
1.	 INTRODUCTION
The use of appropriate designs is very important 

in agroforestry experimentation. In experimental setup, 
the arrangements and interactions of tree and crop 
components within/across plots deserve important 
consideration. The type and number of components 
involved in a particular agroforestry trial is dependent 
on the purpose of the trial. Whatever the purpose of 
the experiment may be, steps must be taken to ensure 
that the design used provides more precise estimates 
of effects of interest through proper accountability of 
sources of variation. 

Generally, experimental material in agroforestry is 
more heterogeneous because multiple components are 
involved. Whenever the heterogeneity in experimental 
material is believed to be traceable to two sources, the 
experimental plots may be arranged in row and column 
arrays giving rise to row-column designs. Designs 
with row-column structure have a place in practical 
experimentation and have received a reasonable 
amount of research attention. Freeman (1979) gave 

methods of constructing row-column designs balanced 
for neighbours with and without border plots. Federer 
and Basford (1991) presented three methods of 
constructing balanced nearest-neighbour row-column 
designs using models with two-dimensional layouts. 
An algorithmic approach has also been used to generate 
some neighbour balanced row-column designs (Chan 
and Eccleston, 2003). Varghese et  al. (2011, 2014) 
developed methods of constructing neighbour balanced 
row-column designs accounting for neighbour effects 
from the four adjacent neighbours and studied the 
characterization properties of those designs. Freeman 
and Williams (2016) discussed row and column 
designs with special attention to those in which the 
intersection of any row and any column results in only 
one experimental unit or plot.

Sometimes it may be required to layout an 
agroforestry experiment in multiple locations due 
to scarcity or heterogeneity of land, requirements of 
uniform land preparation, and cultural practices. Such 
a situation requires the use of resolvable designs in 
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which every sub-location will contain each treatment an 
equal number of times. Williams et al. (2006) studied 
efficient resolvable spatial row-column designs under 
a two-dimensional linear variance model. Piepho et al. 
(2015) carried out a brief review of row-column designs 
and showed that when such designs are resolvable 
they allow for even distribution of treatments among 
complete replicates.

Most of the previous investigations have 
considered models under block or row-column setups 
with directional neighbour effects. Though such 
models are appropriate for most agricultural trials, they 
may become inadequate when applied to agroforestry 
experiments due to the growth characteristics of trees. 
Trees constitute a major component and their influences 
could be experienced in all directions beyond the plots 
on which they stand, thus constituting neighbour or 
spill over effects. Moreover, interactions among trees 
on different plots can be seen as network of connectivity 
among the plots. Therefore the problem of developing 
designs for agroforestry trials gets much complicated 
when multiple trees and multiple crop species are 
being considered. When neighbour effects (from trees) 
are assumed to be same irrespective of the direction 
of the neighbours, a linear network effects model can 
be appropriately used. Parker et al. (2017) studied the 
linear network effects model in optimal designs on 
connected units with application to social networks. 
Unfortunately, little is known about any specific 
agroforestry design which can cater for all the above 
scenarios, hence the need to develop such designs.

In this study, we attempt to develop designs that 
are balanced for tree network effects pertaining to 
agroforestry experiments involving multi-tree and 
multi-crop species. Such designs will yield more 
precise estimates of estimated variance pertaining to 
tree-crop combinations after eliminating tree network 
effects, and permit for better understanding of the 
relationships among the different components of an 
agroforestry system.

2.	 CONSTRUCTION AND ANALYSIS OF 
TNetBD
Network is a concept drawn from Graph theory. 

According to Chartrand and Zhang (2012), a graph G 
refers to a finite nonempty set of  vertices, which are 
connected by a set of lines called edges ( ). Usually, the 
interactive structure among individuals or experimental 

units (EUs) can easily be specified when the EUs are 
considered as nodes or vertices, and the relationships 
or connections among them as edges in a graph. In 
designing of experiments, a network refers to an 
undirected graph comprising a collection of  
EUs on which some treatment is applied, and edges 

 which connect the EUs together. The 
connections between adjacent units are specified by an 

 adjacency matrix , where  if 
the th and th EUs are directly connected and  
otherwise . Usually,  is symmetric 
and  for all . The adjacency matrix  is 
very important because it specifies the connectivity 
among the EUs which is the fundamental assumption 
in linear network effects model. We illustrate this by 
considering a field divided into plots of which 12 are 
regular (Fig. 1). The adjacency matrix of the 12 regular 
plots in the layout is given below.

