) investigated
the humoral immune response in a passive immunization
in native goldfish with the sera of the surviving goldfish. It
is also reported that many surviving goldfish after CyHV-2
infection can acquire resistance to the disease after severe
infection (Nanjo et al. 2016). Water temperature is another
factor that plays a significant role in host-CyHV-2 interac-
tions (Nanjo et al. 2017). High water temperature treat-
ments are reported to elicit immunity to CyHV-2
infections in survivor fish (Nanjo et al. 2017) even though
the underlying mechanism has not been resolved. The pro-
posed mechanism may be due to innate immune system
attacking and excluding virus-infected cells more effectively
at higher water temperatures, reducing mortality. Although
virus reactivation was observed in some cases when temper-
ature is back to optimal viral temperature, the reactivated
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Figure 5 Cytopathic effects of the different goldfish cell line and cell lines from other fish species infected with CyHV-2 in different passages at dif-
ferent days post-inoculations (dpi). (a) Fantail goldfish fin (FtGF) cell line at passage 5 at 7 dpi; (b) Fantail goldfish gill (FtGG) cell line at passage 10 at 5
dpi; (c) Fantail goldfish liver (FtGL) cell line at passage 8 at 6 dpi; (d) Fantail goldfish brain (FtGB) cell line at passage 3 at 10 dp.

virus may continuously stimulate the immune system and
contribute to strong adaptive immunity. Thus, shifting the
fish rearing water temperature to non-permissive tempera-
ture can be a promising strategy for the control of CyHV-2
infection (Nanjo et al. 2017). However, further detailed
immunological studies are required to define the host
responses responsible for reducing mortality during high
water temperature treatment.

Immunological analysis of CyHV-2 infections is mainly
limited by the lack of immunological tools available for the
goldfish, such as antibodies specific to goldfish T-cell sub-
sets. Clonal ginbuna C. auratus langsdorfii has been used in
many fish immunology studies and was found to be a
promising model species for the study of CyHV-2 infection
and immunity (Nanjo et al. 2017). Elucidating the differ-
ences in immune gene expression profiles between dead
and surviving fish populations would also provide vital
information about viral pathogenicity and shed light to
develop antiviral strategies. Hence, Xu et al. (2014)
attempted to study the differential gene expressions in
moribund and surviving crucian carp to CyHV-2 infection
thorugh suppression subtractive hybridization (SSH) fol-
lowed by the sequencing and analyses of ESTs. The authors
noted large differences existing in the differential gene
expression profiles between the moribund and survivor fish
group. Further characterization of keratin8, MPO and dus-
pl genes by Podok et al. (2014) and NF-Kb inhibitor, Rab
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GTpase (Rab21), small GTP binding protein (Rac2) genes
by Xia et al. (2016) confirmed the over-expression of these
genes in CyHV-2 infections, pointing out their potential as
marker genes in disease investigations. Another study car-
ried out on the expression profiling of kidney tissue of sil-
ver crucian carp using digital gene expression tag profiling
(DGE) from both control and moribund fish revealed that
around 2912 genes were differentially modulated (Lu et al.
2017). Out of these 2912 modulated genes, 1422 were up-
regulated and 1490 were down-regulated. GKEGG enrich-
ment analysis showed that genes involved in proteasome,
neuro-active ligand-receptor interaction, calcium signalling
pathway and peroxisome proliferator-activated receptors
(PPAR) signalling pathways were enriched in infected fish.
Further, quantitative RT-PCR confirmed that three genes
namely, major histocompatibility complex-I (MHC-I),
interferon regulatory factor 3 (IRF3) and mitogen-Acti-
vated Protein Kinase 7 (MAPK?7) genes were up-regulated
during CyHV-2 infection in silver crucian carp (Lu ef al.
2017). All these findings might pave the way for future
analysis of immune-related genes involved in antiviral
immunity of CyHV-2 infection, ultimately helping to
design novel diagnostic and antiviral strategies. Recently,
Lu et al. (2018b) reported that host miRNAs are involved
in CyHV-2 infection in gibel carps and participate in the
regulation of apoptosis and immune-related genes. Xia
et al. (2018) identified and characterized crucian carp IFNc
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(ccIFNc) ccIENc as belonging to the type I interferon fam-
ily with a potential role in countering CyHV-2 infection in
crucian carp. Lu ef al. (2019) reported that CyHV-2 miR-
C12 suppresses virus-induced apoptosis and promotes
virus replication by targeting caspase 8 and over-expression
of miR-C12 reduces the expression of caspase 8 and inhi-
bits CyHV-2 induced apoptosis. Fan et al. (2020) cloned
and sequenced the complement C3 gene, designated
CagC3, from Gibel carp and proved that CagC3 was
involved in the innate immune response of Gibel carp to
CyHV-2 infection. Briefly, both innate and acquired immu-
nity plays a crucial role in providing protection in goldfish
against CyHV-2 diseases and high water temperatures are
reported to elicit better immune responses against CyHV-
2.

