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Introduction

Multivariate Analysis is concerned with statistical methods designed to elicit
information from data sets which include measurements on many variables.
These techniques have emerged as a powerful tool to analyse data represented
in terms of many variables. The main reason being that a series of univariate
analysis carried out separately for each variable may lead to incorrect
interpretation of the result and the inferences drawn may be misleading. This is
so because univariate analysis does not consider the inter-dependence among
the variables. These techniques are used in analyzing social, psychological,
medical and economic data, especially when the variables concerning research
studies of these fields are supposed to be correlated with each other and when
rigorous probabilistic models cannot be appropriately used. Applications of
multivariate techniques in practice have been accelerated in modern times
because of the advent of high speed electronic computers.

The objectives of scientific investigations for which multivariate methods are

commonly used are

e Data reduction or structural simplification. The phenomenon being studied
is represented as simply as possible without sacrificing valuable information.

e Sorting and Grouping. Groups of similar objects or variables are created
based upon measured characteristics.

e Investigation of the dependence among variables. The nature of the
relationships among variables is of interest. Are all variables mutually
independent or are one or more variables dependent on others? If so, how?

e Prediction. Relationships between variables must be determined for the
purpose of predicting the values on the basis of observation on the other
variables.
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e Hypothesis testing. Specific statistical hypotheses, formulated in terms of
the parameters of multivariate populations are tested.

Multiple Linear Regression

Multiple regression is the most commonly utilized multivariate technique. It is a
statistical technique that simultaneously develops a mathematical relationship
between two or more independent variables and an interval scaled dependent
variable. It examines the relationship between a single dependent variable and
two or more independent variables. The technique relies upon determining the
linear relationship with the lowest sum of squared variances.

Let x4, Xa,..Xk be k independent variables assumed to be related to a response
variable y. The classical linear regression model states that Y is composed of a
mean, which depends in a continuous manner on xi's and random error «.

V=00 +PB1X1 +PRXo +..+PBXe T €.

The beta coefficients (weights) are the marginal impacts of each variable, and
the size of the weight can be interpreted directly. Bo is the y-intercept or
constant, g1 is the coefficient on the first predictor variable, B, is the coefficient
on the second predictor variable, and so on. ¢ is the error term or the residual
that can't be explained by the model. The estimates of p's represented by b0,
b1, b2, .., bk that minimize the squared deviations between the expected and
observed values of Y.are obtained by least square approach. This gives us a
regression equation used for prediction of

y=bo +biX; +DboXo + ..+ biX

The multiple regression model is based on the following assumptions:
e Thereisa linear relationship between the dependent variables and the
independent variables
e The independent variables are not too highly correlated with each
other
e Vy; observations are selected independently and randomly from the
population
e Residuals should be normally distributed with a mean of 0
and variance o?
Multiple regression is often used as a forecasting tool. The multiple regression
model allows an analyst to predict an outcome based on information provided
on multiple explanatory variables. Still, the model is not always perfectly accurate
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as each data point can differ slightly from the outcome predicted by the model.
The residual value, e, which is the difference between the actual outcome and
the predicted outcome, is included in the model to account for such slight
variations. How well the equation fits the data is expressed by  R-squared or R?
the "coefficient of determination." R-squared is a statistical measure that
represents the proportion of the variance for a dependent variable that's
explained by an independent variable. It is indicative of the level of explained
variability in the data set and is used as a guideline to measure the accuracy of
the model. R? can only be between 0 and 1, where 0 indicates that the outcome
cannot be predicted by any of the independent variables and 1 indicates that the
outcome can be predicted without error from the independent variables. One
way of interpreting this figure is to say that the variables included in a given
model explain approximately x% of the observed variation. So, if the R2 = 0.50,
then approximately half of the observed variation can be adequately explained
by the model.

