is almost assured near the FADs, especially when there is good aggregation and the boats are able to return of base before noon. As such, night collection of the tuna live-baits in Lakshadweep is limited to only a few days during the fishing season at present.

The by-catch is low at present mainly because the fishing is done inside the lagoon and in sandy areas only as the target species are sprats. The catch composition may be different if the target species is any other groups such as fusiliers, cardinal fishes or damselfishes, that mainly inhabit the outer reef areas and live close to corals. The fishery therefore needs to be monitored further for impacts on the ecosystems.

Report on *Amyloodinium* spp. cysts infection in clownfish

*Kurva Raghu Ramudu*¹, N. K. Sanil², P. Vijayagopal², Saloni Shivam¹, P. P. Suresh Babu¹, A. Anuraj¹, K. Navanath ¹ and Jayasree Loka¹

¹Karwar Research Centre of ICAR-Central Marine Fisheries Research Institute, Karwar
²ICAR-Central Marine Fisheries Research Institute, Kochi
email: ram.raghu77@gmail.com

A study was undertaken to record the occurrence of parasitic infections in ocellaris clownfish, *Amphiprion ocellaris* (Fig. 1). Of a total eight *A. ocellaris* maintained in hatchery, three were found infected with different developmental stages of *Amyloodinium* spp. and were kept under observation.

Results indicated that *A. ocellaris* maintained in the hatchery were infected with *Amyloodinium* spp. and prevalence of infestation was 37.5%. The presence of ovoid cysts in the vascular tissue of the gill lamellae were identified as developmental stages of *Amyloodinium* spp. Wet mount of gill revealed numerous groups of brownish round to ovoid structures, each group contains four spherical structures. Clinical signs and symptoms observed were that the infected fishes became lethargic and came to the surface water of the tank which could be due to respiratory problems developed by the invasion of the parasites. External examination revealed slight dorsal and pectoral fin erosion. Gills were pale in colour with high mucus secretion. Liver and other internal organs did not show any clinical signs of infection. Loss of appetite and irregular swimming behaviour was observed in the infected fishes. The infected fishes were brought to the laboratory in axenic condition. These fishes were processed for standard necropsy study and vital organs like gills, skin, fins, intestine and kidney were examined under microscope for the presence of parasites.

Results indicated that *A. ocellaris* maintained in the hatchery were infected with *Amyloodinium* spp. and prevalence of infestation was 37.5%. The presence of ovoid cysts in the vascular tissue of the gill lamellae were identified as developmental stages of *Amyloodinium* spp. Wet mount of gill revealed numerous groups of brownish round to ovoid structures, each group contains four spherical structures. Clinical signs and symptoms observed were that the infected fishes became lethargic and came to the surface water of the tank which could be due to respiratory problems developed by the invasion of the parasites. External examination revealed slight dorsal and pectoral fin erosion. Gills were pale in colour with high mucus secretion. Liver and other internal organs did not show any clinical signs of infection. Loss of appetite and irregular swimming behaviour was observed in the infected fishes. The infected fishes were brought to the laboratory in axenic condition. These fishes were processed for standard necropsy study and vital organs like gills, skin, fins, intestine and kidney were examined under microscope for the presence of parasites.

Results indicated that *A. ocellaris* maintained in the hatchery were infected with *Amyloodinium* spp. and prevalence of infestation was 37.5%. The presence of ovoid cysts in the vascular tissue of the gill lamellae were identified as developmental stages of *Amyloodinium* spp. Wet mount of gill revealed numerous groups of brownish round to ovoid structures, each group contains four spherical structures. Clinical signs and symptoms observed were that the infected fishes became lethargic and came to the surface water of the tank which could be due to respiratory problems developed by the invasion of the parasites. External examination revealed slight dorsal and pectoral fin erosion. Gills were pale in colour with high mucus secretion. Liver and other internal organs did not show any clinical signs of infection. Loss of appetite and irregular swimming behaviour was observed in the infected fishes. The infected fishes were brought to the laboratory in axenic condition. These fishes were processed for standard necropsy study and vital organs like gills, skin, fins, intestine and kidney were examined under microscope for the presence of parasites.

