SURFACE TEMPERATURE AND ITS RELATION TO THE DURATION
OF MACKEREL FISHERY AT KARWAR

A. NOBLE
Central Marine Fisheries Research Institute, Cochin-11

Relation between the duration of the mackerel fishery and the minimum
temperature observed at surface in the inshore sea-water during the south-west
monsoon period is discussed. Its usefulness in advance prediction of the duration
of the fishery is indicated. The relation between the catch and the local rainfall
and dissolved oxygen in the sea water is also dealt with.

The temperature observed at the surface in the inshore sea-water during
the south-west monsoon was found to exhibit some relation to the duration
of the following mackerel fishery at Karwar. In literature, a study on the
fluctuations of the mackerel landings at Calicut in relation to the hydrological
factors by Pradhan and Reddy (1962) and a suggestion by Murty (1965) that
the observation of the coastal drift in winter may possibly evolve a prediction
system for our pelagic fisheries, are the only available informations.

Studies on the sea-water of the Karwar Bay were carried out through
fortnightly collections till September 1962 and weekly twice thereafter. The
lowest recorded value of the temperature during every monsoon period and the
annual average value of the dissolved oxygen are utilised for this report. The
data for 1954 to 1958 were taken from the records of the laboratory, and
those from 1959 onwards were collected by the author. The figures on total
landings of the mackerel were taken from Banerji and Chakraborty (1962) for
1954-55 to 1958-59, and the rest from the Annual Reports of the Director of
the Central Marine Fisheries Research Institute. The year adopted in this
communication is the fishery year extending from May to April, and it is con­
venient in that it includes both the rainy season and mackerel season. Most
of the required information are presented in Fig. 1.

The duration of the mackerel fishery which is the important post-monsoon
fishery of Karwar can clearly be demarcated with the beginning and end of
the Rampan operations. The fishery usually commences in October and the
length of the season varies from year to year, the longest extending up to April,
and it shows some relation to the surface temperature as discussed below.
The minimum surface temperature of the sea during the south-west monsoon season of 1954-55 was 25.6°C and the mackerel fishery existed from the beginning of November to the third week of February. In the succeeding two years the temperature decreased and the duration of fishery increased. In 1957-58, the temperature increased and the duration of fishery was less. The minimum temperature suddenly dropped in 1958-59 to 23.6°C. This happens to be the lowest value for the eleven years under discussion and the mackerel season was the longest. The fishery started by the middle of the last week of October. The season which normally stops by February or March (Pradhan, 1956) continued up to the end of the third week of April. In the next two years the temperature increased and there was a corresponding decrease in the length of the season. In 1961-62, the temperature which was 26.2°C was the highest of the years under study and the duration of the fishery the shortest. In the subsequent three years the temperature values gradually decreased and the mackerel season increased accordingly. It can thus be seen that with the increase in temperature there is a tendency for the duration of the mackerel season to decrease and vice versa. This correlation suggests the possibility
that by observing the minimum temperature of the sea-water the duration of
the approaching mackerel season of Karwar may be forecast. Buys (1959)
and Plessis (1959) observed some relation between the temperature and the
South African pilchard catch with which prediction of a year's fishery in ad-
advance could be made with fairness.

The temperature values during the period under study show an upward
trend for three years and downward trend in the next three years, and it is very
clearly seen during 1959-60 to 1964-65 (Fig. 1). The low value in minimum
temperature appears to occur cyclically in alternation with high values of it.
Side by side, an inverse trend can be noticed in the duration of the mackerel
fishery. If this cyclical occurrence be found correct for a number of years it
may possibly help in predicting the trend in advance. It should, however,
be mentioned that the duration of the fishery at present has no apparent rela-
tion to the magnitude of catch which will mainly depend upon the recruitment
strength in a year. This may possibly be also due to the fishing activities
restricted to within a range of about 2.4 km from the shore during the mackerel
season (Pradhan, 1956). Rampan net has to wait for the shoals to come close
to the shore and correlation may exist if attempts are made to exploit it off-
shore using other gears. According to Banerji and Chakraborty (1962) the
effort put in to catch the mackerel during the months of their abundance by
Rampan operations is not adequate enough for maximum exploitation. The
annual landings, however, show an inverse relation to the local rainfall (Fig. 1).

The rainfall in 1955-56, in comparison to the previous year was more,
but the catch trend was opposite. In the following two years also the trend
between the catch and the rainfall was inverse. However, in relation to the
year before and after, it was not strictly so. In 1958-59 and 1960-61, there
was abundant catch of mackerel with less rainfall than 1959-60 with less catch
and more rain. In 1961-62, there were heavy rains and the catch was extre-

dely poor. In the next two years the rainfall decreased and the catch incre-
seased, and in 1964-65 there was rise in rainfall and fall in catch. If this rela-
tion between the catch and the rainy season holds good for a number of years,
it would, as the rainy season precedes the season for the mackerel fishery, help
in telling something about the magnitude of the catch in advance. Chidam-
baram and Menon (1945) observed the catches of the oil sardine at Calicut
to depend upon the amount of rainfall there, and by harmonically computing
the trends in atmospheric pressure, Murty and Edelman (1966) say that the
trend of the oil sardine fishery for any year could be found out. They observed
a critical value in the monsoon intensity above which the oil sardine catches
improve with increasing monsoon activity and below which the catches de-
crease with increasing monsoon intensity. They further say, it is the surfacing
of oxygen depleted water that decreases the catch before the critical value and
after the critical point the equilibrium soon sets in with increased wind and
wave action. On the contrary, an inverse relation between the annual mack-
erel landings and the yearly mean values of dissolved oxygen in the sea-water is observed at Karwar. When the catch is more the oxygen is less and the catch decreases when oxygen increases.

The causative factor influencing the occurrence of the minimum temperature values during the monsoon period is worthy of investigation. The temperature of the sea-water lowers during the rainy season. But the rain does not seem to have anything directly to do with the occurrence of low values. For instance, in 1961-62 (Fig. 1) when there was unusually heavy rainfall at Karwar the lowest temperature was 26.2°C. In the next two years the rainfall as well as the temperature decreased. The investigation into the real cause of this may probably help to understand the variations in the mackerel season also.

The lowest temperature values generally occurred in August. But in 1958-59 and 1964-65 it occurred in October. The succeeding mackerel seasons then extended up to April. In 1961-62, it was in July and the fishery was the shortest. It will be worth investigating in future, whether apart from the degree of low temperature in a year, its occurrence earlier or later than August, to have similar effects in the duration of the fishery.

The author is thankful to Dr. R. Raghu Prasad, Assistant Director-General (Fisheries), Indian Council of Agricultural Research, New Delhi for his helpful criticisms.


