
1.	 INTRODUCTION 
Knowing the status of marine stock is of utmost 

importance to develop management strategies for 
sustainable harvest of marine resources. Stock 
assessment is the process of collecting, analysing and 
reporting fish population information to determine 
changes in the abundance of fishery stocks in response 
to fishing and, to the extent possible, predict future 
trends of stock abundance (Sparre and Venema, 1992). 
In fisheries where there are no fishery-independent 
measures of abundance, the commercial catch 
rate is commonly used as an abundance indicator 
(Vivekanandan, 2005). 

Surplus production models, introduced by (Graham, 
1935) are commonly used for assessing the state of fish 
stocks. These models view population as one unit of 
biomass, with all individuals having the same growth 
and mortality rates. The surplus production models 

deal with the entire stock, the entire fishing effort and 
the total yield obtained from the stock. It is used to 
determine the optimum level of effort that is the effort 
that produces the maximum yield that can be sustained 
without affecting the long-term productivity of the 
stock, or the maximum sustainable yield (MSY). 

Surplus production models assume that variation 
in population biomass results from increases due to 
growth and reproduction, and decreases from natural 
and fishing mortality. Surplus production models use 
Catch-Per-Unit-Effort (CPUE) as input. The data, 
which represent a time series of years, are usually 
collected from commercial fishery. The model is based 
on the assumption that the CPUE is proportional to 
biomass of the fish in the sea. 

Schaefer model is one of the most popular surplus 
production model which gives by following equation:
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where Bt+1 is the exploited biomass in the 
subsequent year t+1, Bt is the current biomass, r is the 
intrinsic growth rate, k is the carrying capacity, Ct is 
the catch in the current year t, Et is the fishing effort 
at time t and q is the catchability coefficient. Surplus 
production models use CPUE as an index of biomass 
(i.e., t tCPUE qB= ). 

The above equation has been modified to account 
for reduced recruitment at severely depleted stock 
sizes, a linear decline of surplus production, which is 
a function of recruitment, somatic growth and natural 
mortality is incorporated if biomass falls below ¼ k 
(Froese et al., 2017).
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The term 4Bt/k assumes a linear decline of 
recruitment below half of the biomass that is capable 
of producing MSY.

A major challenge in fitting such a production 
model is to find out CPUE, may be in terms of the units 
operated or in terms of hours of operation/actual fishing 
hours (AFH). As the fishing fleet is heterogeneous 
in most of the cases, it is partitioned into boat-gear 
categories in each of which the fishing units have 
similar characteristics and performance. When it comes 
to measure the combined effect of the fishing operations 
of the entire fleet to the exploitation of a fish stock, it 
becomes apparent that adding together effort exerted by 
different boat-gear categories is not always meaningful 
without first applying effort adjustment to increase its 
comparability (Stamatopoulos and Abdallah, 2015). 

Stock assessment of individual species becomes 
difficult when a species is targeted by various gears and 
each gear may harvest more than the species targeted. 
Since the capacity of the gears vary and also each 
gear may contain multiple species, the effort made to 
catch a resource cannot be considered as the sum of 
duration/units of operation of all the gears. Hence, the 
problem of exploitation of the same stock by gears 
with different efficiencies has to be addressed. There 
are several techniques for dealing with such situations, 
the most commonly used one is the standardization of 
fishing effort. There is a lot of literature available on 
the standardization of the fishing effort. These methods 

deeply depend on characteristics of the gear being 
operated and the availability of the information. 

Hilborn and Walters (1992) proposed the use of 
Generalized Linear Models (GLM) for standardization 
of fishing effort. Rochman et  al. (2017) attempted to 
standardize CPUE to estimate relative abundance 
indices based on the Indonesian longline dataset time 
series using GLM with Tweedie distribution. Daniel 
et  al. (2016) gave a method named multi-gear mean 
standardization (MGMS) which combining catch per 
unit effort data that standardizes catch per unit effort 
data across gear types. Setyadji et al. (2018) used GLM 
to standardize CPUE and to estimate relative abundance 
indices based on the Indonesian longline dataset. Six 
GLM models were considered viz., negative binomial, 
zero inflated Poisson, zero-inflated negative binomial, 
Poisson hurdle, and negative binomial hurdle models. 
AIC and BIC were used to select the best models among 
all those evaluated. 