Fig. 1. Layout of plots in a field
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We adapt the network concept for use in agroforestry 
experimentation by considering that an agroforestry 
field, G, is partitioned into  mutually exclusive square 
plots. The partition is such that there are  inner plots 
and  edge plots (serving as borders). Therefore, 
each inner plot will have four adjacent plots connected 
directly to it.

2.1	 Experimental setup and model
Consider an agroforestry experiment in which 

multiple (different) tree species and multiple crop 
species/varieties are planted on  plots, with each plot 
receiving only one tree species and one crop species. 
Let there be  tree species and  crop species such that 
together they form a total of  tree-crop combinations. 
We state here that, for the class of designs under 
consideration, the construction is suitable and 
characterization properties are easily obtained when 
equal numbers of tree and crop species are used. Thus, 

 say, and  hence forth. We denote 
by  the response of “direct effect” ( ) of tree-crop 
combination from th plot  having  th 
tree-crop combination , and “tree 
network effect” ( ) from th plot  
of the four adjacent plots on left, right, top and bottom 
of plot , where tree-crop combination l is planted  
(l = 1, 2, ...,  ). Note that tree species on plot  is different 
from tree species on plot , thus no self-neighbours. 
Assuming that all observations are uncorrelated and 
have common variance, then the general form of the 
linear network effects model could be written as:

� (2.1)
where,  refers to the expected value of 

observation,  is an -vector of observations measured 
from  plots,  is grand mean,  is an -vector of 
unities,  is an  design matrix of observations 
versus direct tree-crop combinations,  is a -vector 
of direct effects of tree-crop combinations,  
is an  design matrix of observations versus all 
(non-directional) adjacent trees,  is an  matrix 
of adjacency of the plots,  is an  design matrix 
of observations versus tree species,  is a -vector of 
all network (adjacency) effects,  is a 

 design matrix which we partitioned 
as  and , and  
is a -vector of parameters. Here, 

 where  is an 
indicator vector defined as:

Let us rearrange the components of  as 
 so that  

where,  is known as the Fisher’s information matrix 
and has the following structure, 

� (2.2)

where,  is a  diagonal matrix 
of replications of tree-crop combinations,  
is a  matrix of cross products of concurrence of 
each tree species with other tree species,  is a 

 matrix of concurrence of tree-crop combinations 
with each tree species,  is a -vector of 
replications of tree-crop combinations,  is a 

-vector of replications of all neighbouring trees, and 
 is a scalar which represents the total number 

of plots or EUs on which tree-crop combinations are 
planted and from which measurements are taken. 

Now we define some terms associated with 
network designs for agroforestry trials, specifically 
taking into account the proposed class of designs. Let 
there be  plots arranged in  row-column arrays such 
that in each array, there are  inner plots and  
border plots. The number of inner plots in a row is the 
row length, the number of inner plots in a column is 
the column length and let row length ‌  and column 
length . The  plots are planted with 

 tree-crop combinations. We denote by  
the tree species assigned to th plot in the row (  ) 
and column ( ), where  ; 

. Here,  represent 
border rows and  represent border columns.

Definition 1: The influence that tree species 
 exerts on adjacent plots is referred to as tree 

network effects.
Definition 2: A design for multiple trees and 

multiple crops species arranged in rows and columns 
is referred to as design for multi-tree multi-crop species 
(D-mTC) if it is possible to group the entire rows and 
columns of the design into  arrays wherein each array 
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consists of each tree-crop combination exactly once. A 
D-mTC is said to be network balanced (TNetBD-mTC) 
for tree species if every tree-crop combination has 
every other tree species (except the species occurring 
in the combination) appearing as neighbour a constant 
( ) number of times. 