Latency inside host

Considering the lengthy incubation period of the disease
and the fact that disease is often precipitated by variations
in water temperature or by predisposing factors like stress,
CyHV-2 has been generally considered as a latent virus
(Goodwin et al. 2009). Many reports have also demon-
strated that Cyprinivirus, mainly CyHV-2 and CyHV-3, can
lead to latent infection in infected fish (Reed et al. 2014;
Wei et al. 2019). Virus density of CyHV-2 in an apparently
healthy goldfish was found in the range of 10°~10> which
may occasionally go as high as 107710° (Goodwin et al.
2009). A very recent study by Chai et al. (2020) confirmed
that CyHV-2 established latency in fish following the pri-
mary infection and the latency could be reactivated by tem-
perature stress in vivo. They also showed that a novel cell
line derived from the brain of gibel carp (GCBLatl) sup-
ports the CyHV-2 latency, which offers an in vitro model to
investigate the mechanism of latency and reactivation for
CyHV-2. The exact mechanism of latency in CyHV-2 is not
established yet, however, production of virus-encoded
microRNAs that facilitate viral invasion by exploiting vari-
ous intracellular signalling pathways of host was demon-
strated in these viral infections (Donohoe et al. 2015; Lu
et al. 2017). Establishing the molecular mechanism
employed by CyHV-2 in latency may lead to novel antiviral
strategies. An interesting study by Lu et al. (2017) identified
17 viral miRNAs from CyHV-2-infected crucian carp kid-
ney that are involved in innate immune signalling pathways
of host. They have shown that three host genes namely,
PIN1, IRF3 and RBMX involved in RIG-I-like immune
pathway are the major targets of CyHV-2-encoded miR-
NAs. The identified miRNAs were found to be distributed
across the viral genome with major clusters at ORF42 and
ORF114. Application of quantitative PCR and northern
blotting techniques revealed that miR-C5 and miR-C4 were
the most abundant among these 17 viral miRNAs (Lu et al.
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2017). Subsequently, it was reported that host miRNAs are
also involved in CyHV-2 infection and participate in the
regulation of apoptosis and immune-related genes (Lu
et al. 2018a). Of the total 888 detected miRNAs of this
study, 840 were known and rest 48 were novel miRNAs (Lu
et al. 2018a). Very recently, the same team found that, out
of the 17 viral miRNAs, CyHV-2 miR-C12 is the important
suppressor of CyHV-2-induced apoptosis of host cells by
down regulating caspase 8 expression, promoting viral
latency and propagation (Lu ef al. 2019). In brief, evidences
suggest that CyHV-2, may become latent and/or persistent
in surviving fish after acute infection. Various stress includ-
ing change in water temperature, maturation of animal,
transportation, injury and secondary infection, may reacti-
vate such latent CyHV-2, leading to the shedding of virus
and spreading of infection to other fish in pond.

Diagnosis of CyHV-2 Infection

As in any disease, the first challenge in handling the out-
breaks of CyHV-2 infections is to establish the diagnosis. A
presumptive diagnosis is usually made based on the history
especially, import from enzootic areas, clinical signs, gross
and histological lesions which have been detailed earlier.
Serum biochemical analyses of diseased fish may be an
adjunct to the diagnosis and Lu et al. (2018b) showed that
there were significant increases in alanine aminotransferase,
aspartate aminotransferase, alkaline phosphatase and lactate
dehydrogenase activities, and significant decreases in total
protein, globulin, total bilirubin, creatinine and urea levels
in CyHV-2 infection. A more precise presumptive diagnosis
is based on electron microscopy findings (described under
the section electron microscopy), in vitro viral isolation and
by specific molecular and immunological methods.