In the literature cited above, either CPUE or 
effort exerted to a catch particular fish or vessel/ 
gear characteristics available. A methodology for 
the standardization of fishing effort is to be required 
when one has to estimate the effort exerted to catch a 
particular species from the total effort hence it demands 
the importance of effort standardisation for making 
use in stock assessment models. Here, an attempt has 
been made to develop a methodology to standardize 
the fishing effort and further to arrive at MSY using 
Bayesian approach. A Monte Carlo method has also 
been used to obtain the MSY when a measure of fishing 
effort is not available. This is done by making use of 
the species resilience to derive a quantitative measure 
of productivity.

2.	 COMPUTATIONAL STEPS FOR EFFORT 
STANDARDIZATION
This method of standardization requires the 

species catch, total catch and total fishing effort. Let 
Yijk represents the catch of kth species (k=1,2,...,s) from 
ith (i=1,2,...,g) gear at the jth (j=1,2,...,t) time point (say 
year) and corresponding effort is expressed as Xij.

To calculate the component of standardized fishing 
effort for the species corresponding to each gear, the 
proportion of catch in the total catch by each gear 
for each year and a weighing factor for each gear is 
required. Following is the step-wise procedure of effort 
standardisation:
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The weighing factor is then adjusted for unit sum. 
The decomposition of fishing effort for the species is 
then obtained by multiplying the corresponding total 
fishing effort for the gear in the year with the proportion 
of the species for the year corresponding to the same 
gear and the weighing factor. 

Step 4: Obtain the standardized gear-wise fishing 
effort as 

ijk i.k ijk ijE =W × P × X′

Here, the sum of all the gear efforts would give a 
total effort. But, the efficiency of gears varies so also the 
capability to catch in an hour which demands scaling 
the fishing efforts into a single scale. Hence, it is better 
to express all gears in terms of a single gear (may be 
the least efficient or the most efficient) by deriving a 
suitable multiplication factor for each fishing gear.

Step 5: Calculate the catch per unit effort (gear-
wise) as 

and
t

Y CPij. ijCP = CP =i.ij Xij

The multiplication factor is CPi.CP =i . CPi .
′′

′
, where 

CPi .′  is the least efficient or the most efficient gear

Step 6: Obtain the standardized fishing effort for 
kth species at jth time point as 

1

g
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i
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=

′′∑

3.	 ASSESSMENT OF MARINE STOCK: 
MONTE CARLO METHOD AND 
BAYESIAN APPROACH
After obtaining the standardized fishing effort, may 

be a proxy for CPUE, the stock assessment has been 
made using the following approaches:

Case 1: �when a measure of fishing effort is available
Case 2: �when fishing effort is not available (data 

poor situation)
Case1 is based on the delay difference model to 

describe nonlinear population dynamics. State–space 
model allows incorporation of random errors in both 
the biomass dynamics equations and the observations. 
Because the biomass dynamics are nonlinear, the 
common Kalman filter is generally not applicable for 
parameter estimation. However, it is demonstrated by 
(Miller and Meyer, 1998) that the Bayesian approach 
can handle any form of nonlinear relationship in the 
state and observation equations as well as realistic 
distributional assumptions. Difficulties with posterior 
calculations are overcome by the Gibbs sampler in 
conjunction with the adaptive rejection Metropolis 
sampling algorithm (Millar and Meyer, 1998; Froese 
et  al. 2017). This approach has been named as BSM 
and fitted to catch and standardised fishing effort data.