Definition 3: A TNetBD-mTC is said to be circular 
if , , 

 and . 
Definition 4: Association Scheme: In a network 

balanced design for multi-tree multi-crops species with 
 tree-crop combinations, any two tree-crop 

combinations  and  are said to be first associates 
if they have the same tree species  and 
different crop species , and second associates 
otherwise. Thus, all tree-crop combinations involving 
different trees with same crop as well as different trees 
with different crops are second associates. 

Definition 5: A TNetBD-mTC is said to be 
partially variance balanced if the contrasts pertaining 
to different sets of tree-crop combinations are estimated 
with different variances, but within same set with a 
constant variance. For the designs under consideration, 
contrasts pertaining to tree-crop combinations having 
same tree but different crops are estimated with the 
same variance (say, ), and the contrasts pertaining 
to all other tree-crop combinations are estimated with 
same variance (say, ). From now onwards, we shall 
be using TNetBD in place of TNetBD-mTC since the 
designs are entirely for multi-tree and multi-crop trials. 

2.2	 Method of construction
A TNetBD can be constructed by following the 

steps outlined below. Let there be  tree species denoted 
by (0, 1, 2, …, ) and  crop species denoted by 
(‌  etc), where  is a prime number. 

Step 1: Starting with ‘0’, develop the th array by 

making increment of  to row 
and column elements cyclically (mod ). This produces 

 square arrays each of size .
Step 2: In each array, allocate the symbols 

 etc) in such a way that symbol  occurs 
with all the elements of row 1,  with all the elements 
of row 2,  with all the elements of row 3 and so on.

Step 3: Make each array circular in all directions 
by providing appropriate border plots with the levels of 
the  tree species. The border plots act as guard plots 
and contribute in tree network balance but observations 
are not taken from them. 

We illustrate the method of construction with an 
example below.

Example 1: Consider an experiment with  
tree species and  crop species. The 2 initial 
square arrays are developed as:

Array I Array II

0 1 2 3 4 0 2 4 1 3

1 2 3 4 0 2 4 1 3 0

2 3 4 0 1 4 1 3 0 2

3 4 0 1 2 1 3 0 2 4

4 0 1 2 3 3 0 2 4 1

The final design of tree-crop combinations is given 
below.

4 0 1 2 3 3 0 2 4 1

4 0a 1a 2a 3a 4a 0 3 0a 2a 4a 1a 3a 0

0 1b 2b 3b 4b 0b 1 0 2b 4b 1b 3b 0b 2

1 2c 3c 4c 0c 1c 2 2 4c 1c 3c 0c 2c 4

2 3d 4d 0d 1d 2d 3 4 1d 3d 0d 2d 4d 1

3 4e 0e 1e 2e 3e 4 1 3e 0e 2e 4e 1e 3

0 1 2 3 4 0 2 4 1 3

2.3	 Principles of experimentation
To ensure validity and sensitivity of the analysis 

of data from the proposed designs, the designs must be 
subjected to the three basic principles of experimental 
design namely, replication, randomization and local 
control. 

In the present study, each tree-crop combination 
is replicated  times. If more replication is 
required, a design with  arrays should be used 
in which case tree-crop combination will be replicated 

 times. 
The proposed designs can be randomized through 

a restricted randomization procedure, which consists of 
the following steps: 

Step 1. Randomly allot  to the 
 tree species. 

Step 2. Choose any  consecutive arrays 
randomly from the total possible  arrays. 
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Step 3. Randomize the chosen  arrays.
Step 4. Randomly allocate the  crop symbols 

 etc.) to rows in each array. 
Step 5. Within each array, apply circular 

randomization of either rows or columns but not both 
at the same time. 

Step 1 ensures that each tree species has equal 
chance of being allotted to any plot. Step 5 gives all 
tree species equal chance to be allotted the first plot 
in row  (column) but once first allotment is done, 
rest of the tree species are allotted in a circular 
order in the remaining rows  (columns). This means 
that every TNetBD has  different arrangements of 
rows  (columns) upon randomization. For instance, 
the first row of the first array in Example 1 above 
is , and upon 
randomizing columns the final arrangement in the 
first row may become  . 
If one chooses to randomize rows instead, the 
first column of the first array may become, say, 

 .
The third principle - local control - is relaxed 

in TNetBD. We assume a network balanced model 
where each tree-crop combination is combinatorially 
balanced for tree species and network effects of trees 
from adjacent plots.

