भारतीय पोम्पानो मछली की बीज उत्पादन प्रौद्योगिकी- तटीय जलजीव पालन और समुद्री संवर्धन के विविध आयाम

बिजी सेवियर, रितेश रंजन, शेखर मेघराजन, एन. साधु, बी. चिन्निबाबु, बी. वंशी, आर. डी. सुरेश और शुभदीप घोष

भा कृ अनु प-सी एम एफ आर आइ विशाखपट्टणम क्षेत्रीय केन्द्र, विशाखपट्टणम, आंध्रा प्रदेश

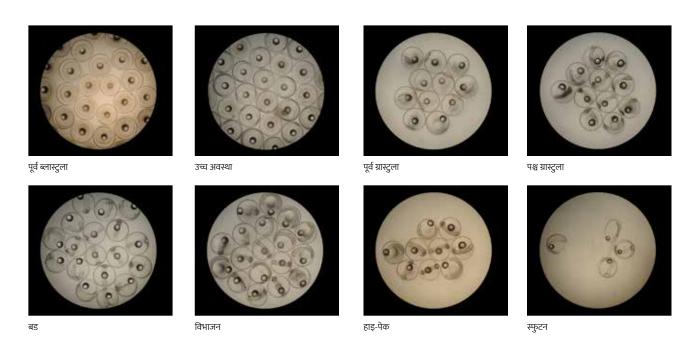
प्रस्तावना

जलजीव पालन को विश्व की आबादी की वर्धित खाद्य मांग की आपूर्ति के प्रमुख स्रोत के रूप में माना जाता है मछली उत्पादन बढ़ाने का प्रमुख उपाय प्रजाति विविधीकरण माना जाता है। पोम्पानो प्रजाति (ट्रकिनोटस करोलिनस और टी. ब्लोची) आकर्षक स्वरूप, तेज़ एवं समान वृद्धि दर, पालन वातावरण में अनुकूलन, तैयार किए गए खाद्य की स्वीकार्यता, दृढ एवं सफेद स्वादिष्ट मांस तथा उच्च बाज़ार मांग की वजह से समुद्री संवर्धन के लिए पालन योग्य प्रजाति के रूप में भौगोलिक तौर पर मान्यता प्राप्त है। भारतीय पोम्पानो (ट्रकिनोटस मूकाली) उथले तटीय समुद्र में पायी जाने वाली वेलापवर्ती मछली है, जो करंजिडे (जैक्स एंड पोम्पानोस) कुटुम्ब की है और समुद्री पख मछली पालन क्षेत्र में अत्यधिक साध्यता होने वाली दूसरी प्रजाति है। नाम भारतीय पोम्पानो होने पर भी इसका वितरण हिन्द महासागर के पश्चिम भाग से पश्चिम पसफिक महासागर तक फैला हुआ है। समुद्री एवं खारा पानी जलजीव पालन में अनंत साध्यता होने वाली टी. मूकाली उच्च आर्थिक मूल्य की मछली है। भारतीय पोम्पानो लगभग 90 से.मी. की लंबाई और 8.1 कि.ग्रा. भार तक बढ़ती है। प्राकृतिक स्थानों से भारतीय पोम्पानो की पकड़ दुर्लभ और ज्यादातर भोजन के लिए इस मछली का उपयोग होने की वजह से उपभोक्ताओं के बीच वर्तमान में मछली की उच्च मांग केवल जलजीव पालन से ही पूरी की जा सकती है। इन सभी बातों को ध्यान में रखते हुए और इस मछली की बढ़ती की शक्यता को मानते हुए भा कृ अनु प-केन्द्रीय समुद्री मात्स्यिकी अनुसंधान संस्थान ने विश्व में ही पहली बार भारतीय पोम्पानो मछली के अंडशावक का विकास, प्रेरित प्रजनन तथा डिंभकों का उत्पादन भी किया।