Results indicated that *A. ocellaris* maintained in the hatchery were infected with *Amyloodinium* spp. and prevalence of infestation was 37.5%. The presence of ovoid cysts in the vascular tissue of the gill lamellae were identified as developmental stages of *Amyloodinium* spp. Wet mount of gill revealed numerous groups of brownish round to ovoid structures, each group contains four spherical structures. Clinical signs and symptoms observed were that the infected fishes became lethargic and came to the surface water of the tank which could be due to respiratory problems developed by the invasion of the parasites. External examination revealed slight dorsal and pectoral fin erosion. Gills were pale in colour with high mucus secretion. Liver and other internal organs did not show any clinical signs of infection. Loss of appetite and irregular swimming behaviour was observed in the infected fishes. The infected fishes were brought to the laboratory in axenic condition. These fishes were processed for standard necropsy study and vital organs like gills, skin, fins, intestine and kidney were examined under microscope for the presence of parasites.

Results indicated that *A. ocellaris* maintained in the hatchery were infected with *Amyloodinium* spp. and prevalence of infestation was 37.5%. The presence of ovoid cysts in the vascular tissue of the gill lamellae were identified as developmental stages of *Amyloodinium* spp. Wet mount of gill revealed numerous groups of brownish round to ovoid structures, each group contains four spherical structures. Clinical signs and symptoms observed were that the infected fishes became lethargic and came to the surface water of the tank which could be due to respiratory problems developed by the invasion of the parasites. External examination revealed slight dorsal and pectoral fin erosion. Gills were pale in colour with high mucus secretion. Liver and other internal organs did not show any clinical signs of infection. Loss of appetite and irregular swimming behaviour was observed in the infected fishes. The infected fishes were brought to the laboratory in axenic condition. These fishes were processed for standard necropsy study and vital organs like gills, skin, fins, intestine and kidney were examined under microscope for the presence of parasites.
structures in clusters (Fig. 2), which are presumptive tomonts of *Amyloodinium* spp. In addition, clusters consisting of 2-16 spherical forms were also observed (Fig. 3). Similar structures were reported in silver pompano, *Trachinotus blochii* (Kumar et al., 2015 *Indian J. Fish.*, 62 (1): 131-134).

The infected fishes were shifted to quarantine facility and treated with formalin dip (10 ppm) followed by freshwater bath treatment for ten minutes with vigorous aeration. All fishes recovered from the infection after the treatment. However, avoiding potential source of infection is recommended for successful maintenance of healthy ornamental fishes in marine aquariums.

Record of double operculum in silver conch

*K. A. Labeeb\(^1\), P. Laxmilatha\(^2\), Shijin Ameri\(^1\), A. Kathirvelpandian\(^3\)
\(^1\)ICAR-Central Marine Fisheries Research Institute, Kochi
\(^2\)ICAR-Central Marine Fisheries Research Institute, Madras Research Centre, Chennai
\(^3\)ICAR-PMFGRC, National Bureau of Fish Genetic Resources, Kochi Unit
e-mail : larmil@yahoo.co.in

Lentigo lentiginosus Linnaeus, 1758 is a caenogastropod belonging to the family Strombidae. The species is found in coral reefs and shallow parts of lagoon and widely distributed across Indo-Pacific region. The shells are moderately large, solid with a characteristic deep stromboid notch, and a flared, very thick and posteriorly expanded outer lip with a pinkish cream aperture and glossy parietal wall. Size of the shell varies from 55 to 104 mm in length and used in shell crafts industry. A medium sized silver conch, *L. lentiginosus* with an anomaly (double operculum) was observed during sampling at Kavaratti Island, Lakshadweep in January 2018. The silver conch had two operculums attached to the muscular foot. It and collected at a depth of 1.5 meter by skin diving. Morphometric