CMSY estimates biomass, exploitation rate, MSY 
and related fisheries reference points from catch data 
and resilience of the species. A prior estimate for 
biomass (B) relative to carrying capacity (k) i.e. B/k has 
to be given. Next probable ranges for the maximum 
intrinsic rate of population increase (r) and carrying 
capacity (k) are given as inputs which then are filtered 
with a Monte Carlo approach to detect ‘viable’ r-k 
pairs. An R package named R2jags (Yu-Sung and 
Masanao, 2015) was used for sampling the probability 
distributions of the parameters with the Markov chain 
Monte Carlo method. This package provides wrapper 
functions to implement Bayesian analysis in JAGS 
(Plummer, 2003). The convergence of MCMC model 
is assessed using Rubin and Gelman Rhat statistics, 
automatically running a MCMC model till it converges, 
and implementing parallel processing (using doparallel 
package in R) of a MCMC model for multiple chains. 
The r-ranges for the species under assessment, the 
proxies for resilience of the species as provided in 
FishBase (Froese et al., 2000; Froese and Pauly, 2015) 
and then converted as given by Froese et al. (2017).
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Even though we have the standardised fishing 
effort, case 2 has been used to compare the estimate of 
MSY and the model parameters. 

Both the approaches were implemented using R 
studio (https://www.rstudio.com/). The inputs of time 
series of catch and information on species resilience are 
required for running the code and generate the outputs. 
In order to run the code, the R-libraries required are 
R2jags, coda, lattice, parallel, foreach, doParallel, and 
gplots. 

4.	 DATA DESCRIPTION
Indian mackerel, Rastrelliger kanagurta, is an 

important pelagic fish resource of Andhra Pradesh. The 
resource is assumed to exist as a single stock along 
the coastline of Andhra Pradesh (A.P.). The coastline 
of Andhra Pradesh, which is 974 kilometers long is 
spread over nine coastal districts viz., Srikakulam, 
Vizianagaram, Visakhapatnam, East Godavari, West 
Godavari, Krishna, Guntur, Prakasam and Nellore 
(FRAD, 2018). Several gears have been found to 
harvest mackerel almost throughout the year. Like any 
other tropical pelagic fish, mackerel also exhibited 
seasonal and annual fluctuations in landings.

Indian mackerel catches in A.P. have been reported 
from various gears viz., mechanized gillnet (MGN), 
non-mechanized gears (NM), outboard gillnet (OBGN), 
outboard ringseine (OBRS), outboard trawlnet (OBTN) 
and mechanized trawlnet including multiday trawlnet 
(MTN) and some minor gears.

The mackerel landing was estimated from the 
commercial landings along the coast of A.P. using 
a scientifically planned sampling design based on 
a stratified multi-stage random sampling technique 
(Sukhatme, 1958 and Srinath et al., 2005), where the 
stratification is done over space and time. Time series 
of catch and effort (in hours of operation) from 1997 to 
2018 taken from National Marine Fishery Resources 
Data Centre (NMFDC) of CMFRI, Kochi have been 
used for the analysis. Standardised fishing effort has 
been estimated using the proposed method.

5.	 RESULTS AND DISCUSSION
The annual landings of Indian mackerel in Andhra 

Pradesh ranged from a low of 6418t (2007) to a high 
of 55813t (2014) during the study period (Fig. 1a) with 
an average annual landing of 20551t (SD = 10216). 
Mackerel landings showed an increasing but variable 

trend from 1997 onwards, reaching the peak in 2014 and 
then showed a declining trend. Motorized ring seines 
(OBRS) landed the highest quantity of Indian mackerel 
along AP coast during the study period (Table  1). 
Besides, the summary of fishing effort exerted by major 
gears in terms of Actual Fishing Hours (in 1000 hrs) 
has also been given in Table 1. MTN is the gear which 
operated for a maximum of 3982 (SD = 1212) and 
OBTN with minimum of 148 (SD = 104).