Remark: When constructing the designs, it is 
advisable to finish the randomization process before 
taking appropriate borders to make the final layout 
circular.

2.4	 Analysis of variance using synthetic data
Under Model (2.1), the total variation can be 

partitioned as variation due to direct effects of tree-crop 
combinations, variation due to tree network effects 
and the random error component. The design given in 
Example 1 is now shown below with synthetic data for 
the purpose of illustration. We consider five tree species 
as Siris (0), Neem (1), Shisham (2), Babul (3) and Ghaf 
(4) and five crop species as Barley (a), Gram (b), Wheat 
(c), Moong (d) and Maize (e). The data values are in 
units of 1000 rupees representing monetary values of 
yields. In each cell, the first value in the parenthesis is 
for fodder yield of tree while the second value is for 
crop yield. 

Array I

0a
(1.895, 
60.9)

1a
(1.51, 
67.91)

2a
(0.784, 
76.62)

3a
(1.19, 
72.17)

4a
(1.91, 
65.49)

1b
(1.476, 
62.72)

2b
(0.854, 
65.84)

3b
(1.28, 
60.33)

4b
(2.082, 
74.56)

0b
(1.97, 
68.43)

2c
(0.89, 
79.91)

3c
(1.24, 
77.01)

4c
(1.84, 
68.63)

0c
(1.72, 
66.99)

1c
(1.58, 79.8)

3d
(1.175, 
78.98)

4d
(2.024, 
74.64)

0d
(1.78, 
68.72)

1d
(1.25, 
72.71)

2d
(0.808, 
69.86)

4e
(1.94, 
62.38)

0e
(1.74, 
63.99)

1e
(1.47, 64.7)

2e
(0.355, 
60.72)

3e
(1.296, 
72.55)

Array II

0a
(1.734, 
62.78)

2a
(0.975, 
71.15)

4a
(2.09, 
78.48)

1a
(1.528, 
74.38)

3a
(1.375, 
62.16)

2b
(0.73, 
66.88)

4b
(1.962, 
62.96)

1b
(1.57, 
63.24)

3b
(1.33, 
75.69)

0b
(1.712, 
66.91)

4c
(1.98, 
78.87)

1c
(1.575, 
73.92)

3c
(1.13, 
67.27)

0c
(1.868, 
65.47)

2c
(0.76, 77.15)

1d
(1.12, 
79.71)

3d
(1.234, 
77.94)

0d
(1.695, 
66.82)

2d
(0.737, 
74.46)

4d
(1.92, 71.56)

3e
(1.295, 
60.44)

0e
(1.65, 
66.24)

2e
(0.54, 
66.95)

4e
(2.095, 
62.57)

1e
(1.416,74.72)

To analyse the data, we use the total (tree + crop) 
monetary value as the response from each plot. Each 
plot response is influenced twice by each of the other 
tree species surrounding the plot, hence for analysis 
purpose each value has been considered twice. The 
SAS code for the analysis is given in Appendix I. 
The combined ANOVA for direct tree-crop adjusted 
(network unadjusted) and direct tree-crop unadjusted 
(network adjusted) is given in Table 1.