Virus isolation and propagation

In vitro isolation of CyHV-2 has been attempted since the
very beginning of 1992. During these earlier studies,
CyHV-2 could not be propagated on different cell lines
continuously beyond 4-5 passages, which was a major
obstacle to gathering information on viral pathogenesis.
The first attempt on in vitro isolation of CyHV-2 was
described by Jung and Miyazaki (1995), where a series of
cell lines such as fathead minnow (FHM), epithelioma
papulosum cyprini (EPC), eel kidney (EK-1), chinook sal-
mon embryo (CHSE-214), rainbow trout gonad (RTG-2)
and tilapia ovary (TO-2) were used. However, CPE (cyto-
pathic effects) were observed only in FHM, EPC and TO-2
cells. Later on different cell lines like koi fin (KF-1), bluegill
fibroblast 2 (BF-2), goldfish (GF-1), common carp brain
(CCB), standard Ryukin Takafumi (SRTF), Ryukin fin
(RKE), Cyprinus carpio koi fin (CCKF), Goldfish fin (GFF),
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Gibel Carp Brain (GiCB) were also attempted for CyHV-2
isolation (Table 2). Except Jung and Miyazaki (1995), other
authors have found that EPC cell line is not successful in
CyHV-2 isolation (Groff et al. 1998; Goodwin et al. 2006a;
Jeffery et al. 2007; Fichi et al. 2013; Lovy & Friend 2014).
KE-1 cell line was capable for isolation of CyHV-2 till the
fifth passage (Xu et al. 2013). Ito et al. (2013) propagated
CyHV-2 up to 12 passages in GFF and SRTF cell lines.
However, the yields of virus from these cells were very low,
achieving a maximum titre of 10>° * 26_10%? * 030
TCIDs, mL ™. Thus, isolation and continuous propagation
of CyHV-2 has been very challenging due to the lack of per-
missive cell lines. In 2015, a cell line was developed from
Gibel Carp Brain which gave a lead by propagating CyHV-
2 up to 50 passages (Ma et al. 2015). The highest viral titre
of CyHV-2 was obtained from this GiCB cell line which
was about 10”° * %% TCIDs, mL™". Lu et al. (2018b)
developed a novel cell line, GiCF cell line (C. auratus gibelio
caudal fin cell line) for establishing CyHV-2 replication in
which the virus induced apoptosis. The virus titre reached
10*? * 22 TCID5, mL ™', and infectious CyHV-2 was pro-
duced from the GiCF cells over 30 subcultures. Xu et al.
(2019) demonstrated CPE in two newly developed brain
cell lines CrCB and GFB from 3d after infection with
CyHV-2 in silver crucian carp and goldfish, respectively.
The cell line GiCF may serve as an ideal infection platform
to characterize the apoptosis effect of CyHV-2. Chai et al.
(2020) established a novel cell line derived from the brain
of gibel carp (GCBLatl) which supports the CyHV-2
latency, and the same can be used to investigate the mecha-
nism of latency and reactivation. Recently, we developed a
highly sensitive cell lines, Fantail Goldfish Fin (FtGF), Fan-
tail Goldfish Gill (FtGG), Fantail Goldfish liver (FtGL) and
Fantail Goldfish brain (FtGB) for continuous propagation
of CyHV-2 and compared their permeability in the propa-
gation of CyHV-2; through which we could serially passage
the virus in FtGF over 20 times achieving a high titre of
1078 £ 920 TCIDs, mL ™! in the early passage levels (unpub-
lished data).

The major cytopathic affects (CPE) induced by CyHV-2
in all these cell lines include pyknosis, granulation, cyto-
plasmic vacuolization, syncytium formation in focal areas,
appearance of rounded bright cells and lysis in the early
stages, which were also observed in our lab (Fig. 5). In
later stages the infected cells became rounded, leading to
the formation of holes and finally the destruction of
monolayer (Jung & Miyazaki 1995; Jeffery et al. 2007;
Danek et al. 2012; Xu et al. 2013; Ito et al. 2013; Ma et al.
2015; Sahoo et al. 2016). Hine et al. (2006) detailed the
measurement of different stages during the assembly of
viral particles in infected cell lines viz., capsids, nucleocap-
sid and virions as 112 + 4 nm, 103 +£ 6 nm and
170 &+ 12 nm, respectively. Ma et al. (2015) observed
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complete replication of CyHV-2 in GIiCB cells infected
with CyHV-2.

Immunological techniques

In virology research, monoclonal antibodies (mAbs) are
known as efficient tools for the screening, diagnosis, assess-
ment of viral pathogenesis and immunotherapy of disease
(Shi et al. 2003; Fofana et al. 2013; Wang et al. 2013). Ding
et al. (2014) developed a more specific and stable fluores-
cence in situ hybridization (FISH) probes labelled with 6-
Carboxyfluorescein (6-FAM) for the detection of CyHV-2
polymerase gene sequences in tissue samples. CyHV-2
infection was confirmed in the peripheral blood cells of sil-
ver crucian carp, C. auratus gibelio (Bloch) using in situ
hybridization (Wang et al. 2016). Monoclonal antibody-
based indirect fluorescent antibody method was used to
detect CyHV-2 infection in goldfish (Nanjo et al. 2016),
which produced strong staining signal in infected and dead
fish. In another study Kong et al. (2017) prepared mono-
clonal antibodies against recombinant ORF72 protein
(pORF72) of CyHV-2 and then established an immunohis-
tochemical protocol and a blood smear method to detect
CyHV-2 in carps using the same monoclonal antibody.
Monoclonal antibody mAb-1B7 was produced against
PORF92 and used for the detection of CyHV-2-infected
crucian carp by western blotting and indirect immunofluo-
rescence assays (IFA) methods (Shen ef al. 2018).

Molecular techniques

The major challenge in diagnosis of CyHV-2 is posed by
the latency of virus in apparently healthy fish, because
latently infected animals may carry the viral genome with-
out producing infectious particles so that false-negative
reactions are possible in cell culture or immunology-based
diagnostic methods. Even though quantification of antiviral
antibodies that would indicate prior virus exposure can
detect latent infections, duration of detectable titres against
specific pathogens is quite variable in fish (Bricknell et al.
1997). More importantly, fish carrying the virus without
developing acute disease will not have antibodies (Goodwin
et al. 2006b). These limitations in cell culture and immuno-
logical methods for detection of latent herpesviral infec-
tions make molecular methods which rely on detection of
viral genome, indispensable in diagnosis of CyHV-2 infec-
tions (Gray et al. 2002). Accordingly, a number of conven-
tional and RT-PCR (real time PCR) protocols have been
developed for molecular detection of CyHV-2 from natural
infections, experimental infections and from cell culture
(Table 3). Among the conventional PCR methods, it was
Waltzek et al. (2005) who first amplified three different
genes of CyHV-2 namely, helicase (867 bp), DNA