अंडशावक विकास

बंगाल उपसागर के विशाखपट्टणम तट से कास्ट नेट के उपयोग से लगभग 45.1 ग्राम भार वाले भारतीय पोम्पानो की किशोरों को संग्रहित किया गया। इस तरह संग्रहित किशोर मछिलयों को प्रौढ़ता तक पालन हेतु पुन:चक्रण जलजीव पालन व्यवस्था (आर ए एस) सिहत आर सी सी टैंक में डाला गया और पालन के 21 महीनों बाद वे 2.84 कि.ग्रा. के औसत भार और 47.6 से.मी. की लंबाई तक बढ़ने पर अंडशावकों के रूप में इनका उपयोग किया गया। पालन के चरण के दौरान उनको प्रारंभिक रूप से कृत्रिम पेलेट खाद्य दिया गया और बाद में दिन में दो बार जैव भार के 6 – 10% की दर पर कम मूल्य वाली मछली, स्क्विड, सीपी तथा शुक्ति का मांस दिया गया।

अंडशावक विकास के लिए 1:2 (मादा : नर) के लिंग अनुपात पर 18 मछिलयों को चुना गया और 125 टन की धारिता के वृत्ताकार के आर सी सी टैंक, जिस में आर ए एस लगाया हुआ है, में संभिरत किया गया। अलग अलग मछिलयों की पहचान तथा अंडाशय विकास पर रिकार्ड बनाए रखने हेतु टैग ट्रान्स्पोन्डर (PIT TAG FS 2001) से टैंगन किया गया। मछिलयों को दिन में दो बार (0900 और 1530 घंटे) तृष्टि तक ताज़ा स्क्विड और सीपी मांस


दिया गया। इसके अतिरिक्त, आहार में होने वाली पौष्टिकता की कमियों की पूर्ति के लिए हफ्ते में दो बार विटामिन A (25,000 IU), विटामिन B-काम्प्लेक्स, विटामिन C (500 मि.ग्रा.), विटामिन E (४०० मि.ग्रा.) और विटामिन-खनिज मिश्रण दिए गए। खिलाने के 30 मिनट बाद अधिक पड़े हुए आहार पदार्थों को टैंक के निचले भाग से निकाला गया। हर पखवाड़े में 1 मि.मी आंतरिक और 2 मि.मी. के बाहरी व्यास के लचीला कथीटर के उपयोग से जीवित गोनाडल बायोप्सी द्वारा जननग्रंथि की प्रौढ़ता का निर्धारण किया गया। मछली को २- फीनोक्सीएथनोल के २०० पी पी एम की मात्रा से 2 मिनट तक बेहोश कराके बायोप्सी की गयी। ट्राइनोकुलर माइक्रोस्कोप, जिस में मोर्फोमेट्रिक विश्लेषण हेतु इन-बिल्ट फोटोइमेजिंग व्यवस्था हो, द्वारा संग्रहित अंडाशय ऊतकों की जांच की गयी। 500 µm से अधिक विटेल्लोजेनिसिस की अंतिम अवस्था की मछलियों को प्रौढ माना गया। नर मछली 3.0 कि. ग्रा. का भार प्राप्त होने पर परिपक्व बन जाता है और उदर पर थोड़ा दबाने पर मिल्ट (शुक्र) बाहर निकलता है।

साप्ताहिक तौर पर टैंक के पानी में लवणता (औसत 31.35 ppt), तापमान (औसत 29.33°C), विलीन ऑक्सिजन (औसत 4.64 ppm), फ्री कार्बन डाइऑक्साइड (औसत 0.18 ppm), कुल अमोणिया नाइट्रजन (TAN) (औसत 0.037 ppm), नाइट्राइट (औसत 0.003 ppm),

खारापन (औसत 102.40 ppm), और pH (औसत 7.98) जैसे भौतिक-रासायनिक प्राचलों का विश्लेषण किया गया और अंडाशय विकास, प्रौढ़ता एवं अंडजनन के लिए इष्टतम देखा गया।

अंडजनन उत्प्रेरण और अंडों का संग्रहण

500 µm से अधिक माध्य व्यास युक्त विटेल्लोजेनिक डिंभाणुजनकोशिका (ऊज़ाइट) सहित प्रौढ़ मादा मछलियों और शुक्राणु युक्त नर मछलियों को उत्प्रेरण के लिए चुना गया। प्रेरित अंडजनन परीक्षण के लिए लिंग अनुपात 1:2 (नर और मादा) था। मादा और नर मछलियों को शरीर भार के 350 IU kg-1 की दर पर ह्यूमन कारियोनिक गोनाडोट्रोपिन (एच सी जी) इंजेक्शन का एकल खुराक दिया गया और दोनों मछलियों को अंडजनन के लिए एक ही टैंक में लगाया गया। उत्प्रेरण के 36-38 घंटों के बाद 29°C के औसत तापमान में अंडजनन संपन्न हुआ। अंडजनन टैंक में 500 µm का हाप्पा लगाए गए अंड-संग्रहण चेम्बर द्वारा टैंक के सतह के पानी से अंडों का संग्रहण किया गया। संग्रहित अंडों का 20 ppm आयडोफोर के साथ 10 मिनट तक उपचार किया गया और स्फुटन हेतु एक टन के एफ आर पी टैंक में डाला गया। भारतीय पोम्पानो के निषेचित अंडों का आकार थोडा बड़ा (950-1000 µm) था। 29°C के तापमान में लगभग 18-20 घंटों के निषेचन के बाद अंडों का स्फुटन हुआ। औसत स्फुटन दर 87.67% थी।