Agricultural researchers are mainly interested in 
comparing between tree species as well as crop varieties 
within each tree species. For this purpose, the variation 
due to direct effects of tree-crop combinations can be 
further bifurcated into variation due to tree species and 
crop species within tree species with 4 and 20 degrees 
of freedom respectively. Accordingly, the orthogonally 
partitioned sums of squares (SS) are obtained and given 
in the ANOVA table (Table 1).
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Table 1. ANOVA for synthetic tree-crop data of TNetBD for 

Source of 
variation

DF Type I SS Mean 
Square

F 
value

Pr> F

Tree-crop 
combination (adj)

24 2274.246285 94.760262 5.17 <0.0001

Tree 
species 

4 372.747983 93.186996 5.09 0.0012

Crop(Tree) 20 1901.498302 95.074915 5.19 <0.0001

Tree network 
(unadj)

4 22.497341 5.624335 0.31 0.8723

OR

Tree-crop 
combination 

(unadj)

24 2250.500399 93.770850 5.12 <0.0001

Tree 
species 

4 349.002097 87.250524 4.76 0.0018

Crop(Tree) 20 1901.498302 95.074915 5.19 <0.0001

Tree network (adj) 4 46.243227 11.560807 0.63 0.6418

Error 71 1300.207333 18.312779

Total 99 3596.950959

DF = degrees of freedom, SS = Sum of squares, Pr = probability

3.	 PROPERTIES OF TNetBD
Every TNetBD so obtained under Section 2.2 

exhibits the following properties. The arrangement of 
 tree-crop combinations into  circular 

square arrays (separated by sufficient gaps) results 
in a combinatorially balanced and equi-replicated 
network balanced design. Each tree-crop combination 
is replicated  times and has all the 
other tree species occurring in the adjacent plots 

 times. The arrangement is such 
that the  tree-crop combinations are grouped into 

 arrays with each combination appearing 
in each array once. Every tree-crop combination 
has  other combinations as first associates and 
the remaining  combinations as second 
associates. From Equation (2.1), the direct effects 
of all tree-crop combinations are accounted for by  
while the effects of trees from the four adjacent plots 
(including border plots) considered for each main plot, 
are accounted for by the network effects parameter .

3.1	 Information matrix
Upon constructing the designs and getting the 

design matrices , ,  and , the sub-matrices and 
vectors in  from Equation (2.2) are obtained as:

,  , 

, , 
 , ,

where,  is identity matrix,  is a matrix of 
unities,  is a vector of unities and  is a symbol 
for Kronecker product. We know that the normal 
equations from least squares estimation are generally 
expressed as . Since we partitioned  
as  with corresponding parameters 
as  under Equation (2.1), solving the 
normal equations with respect to parameters of interest 

 yields  where,
 is the joint 

information matrix and
 is the vector of 

adjusted tree-crop combinations totals. 
So the components of  are used to derive the joint 

information matrix  for estimation of direct tree 
and network effects. Let  be partitioned into sub-
matrices as:

	  .

The sub-matrices in  are first obtained in the 
following steps:

.

Next,

, 

note that  

 

and 

Writing these sub-matrices together gives the joint 
information matrix. Thus,

.

� (3.1)
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We wish to estimate variance of elementary 
contrasts pertaining to the direct effects of tree-crop 
combination. This can be achieved through computation 
of information matrix pertaining to direct effects after 
eliminating network effects from  given in (3.1). 

Thus, , where  
is the information matrix for estimation of direct 
effects of tree-crop combinations and  is the 
generalized inverse of . It can easily be seen that 

 is expressible as a product of a coefficient and an 
idempotent matrix hence  is obtained as:

. 

By defining matrix products,  , 
 and , the 

following can be obtained in simplified forms:

,

,

,

.

Further, let  be expressed as a sum of 
two matrices, say , and  
be expressed as  a sum of three matrices thus, 

 . Therefore the information 
matrix for estimation of direct effects is obtained as:

.�(3.2)

Here  is an identity matric of order ,  and 
 are called association matrices and are defined as 

follows:  is a symmetric matrix of order 
 with elements 0’s and 1’s where  if the th 

and th tree-crop combinations are first associates and 
 otherwise, and  is a symmetric 

matrix of order  with elements 0’s and 1’s where 
 if the th and th tree-crop combinations are 

second associates and  otherwise. It can be seen 
clearly that, with the exception of the main diagonal 
elements in  and  where , any pair 

 and  are mutually exclusive such that when 
, then  and vice versa for all  

and . The association matrices  and  satisfy 
the following conditions:  , 

,  
and .