Reviews in Aquaculture (2021) 13, 796-821
© 2020 John Wiley & Sons Australia, Ltd



Review on CyHV-2

Table 3 List of primer used for detection of CyHV-2 infection in natural disease outbreak and experimental challenge studies

SINo Gene Sequence

Product Size References

1. Helicase F CTGATCATCGACGAGTACGG 867 Waltzek et al. (2005)
R CACACGCGTGCACACNACRTA

2. Intracapsomeric triplex protein F CACTCTGGCGACGCNTTYATG 259
R CATCACAGAGTTCTTGACNGC

3. DNA Polymerase F CGGAATTCTAGAYTTYGCNWSNYTNTAYCC 497
R CCCGAATTCAGATCTCNGTRTCNCCRTA

4. DNA polymerase F TCGGTTGGACTCGGTTITGTG 170 bp Goodwin et al. (2006a)
R CTCGGTCTTGATGCGTTTCTTG
P FAM-CCGCTTCCAGTCTGGGCCACTACC-BHQ1

5. DNA Polymerase F CCAGCAACATGTGCGACGG 362 Jeffery et al. (2007)
R CCGTARTGAGAGTTGGCGCA
F CGACGGVGGYATCAGCCC 339
R GAGTTGGCGCAYACYTTCATC

6. Helicase F GGACTTGCGAAGAGTTTGATTTCTAC 366 Waltzek et al. (2009)
R CCATAGTCACCATCGTCTCATC

7. Helicase F GAACACCGCTGCTCATCATC 357 Xu et al. (2013)
R ACTCTTCGCAAGTCCTCACC

8. DNA Polymerase F CCCAGCAACATGTGCGACGS 362 Boitard et al. (2016)
R CCGTARTGMGAGTTGGCGCA

9. Marker A (mA) F CCACTTAGAGTAACCACTTAGAG 432
R GCGTTGACTCATTTGCGGTTTG

10. Marker B (MmB) F ATCATGGAAGATGTTCTGGCCAG 475

R CAGCAGCAACTGAGCGTCATG

polymerase (497 bp) and intra capsomeric triplex protein
(259 bp) for detection of CyHV-2. Subsequently, another
set of primers based on the conserved polymerase gene
sequences between the three fish herpesviruses (CyHV-1,
CyHV-2 and CyHV-3) was used by Jeffery et al. (2007)
which successfully amplified 362 bp product from CyHV-2-
infected fish. Afterwards, the same primer set was used in
numerous studies for confirmation of CyHV-2 infection in
both natural disease outbreak and experimental challenge
studies (Wang et al. 2012; Danek et al. 2012; Fichi et al. 2013;
Boitard et al. 2016). Subsequently, Waltzek et al. (2009)
developed another PCR reaction based on helicase gene of
CyHV-2. Xu et al. (2013) designed primers that can amplify
partial segment of helicase gene (357 bp), for the diagnosis
of HVHND in C. auratus gibelio. The detection limits for
CyHV-2 and spring viraemia of carp virus (SVCV) detection
were reported as approximately 88 copies of the cloned viral
genomic fragments for both, and there was no cross reaction
with other infectious agents and host DNA. Later, two set of
primers, one targeting marker A (mA) located in the inter-
genic region between CDS2 and CDS3 within the terminal
direct repeat (TR), and another targeting marker B (mB)
located at the 3’ end of ORF117 were used for molecular
detection of CyHV-2 by Boitard et al. (2016). Of these
genetic marker, mB was found to be identical in different
isolates, suggesting suitability for molecular diagnosis of
CyHV2 infections, and unsuitability to be used in molecular
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tracing studies. On other hand, as the length of mA region
among different CyHV-2 strains is different, molecular diag-
nosis using mA-based primers have to be verified by
sequencing to avoid incorrect diagnosis. At the same time,
such variability in mA region can be explored for further
research on the rate of mutation of the different motifs in
this region of CyHV-2 to study the genetic variation and
rapid genotyping (Boitard et al. 2016; Ito et al. 2017).
However, the conventional PCR is very useful for finding
out the presence and absence of viral genomes in both dis-
eased fish and cell culture nucleic acid. It may not differen-
tiate between healthy fish and fish with latent infections.
Thus, detection of CyHV-2 in conventional PCR may not
be a proper diagnostic tool for identifying active disease
cases, so that RT-PCR results are more preferred in diagno-
sis. Further, RT-PCR using specific fluorescent probes has
smaller chance of false positives caused by contamination.
Accordingly, Goodwin et al. (2006b) developed a highly
specific real time 5’-nuclease PCR method (TagMan) tar-
geting DNA polymerase gene of CyHV-2 with a linear
response over 8 logs of target concentration. The reported
sensitivity was 1 target molecule per reaction. The assay did
not cross-react with other similar fish herpesviruses,
including CyHV-1 and CyHV-3 and differentiated clinical
and latent cases of CyHV-2 infection. Apart from conven-