Table 1. Average landing (in tonnes) and Actual Fishing  
Hours by each major gear

Gears Mackerel Landing (t) AFH
(‘000 hrs)

MTN 6428, n=22
(2827)

3982
(892)

MGN 1123, n=14
(1412)

438
(338)

NM 5100, n=22
(2711)

2565
(1212)

OBGN 4583, n=22
(2311)

2125
(475)

OBRS 10135, n=10
(6545)

184
(96)

OBTN 208, n=9
(456)

148
(104)

n=number of years with mackerel catch; Standard 
deviation in parenthesis

Fig. 1a. Time series of Indian mackerel landings during 1997-2018  
(Blue line is the three year moving average, maximum and  

minimum landings are denoted with red dots)

The standardised fishing effort using the proposed 
method during the study period indicated an increasing 
trend with maximum fishing effort exerted in 2015 
(Fig. 1b). 
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Fig. 1b. Time series of standardised fishing effort during 1997-2018

Since mackerel landings during the initial and final 
period of the time series are less, lower prior value for 
B/k was thought to be reasonable. Thus the prior ranges 
for B/k in the initial and final year were set to 0.2-0.6. 
Since mackerel landings during the intermediate period 
were high, the prior range for B/k was set to 0.5 - 0.9 
for this period. 

FishBase (Froese et  al., 2000; Froese and Pauly, 
2015) has provided the proxies for resilience of various 
fish resources and used to set the prior r-ranges by 
converting as (0.6 – 1.5 for High; 0.2 – 0.8 for Medium; 
0.05 – 0.5 for Low and 0.015 – 0.1 for Very low) given 
by Froese et al. (2017). Prior ranges for q are obtained 
as follows:

0.25 pgm mean
low

mean

r CPUE
q

C
=  and 

0.5 high mean
low

mean

r CPUE
q

C
=  

where qlow is the lower prior for the catchability 
coefficient for stocks with high recent biomass, rpgm is 

the geometric mean of the prior range for r, CPUEmean 
is the mean of catch per unit effort over the last 5 or 
10 years, and Cmean is the mean catch over the same 
period. where qhigh is the upper prior for the catchability 
coefficient for stocks with high recent biomass, rhigh is 
the upper prior range for r. Prior ranges for r, k and q are 
0.2-0.9, 43.6-785 and 4.19e-07 - 1.78e-06 respectively. 

Once the prior values were given as inputs along 
with the landings data, the next step in the analysis is to 
search for viable r-k pairs (Fig.2). Grey colour indicates 
the viable r-k pairs that fulfilled the CMSY conditions. 

The most probable r-k pair is marked by the blue 
cross, with indication of approximate 95% confidence 
limits. The black dots show the estimates of the 
BSM method, with the red cross indicating the 95% 
confidence limits.

Here, the resilience range of r = 0.2 to 0.9 seems 
to be meaningful as the points show convergence and 
fewer viable r-k combinations are found at the end 
of the r range. It also showed a close agreement with 
estimated r-k by both the approaches.

Once the r-k pair was selected the relative biomass 
along with confidence limits was predicted by both 
the CMSY and BSM method (Fig. 3). The bold curve 
(blue colour) in Fig.3 is the relative biomass predicted 
by CMSY, with confidence limits (dotted curves). The 
normal curve (red colour) indicates CPUE scaled by 
the catchability coefficient estimated by BSM. The 
horizontal dashed line indicates biomass at MSY (Bmsy) 
and the dotted line indicates half of Bmsy.

Fig. 2. Search for viable r-k pairs
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Fig. 3. Relative biomass

The relative biomass plot indicated that both in the 
initial and final years the biomass in relation to carrying 
capacity was low. This result follows based on the prior 
estimates of B/k that we had given. The intervening 
years showed a high relative biomass. The low relative 
biomass could be a reflectance of the lower yields from 
the fishery which was operating at lower fishing effort 
during the initial years of the study period. From 2005 
onwards the fishing effort has been steadily increasing 
which has also resulted in higher landings since 2005. 
During this period the relative biomass was above MSY 
levels. However the relative biomass fell below MSY 
by 2015 indicating that the stock of Indian mackerel 
along AP coast is overfished. The overfished status of 
Indian mackerel along AP coast is further highlighted in 
the CMSY/BSM output showing catch relative to MSY 
over biomass relative to unexploited stock size (Fig.4). 
The red dots indicate estimates by BSM, and the blue 
dots indicate estimates by CMSY. The indentation of 
the parabolas below 0.25 k (half of Bmsy) results from 
the inclusion of a stock–recruitment model which 
assumes reduced recruitment at low stock sizes. 