Cluster Analysis

Cluster analysis is a multivariate method which aims to classify a sample of
subjects (or objects) on the basis of a set of measured variables into a number of
different groups such that similar subjects are placed in the same group. It is an
exploratory data analysis tool which aims at sorting different objects into groups
in a way that the degree of association between two objects is maximal if they
belong to the same group and minimal otherwise. Cluster analysis can be used
to discover structures in data without explaining why they exist. In cluster
analysis, there is no prior information about the group or cluster
membership for any of the objects. Cluster analysis has no mechanism for
differentiating between relevant and irrelevant variables. Therefore the choice of
variables included in a cluster analysis must be underpinned by conceptual
considerations. There are a number of different methods that can be used to
carry out a cluster analysis which are classified as follows:

Hierarchical methods
A hierarchical procedure in cluster analysis is characterized by the development
of a tree like structure. A hierarchical procedure can be agglomerative or
divisive.
Agglomerative methods in which subjects start in their own separate
cluster. The two ‘closest’ (most similar) clusters are then combined and this is
done repeatedly until all subjects are in one cluster. At the end, the optimum
number of clusters is then chosen out of all cluster solutions. Agglomerative
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methods in cluster analysis consist of linkage methods, variance methods,
and centroid methods. Linkage methods in cluster analysis are comprised
of single linkage, complete linkage, and average linkage.

Divisive methods in which all subjects start in the same cluster and the
above strategy is applied in reverse until every subject is in a separate
cluster.

Non-hierarchical methods (k-means clustering methods)

It follows a simple procedure of classifying a given data set into a number of
clusters, "k," which is fixed in advance. This method will categorize the items into
k groups of similarity using the Euclidean distance as measurement. The clusters
are then positioned as points and all observations or data points are associated
with the nearest cluster, computed, adjusted and then the process starts over
using the new adjustments until a desired result is reached.

The choice of clustering procedure and the choice of distance measure are
interrelated. The relative sizes of clusters in cluster analysis should be
meaningful. The clusters should be interpreted in terms of cluster centroids.
The variables on which the cluster analysis is to be done should be selected by
keeping past research in mind. It should also be selected by theory, the
hypotheses being tested, and the judgment of the researcher.

Principal component analysis

Principal component analysis (PCA) is a technique used to emphasize variation
and bring out strong patterns in a dataset. Principal Component Analysis (PCA) is
a dimension-reduction tool that can be used to reduce a large set of variables to
a small set that still contains most of the information in the large set. One way of
reducing the number of variables is to consider some of the linear combinations
of these variables only. Principal component analysis (PCA) is a mathematical
procedure that transforms a number of (possibly) correlated variables into a
(smaller) number of uncorrelated variables called principal components. We can
discard those linear combinations which have smaller variances and consider
only those combinations which have high variances. The first principal
component accounts for as much of the variability in the data as possible, and
each succeeding component accounts for as much of the remaining variability
as possible. Principal components are linear combinations of the statistical or
random variable which have special properties in terms of the variances. For
example, first PC is the normalized linear combination of the original variable
with maximum variance. The second PC is the normalized linear combination,
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which has the second maximum variance and uncorrelated with first PC .The
total variance of the variables equals the total variance of the components.
Principal component analysis (PCA) is a statistical procedure that uses
an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables
called principal components. The number of principal components is less than
or equal to the number of original variables.

Let X be the component vector with variance-covariance matrix Y . Since we are
interested in the variances and co-variances, we have suppose that E(X) = 0. Let
B be the component vector such that g'g = 1 and v(ﬁ):ﬁz'ﬂ is maximum. The

vector of principal component is the solution of (2 -Al) = 0. Then the first

principal component is ulzﬂ'x and the variance is the largest root of
|Z —ﬂl| =Oandv(ﬂlx):ﬂi.

The Eigen vectors of a square matrix are the non-zero vectors that, after being
multiplied by the matrix, remain parallel to the original vector. For each Eigen
vector, the corresponding Eigen vector is the factor by which the Eigen vector is
scaled when multiplied by the matrix. The prefix Eigen is adopted from the
German word “Eigen” for” self” in the sense of a characteristic description. The
Eigen vectors are sometimes also called characteristic vectors. Similarly, the
Eigen values are also known as characteristic values.