tional and RT-PCR, molecular methods like in-situ
hybridization, loop-mediated isothermal amplification
813
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(LAMP) assay and isothermal RPA (Recombinase poly-
merase amplification) have been applied in CyHV-2 diag-
nosis. Ding et al. (2014) and Xu et al. (2014) applied in-situ
hybridization and fluorescence in situ hybridization (FISH)
for the localization of specific probes against nucleic acid
for confirmation of cellular changes caused by CyHV-2 in
focal necrotic lesions of kidney, spleen, liver and gill tissue.
LAMP assay was developed for field level diagnosis of
CyHV-2 with limited resources by He et al. (2013) and
Liang et al. (2014) that could detect 10 copies/ pL and
1.09 x 10 * ug uL ™" DNA of CyHV-2, respectively. Zhang
et al. (2014) also developed a LAMP-PCR assay for the
rapid detection of CyHV-2 in Gibel Carp (C. auratus gibe-
lio). However, higher chance of false-positive reactions due
to cross-contamination should be considered during the
application of LAMP-PCR assay in diagnosis. Recently, a
rapid and more convenient detection assay based on
isothermal RPA (recombinase polymerase amplification)
and lateral flow dipstick (LFD) was developed by Wang
et al. (2018) for detecting CyHV-2 under field conditions.
For this, the highly conserved ORF72 of CyHV-2 was tar-
geted by specific and sensitive primers and probes. The
optimized RPA assay takes about 45 min (15 min at 38°C
using water bath for reaction and 30 min for analysis of
products by 2% agarose gel electrophoresis). A simple lat-
eral flow strip based on the unique probe in reaction buffer
was developed for visualization. The entire RPA-LFD assay
takes 50 min less than the routine PCR method, was 100
times more sensitive and displayed no cross reaction with
other aquatic viruses. Recently, we have developed new
LAMP and PCR assays for detection of CyHV-2 infection
that were highly specific and sensitive and capable of
detecting 10 copies of the plasmid construct containing
942 bp fragment of MCP gene of CyHV-2.

Experimental challenge studies

Experimental challenge trials are often required in aquatic
animals to study disease pathogenesis, host-pathogen inter-
actions within different environments as well as for the
comparison of performance between various existing and
novel diagnostic tests, treatments and vaccine efficacy.
Experimental challenges of CyHV-2 have been carried out
mostly by intraperitoneal (i/p) injections of the homoge-
nates from infected tissues or cell culture fluid isolated
from virus-infected flasks (Jung & Miyazaki 1995; Hedrick
et al. 2006; Ito et al. 2013; Xu et al. 2013; Zhou et al. 2015;
Sahoo et al. 2016). In the first report of CyHV-2, healthy
goldfish inoculated with 0.1 ml of 10*°, 10*° and 10>’
TCIDs, of 1st and 2nd passage virus began to die within 3—
6 days post-inoculation (dpi) and cumulative mortalities
of 100% and 60% occurred within 13 days, among the
groups challenged with the highest and lowest viral titre,
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respectively (Jung & Miyazaki 1995). However, no disease
was observed among koi carp after i/p injection of CyHV-2
(Jung & Miyazaki 1995; Hedrick et al. 2006; Sahoo et al.
2016). Xu et al. (2013) carried out experimental infections
in healthy C. auratus gibelio (gibel carp) by i/p injection of
filtrated tissue homogenate of diseased fish, where mortality
began at 6 dpi and the mortality reached 100% at 12 dpi. Ito
et al. (2013) examined the influence of water temperature on
the development of disease in goldfish following i/p chal-
lenge with CyHV-2 and found that temperature of 20-25°C
is highly suitable for disease development, whereas at 13-
15°C fish acquired resistance and acted as carriers. Nanjo
et al. (2016) showed that exposure to higher temperature
(34°C for 6 days) reduced the mortalities in experimentally
challenged CyHV-2 fish (with a dose of 10*° TCIDsy/ fish i/
p) demonstrating initiation of immunity at higher tempera-
ture. Apart from these i/p infection studies, intramuscular
(i/m) and immersion routes have also been attempted. Wang
et al. (2012) induced CyHV-2 infection in healthy Prussian
carp by i/m injection of the infected tissue filtrate, where 100%
mortality was observed. Ito et al. (2013) conducted experi-
mental infections in 2 varieties of goldfish (Ryukin and Edon-
ishiki) with CyHV-2 virus passaged 7 times in GFF cells by
either i/p or immersion method. The cumulative mortality
was 30% and 100% in Ryukin variety following the immersion
and i/p challenge at 20°C. There was 90% cumulative mortal-
ity in Edonishiki variety in both i/p challenge at 20°C and
immersion challenge at 25°C. Through experimental studies
either by i/p injection or immersion of CyHV-2-infected GFF
cell culture supernatant, Ito and Maeno (2014) showed that
susceptibility of Japanese indigenous Cyprininae fish viz., gin-
buna, C. auratus langsdorfii, nagabuna, C. auratus buergeri,
nigorobuna, C. auratus grandoculis and common carp (C. car-
pio) to CyHV-2 is much lower than that of goldfish. Thus,
comparison between the experimental challenge studies
through i/p and immersion method showed that both meth-
ods are effective in causing the infection and disease diagnosis
(Ito et al. 2017); however, i/p-injected fish showed symptoms
of CyHV-2 earlier than the fish infected by immersion method
(Sahoo et al. 2016). In both routes, the clinical signs produced
after challenge studies were same as that of naturally infected
fish.