The points which are above the curve indicate 
overfishing and shrinking of biomass and the points 
below the curve indicate sustainable exploitation and 
growth of the stock. Here, the points are clustered 
around the equilibrium curve, thus giving confidence 
in the assessment.

The estimates of MSY and model parameters along 
with their confidence limits are shown in Table 2. It can 
be seen from the table that the estimate of MSY is very 
close by both the approaches with smaller confidence 

in case of BSM. As BSM takes into account of CPUE, 
further management plans have been derived based on 
the BSM results. The landings of Indian mackerel since 
2016 has fallen below the estimated MSY. 

Table 2. Estimates of MSY and model parameters along with 
confidence limits 

Parameters CMSY BSM

MSY 26500
(19200 – 36400)

26600
(20900 - 33800)

r 0.616
(0.431-0.879)

0.623
(0.457-0.848)

k 172000
(102000-289000)

171000
(127000-229000)

Relative biomass in last 
year (B2018/k)

0.458
(0.214 - 0.596)

0.532
(0.377 - 0.686)

Exploitation F/(r/2) in 
last year

0.815 0.7
(0.542 - 0.987)

q - 6.1e-07 
(4.63e-07 - 8.03e-07)

Bmsy - 85300 
(63500- 115000)

Fishing mortality (Fmsy) - 0.311 
(0.229 - 0.424)

Fmsy in last year - 0.218
(0.169 - 0.307)

The plots of landings vs MSY and that of B/Bmsy 
(Fig. 5) also indicate the over-fished status of Indian 
mackerel along AP coast during 2016 onwards. The 
horizontal dashed line in first plot indicates MSY with 
lower and upper confidence limit of MSY in grey colour. 
The bold curve in second plot is the biomass predicted 
by BSM, with confidence limits (grey colour). The 
horizontal dashed line indicates Bmsy and the dotted 

Fig. 4. The ratio of catch to MSY and relative biomass (B/k) over years
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Fig. 6. Development of biomass and exploitation relative to Bmsy 
(horizontal dashed line) and Fmsy (vertical dashed line) for Indian  

mackerel along AP coast

Fig. 7. F/Fmsy over time for Indian mackerel along AP coast

line indicates half of Bmsy. The solid line is just above 
the Bmsy line during the last two years indicating that 
current biomass is slightly more than biomass at MSY. 
Ideally this ratio should be as high as possible. Levels 
near to 1 indicate that the biomass of the stock of Indian 
mackerel along AP coast is just at the threshold of being 
unhealthy.

The plots of current fishing mortality (F) in relation 
to F at MSY (Fmsy) (Fig. 6 and 7) indicated that the 
current fishing mortality is lower than fishing mortality 
at MSY. However, since current biomass is almost the 
same level as Bmsy the stock can be thought to be almost 
at the edge of unsustainable fishing. 

Thus from the above results it can be inferred that 
the rate of exploitation has been highly fluctuating 
over period. The current level of exploitation is low 
as compared to earlier years. Biomass which had been 
high in intermediate years has declined beyond 2016 
due to high exploitation in the intermediate years. The 
present scenario indicates that a management plan 
for Indian mackerel along A.P. is needed to ensure its 
sustainable utilization and that the confidence limit of 
MSY can serve as guidance for fixing catch limits.

6.	 CONCLUSIONS
Stock assessment of individual species becomes 

difficult when a species is targeted by various gears and 
each gear may harvest more than the species targeted. 
Since the capacity of the gears vary and also each gear 
may contain multiple species, the effort made to catch 
a resource cannot be considered as the sum of duration 
of operation of all the gears. Here, a new methodology 

 
Fig. 5. Catch in comparison to MSY and (B/ Bmsy) over years



40 Eldho Varghese et al. / Journal of the Indian Society of Agricultural Statistics 74(1) 2020  33–40

for the standardization of fishing efforts and assessing 
the stock status of Indian Mackerel (Rastrelliger 
kanagurta) using Bayesian state-space implementation 
of the Schaefer production model has been discussed. A 
Monte Carlo method for estimating fisheries reference 
points from catch using species resilience has also used 
to assess the stock status in the absence of biomass/
CPUE. 
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