Similarly, , where 
 is the information matrix for estimation of tree 

network effects and  is the generalized inverse of 
. On simplification

.� (3.3)

From Section 2.1, the first  columns of  
correspond to the direct effects of the  tree-crop 
combinations and the last  columns correspond to 
the network effects of the  tree species. We recall 
that  is a -column vector of which the first 

 elements correspond to direct effects and the last 
 elements correspond to network effects. Therefore, 

we have  where  is a -vector and 
 is a -vector. Now the direct effects of tree-crop 

combination may be estimated as  and the 
network effects of tree species as , where 

 and  are the generalized inverses of  and 

 respectively and  is the 
vector of totals of tree-crop combinations. 

It can be seen from  in Equation (3.2) that 
the tree-crop combinations are grouped into first 
and second associates, and different sets of tree-crop 
combinations are estimated with different variances. 
Thus the elementary contrasts pertaining to any pair 
of tree-crop combinations that are first associates is 
estimated with the same variance. Also, the elementary 
contrasts among tree-crop combinations that are second 
associates are estimated with a constant variance. This 
implies that this series comprises designs that are 
partially variance balanced with tree-crop combinations 
following a two-associate class Group Divisible (GD) 
association scheme. From Example 1 in Section 2.2, 
it can easily be shown that the design has 25 tree-crop 
combinations which follow the GD association scheme. 
For instance, the tree-crop combination 1a has its set of 
first associates as {1b, 1c, 1d, 1e} and set of second 
associates as {0a, 0b, 0c, 0d, 0e, 2a, 2b, 2c, 2d, 2e, 3a, 
3b, 3c, 3d, 3e, 4a, 4b, 4c, 4d, 4e}. The joint information 
matrix for this design is obtained as: 
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larger area. For instance, if small-sized plots are used, 
the canopy of established trees might hinder the growth 
of crops on such plots. 

The proposed designs would be appropriate for 
multi-tree multi-crop species trials. The separate arrays 
permit for their implementation in multiple locations. 
Besides the simplicity in construction, the designs 
could be advantageously used to produce more precise 
estimates of tree-crop effects in agroforestry trials. It 
is worth noting that the designs attain general balance 
only when , thereby limiting the total tree-
crop combinations to .

Table 2. Canonical efficiency factors of TNetBD

Serial No. CE

1 5 0.9677

2 7 0.9912

3 11 0.9981

4 13 0.9989

5 17 0.9995

6 19 0.9997
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.

The corresponding information matrices for 
estimation of direct effects of tree-crop combination 
and tree network effects are obtained as:

 and 

, respectively.

3.2	 Canonical efficiency factor
The efficiencies of the proposed designs are 

assessed using canonical efficiency factors. We require 
the eigenvalues of  to calculate the canonical 
efficiency factors. There are a total of  non-
zero eigenvalues which can be put into two sets. Let 

 denote the th  eigenvalue, 
then from , the first set of eigenvalues is obtained 
as  with multiplicity  
and the second set is  
with multiplicity . We know that the tree-
crop combinations are equi-replicated  times. The 
canonical efficiency (CE) factor of the proposed designs 
relative to an orthogonal design with the same number 
of tree-crop and replications has been computed by 
working out (1/r1) times the harmonic mean of the 
eigenvalues (Dey, 2008). Therefore CE is obtained as:

2

3 2

( 1)( 3) .
( 1)( 2 3 2)

v v vCE
v v v v

− −
=

− − − +
� (3.4)

The SAS code for calculation of the information 
matrices, eigenvalues and CE factors is attached in 
Appendix II. The CE has been computed for designs in 
the range , and given in Table 2. The CEs 
are very high and show an increasing trend when number 
of tree species increases. This implies that the proposed 
designs are highly efficient for estimation of direct 
effects of tree-crop combinations (Table  2). Efficient 
designs serve as improved statistical methodology 
for statistical analyses through reduction of estimated 
experimental error variance. Such improvement is 
achievable through appropriate arrangement of the 
plots as well as plot size as the experimental situation 
may require. Though small plots are usually preferred 
in most agricultural field trials, it may not be the case 
in agroforestry owing to the involvement of multiple 
components, especially trees, which usually require 
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APPENDIX I
SAS code to analysis total tree-crop yield from 