Prophylaxis and control

Owing to serious outbreaks of CyHV-2 infections in many
countries and resulting enormous financial losses to aqua-
culture industry as reported by Xu et al. (2013), it has
become vital to design suitable preventive and control mea-
sures. It was reported that CyHV-2 has spread to almost all
main areas of cultured gibel carp in Jiangsu province,
China during 2011-2012 (Xu et al. 2013). As there are no
effective drugs or vaccines currently available for CyHV-2,
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control strategies are mainly based on the prevention of this
disease rather than to cure. In general, several aquatic ani-
mal disease management strategies have to be followed
such as health certification and quarantine of imported
stocks as well as strict biosecurity measures at farm level,
etc. Many studies have confirmed that the spread of CyHV-
2 is influenced to great extent by global trade of apparently
healthy infected goldfish (Adamek et al. 2017; Ito et al.
2017; Panicz et al. 2019). Thus, it is of utmost importance
to screen imported goldfish varieties for CyHV-2 in quar-
antine facilities using sensitive diagnostic methods before
introducing fish on local markets. It is also necessary that
the female brooder must be inspected for CyHV-2 infec-
tions before supplying their fry (Zhu et al. 2018).

Studies on the physical and biochemical properties of
CyHV-2 will help in designing potential specific mecha-
nisms to interfere the viral pathogenicity. More precisely,
the range of 20-25°C and lower temperatures (16.1-
20.5°C) are considered as the optimal temperature for
CyHV-2 infection in goldfish (Ito & Maeno 2014) and gibel
carp (Danek et al. 2012), respectively. These observations
suggested that CyHV-2 infection can be controlled by
maintaining the water temperature at 33-35°C for goldfish
(Ito & Maeno 2014) and 32°C for Prussian carp (Liang
et al. 2015) which have been successfully used by different
workers. Shibata et al. (2015) also documented that the
temperatures of 34°C are non-permissive to CyHV-2.
However, as per Panicz et al. (2019), stressogenic effect due
to fluctuations in water temperature leading to a significant
reduction in fish immunity is more important than the
absolute value of temperature. Therefore, preventing a
broad fluctuation in rearing water is also important in con-
trolling the outbreaks. Results of pH and salinity experi-
ments indicated that CyHV-2 had a high tolerance to pH
and salinity; which suggests that disease outbreaks cannot
be controlled by adjusting salinity or pH (Liang et al.
2015). Among the chemical agents, CyHV-2 was found to
be sensitive to IUdR (5-iodo-2-deoxyuridine), acid (pH 3),
ether and chloroform (Jung & Miyazaki 1995; Liang et al.
2015), which all might be tried in decontamination/inacti-
vation purposes.

Vaccination and use of immunostimulants in aquacul-
ture have emerged as one of the most effective disease pre-
ventive strategies against infectious agents (Dadar et al.
2017). Experimental studies on CyHV-2 vaccines have been
initiated since 2013 which are detailed here. It was Ito and
Ototake (2013) who first attempted a formalin-inactivated
vaccine against HVHN in goldfish. They found that the
vaccine developed from the formalin-inactivated cell cul-
ture supernatant of CyHV-2-infected GFF cells provided a
relative percentage survival (RPS) value of 57% in the chal-
lenged goldfish. After that, Ito and Maeno (2014) found
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that the protective efficacy period of this vaccine was at
least 8 weeks after i/p vaccination. They also demonstrated
that a booster vaccination at 4 weeks of initial dose could
enhance the protection (RPS value around 64%). Zhang
et al. (2016) used P-propiolactone to prepare inactivated
CyHV-2 vaccine. They could establish that there was an
induction of both innate and specific antiviral immune
response against this vaccine in cultured gibel carp through
various immune assays (phagocytic activity, lysozyme and
superoxide dismutase activity, blood cell counting, immune
gene expression analysis, neutralizing antibody titration).
More importantly, the challenge test demonstrated that the
immunized gibel carp had a RPS value of 71.4%. Apart
from inactivated vaccines, subunit vaccination studies have
also been initiated in CyHV-2 research. Zhou et al. (2015)
explored yeast expression system (Pichia pastoris) for the
production of three recombinant truncated proteins of
CyHV-2 viz., tORF25, tORF25C and tORF25D and showed
that these recombinant truncated proteins could be poten-
tial candidate vaccines against CyHV-2 infections in gibel
carp through experimental challenge studies. Another study
analysing amino acid sequence homology of core ORFs
from the alloherpesviruses family showed the 4 core ORFs
(ORF33, ORF79, ORF92 and ORF107) are more conserved
in this family and can be used as antigen candidates of
genetic vaccine against Alloherpesviridae (Liu et al. 2018),
however, in vivo validation of this finding has not been
conducted till date. Similarly, very recently, Gao et al.
(2020) identified eight major immunogenic proteins of
CyHV-2 in mice, namely pORF92, pORF115, pORF25,
pORF57, pORF66, pORF72, pORF131 and pORF132,
which are also to be targeted in future immunization stud-
ies in fish. Recently, a live vector vaccine against CyHV-2
based on recombinant baculovirus BacCarassius-D4ORFs
containing a fused codon-optimized sequence D4ORFs was
developed and proved as a potential candidate vaccine
against CyHV-2 infection in gibel carp in China (Li et al.
2019). Yan et al. (2020) proved the efficiency of B-propio-
lactone-inactivated Cyprinid herpesvirus-2, mixed with B-
glucan or anisodamine as immersion immune adjuvant
and also provided reference for improving the efficiency of
immersion immunity. A DNA vaccine, pEGFP-N1-ORF25
based on the ORF25 gene of CyHV-2 was constructed by
Yuan et al. (2020) which have a strong immune protection
effect against CyHV-2 in Prussian carp. In short, as there
are no effective drugs or vaccines available for CyHV-2,
control strategies focusing on strict biosecurity measures
and strict health certification and quarantine of imported
stocks are strongly recommended in the present scenario.
Further, research focusing on developing effective vaccines
and immunostimulants are urgently required for the real
containment of the disease.
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Current challenges and future perspectives