डिंभक पालन

स्फुटित डिंभकों को 2 टन की धारिता के एफ आर पी टैंक, जिसमें 1 टन पानी हो, में प्रति लिटर पानी में 10 डिंभक की दर पर स्टॉक किया गया। टैंक में थोड़ा ऐरेशन सहित एक केन्द्रीय एयर स्टोन लगाया गया था। 1 x 105 cells /ml की दर पर 3:1 के अनुपात में नानोक्लोरोप्सिस ओक्युलेटा और आइसोक्राइसिस गाल्बाना जैसे विभिन्न सूक्ष्मशैवालों द्वारा ग्रीन वाटर तकनीक के उपयोग से डिंभक उत्पादन किया गया। टैंक के ऊपर फ्लूरसेन्ट ट्यूब लगाकर 14-16 घंटों में 700-800 lux का प्रकाश प्रदान किया गया।

नए स्फुटित डिंभकों की कुल लंबाई 0.55 मि.मी.² के अंडाकार योक सैक और 0.06 मि.मी.² के क्षेत्र के तेल बूंद सित 2.12 ± 0.02 मि.मी. थी। स्फुटन के 46 घंटों बाद योक सैक का अधिकांश अवशोषण हुआ, आँखों में रंजकता (पिग्मेन्टेशन) दृश्यमान हुआ और 228.10 ± 1.31 µm के दरार के साथ मुँह खुल गया। इन्हें प्रारंभिक आहार के रूप में 100 µm आकार के रोटिफर और कॉपीपोड नॉप्ली प्रदान किए गए।

भारतीय पोम्पानो के डिंभक पालन के दौरान आकलित विशिष्ट वृद्धि दर प्रति दिन 11.4 % थी। डिंभक पालन के दौरान पूरे रूपांतरण तक 21.53% अतिजीवितता दर पायी गयी, जो टी. मूकाली के लिए भौगोलिक तौर पर प्रथम उपलब्धि है। भारतीय पोम्पानो के डिंभक पालन के दौरान व्यवस्थित और अतिव्यापी रूप से कॉपीपोड नॉप्ली से शुरू करके रॉटिफर, आर्टीमिया और कृत्रिम पेल्लेटों जैसे जीवित खाद्य प्रदान किए गए। भारतीय पोम्पानो के डिंभकों की अतिजीवितता की महत्वपूर्ण अविध स्फुटन के बाद के 5वां और 6वां दिन थी। इस अविध के दौरान साधारणतया रॉटिफर से खिलाए गए डिंभकों की मृत्यु देखी गयी। लेकिन, इसके बाद आहार के रूप में कॉपीपोड नॉप्ली दी जाने पर इस अवस्था को काबू में लाया जा सका।

निष्कर्ष

भविष्य में टी. मूकाली का उत्पादन बढ़ाए जाने के लिए विकास की अवस्थाओं के आधार पर पौष्टिकता युक्त जीवित खाद्यों की पर्याप्त आपूर्ति महत्वपूर्ण घटक है।

डिंभकीय अवस्थाएं	शरीर की लंबाई
नए स्फुटित डिंभक	2.12 ± 0.02 mm
1st DPH	2.58 ± 0.05mm
3rd DPH	2.66 ± 0.03 mm
6th DPH	4.64 ± 0.3 mm
8th DPH	6.35 ± 0.02 mm
10th DPH	9.04 ± 0.06 mm
12th DPH	11.91 ± 0.07 mm
17th DPH	20.55 ± 0.08 mm
21st DPH	27.33 ± 0.10 mm
28 DOC	32.8 ± 0.03mm