TNetBD
Note: The data is prepared for imputation into 

SAS by coding in the following manner, dir is coded 
as 0a=1, 0b=2, 0c=3, …, 4e=25; net is coded as 0=1, 
1=2, …, 4=5. 

datatcnet; 
inputdir tree crop	 net	 obs; 
datalines;
1	 1	 1	 2	 62.7984
1	 1	 1	 5	 62.7984
1	 1	 1	 3	 64.5112
1	 1	 1	 4	 64.5112
2	 1	 2	 2	 70.4031
2	 1	 2	 5	 70.4031
2	 1	 2	 3	 68.6204
2	 1	 2	 4	 68.6204
3	 1	 3	 2	 68.7125
3	 1	 3	 5	 68.7125
  …
	 …
	 …
24	 5	 4	 3	 73.475
24	 5	 4	 2	 73.475
25	 5	 5	 4	 64.316
25	 5	 5	 1	 64.316
25	 5	 5	 3	 64.669
25	 5	 5	 2	 64.669
;

procglmdata=tcnet; 
classdir net; 
modelobs = dir net /ss1;
*means dir;
*lsmeansdir;
run; 

procglmdata=tcnet; 
class tree crop net; 
modelobs = tree crop(tree) net /ss1;
*means dir;
*lsmeansdir;
run; 

procglmdata=tcnet; 
classdir net; 
modelobs = net dir /ss1; 
*means dir;
*lsmeansdir;
run; 

procglmdata=tcnet; 
class tree crop net; 
modelobs = net tree crop(tree) /ss1;
*means dir;
*lsmeansdir;
run; 

quit;

APPENDIX II
SAS code for information matrices, eigenvalues 

and canonical efficiency factors
/*ENTER THE DESIGN WITHOUT BORDERS 

(It will take circular border)*/
*odscsv file=”F:\Eldho\Peter\temp13.csv” ;
%letsq= ;
prociml;
/*enter design without borders*/
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a_d={

};/*Trees*/

T_C={

}; /*Tree and Crop*/

dokk=1to&sq;

a=j(nrow(a_d), ncol(a_d)/&sq,0);
do i=1tonrow(a_d);
k=1;
do j=(ncol(a_d)/&sq)*(kk-1)+1to 

(ncol(a_d)/&sq)*(kk);
a[i,k]=a_d[i,j];
k=k+1;
end;

end;

*print a;

/***********CIRCULAR Borders*********/
aa=a[ ,ncol(a)]||a||a[ ,1];

*print a01;

aaa=a[nrow(a), ]//a//a[1, ];

*print aa;
/*************************************/

/***********SELF Borders*********/
*aa=a[ ,1]||a||a[ ,ncol(a)];

*print a01;

*aaa=a[1, ]//a//a[nrow(a), ];

*print aa;
/*************************************/

a0=j(nrow(a),ncol(a),0);
do i=1tonrow(a);

do j=1toncol(a);
a0[i,j]=(i-1)*ncol(a)+j;
end;
end;
*print a0;

a01=a0[ ,ncol(a0)]||a0||a0[ ,1];

*print a01;

a1=a0[nrow(a01), ]//a0//a0[1, ];

*print a1;

adj_mat=j(nrow(a)*ncol(a),nrow(a)*ncol(a),0); 
/*Adjacency matrix*/

k=1;
do i=1tonrow(a);
do j=2toncol(a)+1;
ifaa[i,j-1]>0thenadj_mat[k,a01[i,j-1]]=1;
k=k+1;
end;
end;

k=1;
do i = 1tonrow(a);
do j = 2toncol(a)+1;
ifaa[i,j+1]>0
	 then do;
adj_mat[k,a01[i,j+1]]=1;
end;
k=k+1;
end;
end;

k=1;
do i = 2tonrow(a)+1;
do j = 1toncol(a);
ifaaa[i-1,j]>0
	 then do;
adj_mat[k,a1[i-1,j]]=1;
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end;		
k=k+1;
end;
end;

k=1;
do i = 2tonrow(a)+1;
do j = 1toncol(a);
ifaaa[i+1,j]>0
	 then do;
adj_mat[k,a1[i+1,j]]=1;
end;		
k=k+1;
end;
end;