Currently, CyHV-2 is widespread in mainly Carassius sp. in
different countries and outbreaks apparently occur when
healthy carriers are exposed to different stressors. The dis-
ease is recognized to cause huge economic losses and social
impacts on both ornamental and food fish aquaculture
industries (Zhu et al. 2018). Huge economic losses due to
the CyHV-2 infection among cultured gibel carp in China,
during 2011-2012 (Xu et al. 2013), mass mortality in cru-
cian carp during 2012 in Italy (Fichi et al. 2013), 95% mor-
tality in goldfish during 2014 in France (Boitard et al.
2016), 85% mortality in goldfish during 2016 in Poland
(Panicz et al. 2019) had been reported. Identification of the
major research gaps, and questions requiring more investi-
gations in CyHV-2 research are outlined here.

We have listed certain important challenges and future
perspectives including understanding the complete host
range for CyHV-2, establishing the modes and routes of
transmission of CyHV-2 in relation to severity of disease,
host immune response against CyHV-2, mechanism of
latency and reactivation of CyHV-2 and development of
specific disease management strategies such as selective fish
breeding for disease resistance and efficacious vaccines in
mitigating the diseases outbreaks due to CyHV-2 in fish
worldwide.

The host range and transmission of CyHV-2 infection is
still not well defined. The success of prophylactic efforts
cannot be guaranteed until the host range and route of
transmission is defined. Even though the disease was
reported as a specific disease of goldfish, it is now known
that the CyHV-2 can infect a much wider range of cyprinid
species (Hedrick et al. 2006; Bergmann et al. 2010; Fichi
et al. 2013; Zhu et al. 2018). As discussed earlier, severe nat-
ural CyHV-2 infections are now reported from crucian
carp, Prussian carp and allogynogenetic crucian carp. Fur-
ther, the recent findings of Zhu et al. (2018) indicated that
CyHV-2 can cross-infect among different species of fish. In
contrast, a specific host recognition factor was suggested in
previous reports (Puck 2013; Liang et al. 2015). Thus,
understanding the host range is an important research area
in CyHV-2 research, impacting virus acquisition and dis-
semination, and may lend itself to adoption of novel pre-
ventive and control strategies. Also, the role of common
carp in CyHV-2 infection is not defined till date. Common
carp reared in neighbouring cages of goldfish did not exhi-
bit any clinical signs as per Boitard et al. (2016) who
described HVHND mortality outbreaks in France. Addi-
tionally, Hedrick et al. (2006), and Ito and Maeno (2014)
did not report mortalities of common carp immersed in or
injected with CyHV-2 suspension. However, Panicz et al.
(2019) identified CyHV-2 DNA in gill and blood samples
of asymptomatic common carp. Thus, further studies are
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required to provide data on probable role of common carp
as vector and other fish species in CyHV-2 infections,
routes of penetration of virus into these vectors, clearance
rate and the possible replication of CyHV-2, and research
on these lines will also throw new insights on control
strategies (Panicz et al. 2019).

Establishing the modes and routes of transmission in
relation to severity of disease will be another important
future direction. Emerging evidence suggests vertical trans-
mission is possible for CyHV-2 (Goodwin et al. 2009; Zhu
et al. 2018); even though it is not confirmed and, if possible
whether transmission is inside or on outside of the gametes
have to be targeted in future studies (Zhu et al. 2018). Simi-
larly, even though several potential vectors including fish
droppings (Dishon et al. 2005), aquatic invertebrates
(Kielpinski et al. 2010), plankton (Minamoto et al. 2011),
mechanical transmission of sick fish by piscivorous birds
(Ilouze et al. 2011) are reported for CyHV-3, such vectors
based on transmission studies have not been carried out for
CyHV-2 disease outbreaks elsewhere. Understanding the
interactions between the virus and their different host/ vec-
tors can underpin the approaches to protect fish from
infection by interfering with virus uptake and transmission.