The mathematical expression of this idea is as follows; if a square matrix ,a non-
zero vector v is an Eigen vector of A if there is scalar A such that

Av=Lv

Then scalar is said to be the Eigen value of A corresponding to v. An Eigen space
of A is the set of all Eigen vectors with the same Eigen value together with the
zero vector. However, the zero vector is not an Eigen vector.

Steps in PCA

» Standardize the data.

» Perform Singular Vector Decomposition to get the Eigenvectors and
Eigenvalues.

* Sort eigenvalues in descending order and choose the k- eigenvectors

* Construct the projection matrix from the selected k- eigenvectors.

+ Transform the original dataset via projection matrix  to obtain a k-
dimensional feature subspace.
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It is mostly used as a tool in exploratory data analysis and for making predictive
models. Often its operation can be thought of as revealing the internal structure
of the data in a way that best explain the variance in the data. If a multivariate
data set is visualized as asset of coordinates in a high dimensional data space,
principal component analysis can supply the user with a low-dimensional
structure, a shadow of this object when viewed from its most informative view.
This can be done by using only the first few principal components so that
dimensionality of the transformed data is reduced. The principal component
analysis is concerned with explaining the variance covariance structure through
a few linear combinations of the original variables. Its general objectives are data
reduction and interpretation.

Canonical Correlation

Canonical correlation analysis (CCA) is a way of measuring the linear relationship
between two multidimensional variables. It is the multivariate extension of
correlation analysis. It finds two bases, one for each variable, that are optimal
with respect to correlations and, at the same time, it finds the corresponding
correlations. The aim of canonical correlation analysis is to find the best linear
combination between two multivariate datasets that maximizes the correlation
coefficient between them. This is particularly useful to determine the relationship
between criterion measures and the set of their explanatory factors. This
technique involves, first, the reduction of the dimensions of the two multivariate
datasets by projection, and second, the calculation of the relationship (measured
by the correlation coefficient) between the two projections of the datasets.

It is the multivariate extension of correlation analysis. Ordinary correlation
analysis is dependent on the coordinate system in which the variables are
described. This means that even if there is a very strong linear relationship
between two multidimensional signals, this relationship may not be visible in an
ordinary correlation analysis if one coordinate system is used, while in another
coordinate system this linear relationship would give a very high correlation.
Canonical correlation analysis finds the coordinate system that is optimal for
correlation analysis. CCA connects two sets of variables by finding linear
combinations of variables that maximally correlate.

The major purposes of CCA are:
- Data reduction: explain covariation between two sets of variables using
small number of linear combinations
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- Data interpretation: find features (i.e, canonical variates) that are
important for explaining covariation between sets of variables

The canonical correlation technique is to find several linear combinations of X
variables and the same number of linear combination of Y variables in such as
these linear combination best express the correlation between the two sets.
These linear combinations are called the canonical variables. The correlation
between the corresponding pairs of canonical variables is called canonical
correlation.

Suppose we desire to examine the relationship between a set of variables x1, x2,-
-+, Xxp and another set y1, y2 - -, yg. And the sample means for all x and y
variables are zero. The first step in canonical correlation is to form two linear
combinations:

Wi=amX1 +aiXe -+ a1pXp
Vi =Drryr + Daoy2 + - -+ + Digyq,

such that corr (W, V1) = Cq is maximum.
Then the second step is to identify another set of canonical variables

W= 821X1 + 822Xz + * +* + 82pXp
V2 = baryr + bogys + -+ + Dagyq

such that corr(W,, V,) = C,is maximum and corr(W-, W) =0, corr(Va, Vo) = 0.

The process of extracting canonical variables can be repeated until the number
of canonical variables equals the number of original variables or the number of
classes minus one, whichever is smaller.
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