*print adj_mat;

*if kk=1 then do;
*adj_mat1=adj_mat;
*end;

adj_mat1=adj_mat1//adj_mat;

end;

*print adj_mat1;

*adj_mat2 = block(adj_mat1[1:15,],adj_
mat1[16:30,],adj_mat1[31:45,], adj_mat1[46:60,]);/* 
one has to manually change it */

a d j _
mat2=j(nrow(a_d)*ncol(a_d),nrow(a_d)*ncol(a_d),0);

do i=1to&sq;
do j=(i-1)*ncol(adj_mat1)+1to i*ncol(adj_mat1);
do k=1toncol(adj_mat1);
adj_mat2[j,k+((i-1)*(ncol(adj_mat1)))]=adj_

mat1[j,k];
end;
end;
end;

*print adj_mat2;

U=j(nrow(a_d)*ncol(a_d),max(a_d),0);/*design 
matrix -obs VS direct treatment*/

k=1;
dokk=1to&sq;
do i=1tonrow(a_d);
do j=(ncol(a_d)/&sq)*(kk-1)+1to 

(ncol(a_d)/&sq)*(kk);
ifa_d[i,j]>0
then U[k,a_d[i,j]]=1;
k=k+1;
end;
end;
end;
*print U;

TC=j(nrow(t_c)*ncol(t_c),max(t_c),0);/*design 
matrix -obs VS T and C*/

k=1;
dokk=1to&sq;
do i=1tonrow(t_c);
do j=(ncol(t_c)/&sq)*(kk-1)+1to 

(ncol(t_c)/&sq)*(kk);
ift_c[i,j]>0
then TC[k,t_c[i,j]]=1;
k=k+1;
end;
end;
end;
*print TC;

UU=j(nrow(U),1,1);
AU=adj_mat2*U;
F=TC||AU||UU;

*print AU;
Z=F`*F;

X1=TC||AU;
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X2=UU;

C_Matrix=(x1`*x1)-(x1`*x2*(ginv(x2`*x2))*x2`*x1);

*print adj_mat2;
*print Z;
*print AU;
printC_Matrix;

c11=j(max(T_C),max(T_C),0);
do i=1to max(T_C);
do j=1to max(T_C);
c11[i,j]=C_Matrix[i,j];
end;
end;
*print c11;

c12=j(max(T_C),max(a_d),0);
do i=1to max(T_C);
k=1;
do j=max(T_C)+1toncol(C_Matrix);
c12[i,k]=C_Matrix[i,j];
k=k+1;
end;
end;
*print c12;

c22=j(nrow(C_Matrix)-max(T_C),nrow(C_Matrix)-
max(T_C),0);

k=1;
do i=max(T_C)+1tonrow(C_Matrix);
kk=1;
do j=max(T_C)+1tonrow(C_Matrix);
c22[k,kk]=C_Matrix[i,j];
kk=kk+1;
end;

k=k+1;
end;
*print c22;
c_direct_tree=c11- c12*ginv(c22)*c12`;
c_network=c22- c12`*ginv(c11)*c12;

rank_c11 = round (trace(ginv(c11)*c11));
rank_c12 = round (trace(ginv(c12)*c12));
rank_c22 = round (trace(ginv(c22)*c22));

printc_direct_tree;
printc_network;

*print c11;
*print c12;
*print c22;

eigD=eigval(c_direct_tree);
eigN=eigval(c_network);
printeigDeigN;
eigD1=eigD[loc(eigD>0.0000001),];/*positive 

eigen values*/
eigN1=eigN[loc(eigN>0.0000001),];/*positive 

eigen values*/
eigD2=eigD1/Z[1,1];
eigD3=1/eigD2;
CanEffFacD=nrow(eigD3)/sum(eigD3);
printCanEffFacD;

run;

*ods rtf close;
quit;