Host immune response against CyHV-2 infection can be
another interesting arena to be investigated further, for
designing novel diagnostic, therapeutic and prophylactic
measures. Identification of the factors contributing to the
outcome of CyHV-2 infection (either lethality, sterile
immunity or persistent/ latent infection) other than the ini-
tial dose and water temperature will help design more effec-
tive control measures. Further, elucidating the molecular
basis of differential host response in varied dose or water
temperature is urgently needed. Many recent studies have
demonstrated differential expression of various genes after
CyHV-2 infection (Xu et al. 2014; Lu et al. 2017), which
warrant future investigation to determine individual roles
of these recognized genes (proviral or antiviral functions)
which will index potential marker genes in disease investi-
gations.

Ability of CyHV-2 to cause latent infections is confirmed
very recently by Chai et al. (2020). However, mechanism of
latency and reactivation is not fully established, and deci-
phering the pathways of latency remains challenging as
well. Production of virus- and host-encoded miRNAs to
promote CyHV-2 latency has been demonstrated by recent
studies in cell lines (Donohoe et al. 2015; Lu et al. 2017; Lu
et al. 2018b; Lu ef al. 2019). These studies have also pro-
vided unique insights into the canonical and non-canonical
roles of miRNAs in the regulation of host and viral gene
expression. This emerging interface between viruses and
miRNAs may uncover novel pathways in viral pathogenesis
and this knowledge will also help to provide new biomark-
ers for diagnosis and to guide specific drug design.
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However, the existence and role of these miRNAs during
CyHV-2 latency in-vivo remains to be confirmed. Further,
research targeted at ablating expression of miRNAs will
ultimately help in designing specific therapeutic interven-
tions to get rid of complete viral infection by forcing the
virus to lytic cycle. Anti-miRNA oligonucleotides (AMOs),
chemically modified synthetic oligonucleotides comple-
mentary to their target sequence, are one of options for
ablating the expression of miRNAs (Moen ef al. 2009). Dif-
ferent classes of AMO have been shown to be efficient in
silencing miRNA and may be useful therapeutic tools in
latent infections (Krutzfeldt et al. 2007; Mattes et al. 2007;
Esau 2008; Bruscella et al. 2017). Such studies have not
been initiated in CyHV-2 research and are warranted in
future. Further, research on understanding the detailed
mechanism of CyHV-2 latency and reactivation would con-
tribute to the prevention and control of CyHV-2 in the
aquaculture industry (Chai et al. 2020).

Development of specific disease management strategies
such as selective fish breeding for disease resistance, and
development of safe and efficacious vaccines are another
desperately needed area in CyHV-2 to be thoroughly inves-
tigated further (Ito & Ototake 2013). Selective breeding
programmes in animals have been mostly undertaken with
a goal to increase the productivity (Gjedrem & Thodesen
2005), although disease resistance also remains a major aim
as mortality caused by diseases is a major threat to aquacul-
ture (Gjedrem 2015). Quantitative trait locus (QTLs) for
resistance to viral diseases in Salmonids include QTLs for
infectious hemopoetic necrosis virus (IHNV) resistance
(Miller et al. 2004; Rodriguez et al. 2004), infectious salmon
anaemia virus (ISAV) resistance (Moen et al. 2007), viral
haemorraghic septicaemia virus (VHSV) resistance (Verrier
et al. 2013), salmonid alphavirus (SAV) resistance (Gonen
et al. 2015) and nervous necrosis virus (NNV) (Liu et al.
2016). Likewise, the identification of relevant QTL and the
application of molecular markers for marker-assisted selec-
tion (MAS) like infectious pancreatic necrosis virus (IPNV)
resistant Atlantic salmon, Salmo salar in both Norwegian
(Moen et al. 2009) and Scottish populations (Houston
et al. 2010), or the direct use of genotype data to perform
GS like IPNV resistance (Houston et al. 2012). NNV resis-
tance (Tine et al. 2014; Palaiokostas et al. 2015) are also
useful in raising disease resistance fish population. How-
ever, no such selective breeding programmes or QTL analy-
sis has been tried to identify the CyHV-2 resistant goldfish
stains, which are essential in future research. The current
status of experimental studies on CyHV-2 vaccines has
been detailed above. Novel approaches for fish vaccines can
be expensive to develop, but the limited success of
traditional approaches (inactivated cellular preparations)
especially in terms of duration of protective efficacy
demands further exploration of advanced approaches.
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Simultaneously, enhancement of efficacy of traditional vac-
cines using adjuvant and immunostimulants (both conven-
tional and new generation adjuvant like ligands for toll
receptors or different cytokines) are also warranted. With
the advancement of sequencing technologies, full genomes
of 4 different strains of CyHV-2 are available now. Future
studies underpinned by these CyHV-2 genome sequences
emphasizing pathogenesis, epidemiological, diagnostic and
therapeutic innovations will be critical and are necessary to
control this pathogen.

In conclusion, despite multiple approaches, CyHV-2
remains a serious epidemic threat causing huge economic
losses and social impacts in both ornamental and food fish
aquaculture industry. Furthermore, increasing reports of
CyHV-2 from various countries illustrate the global spread
of this virus through uncontrolled and often unregulated
fish trade. Several steps have been recommended to control
further spread of CyHV-2 and associated economic losses.
However, a robust translational research strategy on differ-
ent aspects of CyHV-2 infections to enable a more specific
and effective therapeutic, preventive and control strategies
are urgently required to limit the losses in aquaculture and
natural environment associated with this viral disease.
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