SOME OBSERVATIONS ON THE BIOLOGY OF THE RIBBON FISH EUPLEUROGRAMMUS MUTICUS (GRAY)

K. A. Narasimham
Central Marine Fisheries Research Institute Unit, Kakinada-2.

Abstract

In the Kakinada area Eupleurogrammus muticus is landed in small quantities in the commercial catches. Occurrence of a total of 245 post-larvae and juveniles of the length (S.L.) range 43-136. mm collected during March 1966 to April 1971 is reported. The phylogenetic significance in the loss of the caudal fin of the genus Eupleurogrammus, during ontogeny is discussed. Food and feeding habits, length-weight relationship, relative condition factor, size at sexual maturity, spawning and fecundity are studied.

Introduction

Except for the description of eggs and larvae (Delsman 1927) tentatively referred to Eupleurogrammus muticus (Gray) and some biological notes (James 1967), there appears to be no other published information on the biology of this ribbon fish. In the course of work on the biology and fishery of the ribbon fishes of the Kakinada area, it was observed that while Trichiurus lepturus dominated, E. muticus is present in small quantities in the commercial catches. The results of a study on the biology of this species are reported here.

Materials and Methods

Based on weekly or bi-weekly observations and by sampling $20-100 \%$ of the fishing units at the 3 landing centres (See Table 1), monthly and annual estimates of the catch were made. All the fishing units conducted operations off Kakinada (Lat. E $82^{\circ}-20^{\prime}$ to 30^{\prime}; Long. N $16^{\circ}-40^{\prime}$ to $17^{\circ}-10^{\prime}$) at depths of 5-30 metres. The sample collected on each observation day consisted of 25-50 unsorted ribbon fish. Among them E. muticus were either nil or available in very small numbers. For this reason, the biological data for the period March 1966 to April 1971 were pooled and analysed monthwise. Age and growth could not be studied by length-frequency analysis as the total number of fish measured was only 779 (including post-larvae). Examination of otoliths did not reveal growth checks to be of use in age determination. The post-larvae were collected exclusively from trawlnet meshes. From March 1966 to December 67, every month $3-4$ sea-trips were made on board the trawlers to collect the post-larvae. In subsequent years the collections were sporadic and during many months no attempt
was made to collect them. Three post-larvae measuring 43,66 and 111 mm in length were deposited in the Reference Collection Museum of the Central Marine Fisheries Research Institute and bear registration No. CMFRI-F, 126|372 b.

Standard length of the fish was measured throughout. Food was studied by the Points method and depending upon the fullness, each stomach was classified as gorged, full, $\frac{4}{4}$ full, $\frac{1}{2}$ full, \pm full and traces and allotted $100,80,60,40$, 20 and 2 points respectively. The length-weight relationship was studied of 96 females in the size range $33.6-68.6 \mathrm{~cm}$ and of 84 males in the size range 22.6 68.7 cm by the least square method using the formula $\log W=\log a+b \log L$ where W is the weight of fish in grams and L the length in centimetres and ' a ' and ' b ' are constants. The relative condition factor was calculated by the formula $\mathbf{K}_{\mathbf{n}}=\mathbf{W} / \mathrm{aL}^{\mathbf{b}}$ or $\mathbf{W} / \hat{\mathbf{W}}, \hat{\mathbf{W}}$ being the estimated fish weight. From the individual values the mean K_{n} was calculated monthwise and also sizewise. For maturity studies the I.C.E.S. scale was followed. In measuring ova diameter the procedure adopted by Prabhu (1955) was followed and 300 ova were measured in each individual from the middle of the right ovary. James (1967) stated that the distribution of ova in the anterior, middie and posterior regions of the ovary is uniform. Gonad index (G.I.) was constructed in females by the formula G.I. $=$ ovary weight X 10^{2} |fish weight. The usual gravimetric method was followed in fecundity studies. Ovary weight was measured to the nearest 0.1 g for G.I. and to the nearest 0.001 g in fecundity studies.

The Fishery

Table 1 shows that the contribution of E. muticus to the ribbonfish fishery at the 3 landing centres is meagre. At Dummulapeta where non-powered boats operated boat-seines, gill nets and shore-seines the catch of E. muticus varied from nil in 1969 to 4101 kg in 1967 and it formed up to a maximum of 3.73% of the total ribbonfish catch. At Uppada where similar craft and gear operated, the catch of E. muticus varied from 418 kg in 1970 to $19,801 \mathrm{~kg}$ in 1969 and its percentage in total ribbonfish landings varied from 0.50 to 9.97 . It was observed that generally boat-seines got higher catch rates of E. muticus than the other two types of nets at both the landing centres. It would appear that good catch of E. muticus in 1969 at Uppada was mainly due to the operation of boat-seines in July 1969 when 1360 units landed 16,184 kg of this species while at Dummulapeta there was total cessation of boat-seine operation in the same month. At Kakinada Fishing Harbour, where mechanised boats operated otter trawls, the catch of E. muticus varied from 420 kg in 1967 to 1129 kg in 1969 and it formed up to 2.07% of total ribbonfish catch. From Table 1 it is obvious that except at Dummulapeta, peak catches of E. muticus were obtained during July-August period. Even at Dummulapeta the maximum catch was in 1967, during July and August. In the commercial catches E. muticus has a size range of 18-68 cm.

Table 1. Ribbonfish landings and percentage composition of E. muticus in it during 1966-71 of the Kakinada area.

Landing centre	Type of nets	Year	Total catch in kg.				Remarks
Dummulapeta	boatseines, gill nets and shoreseines	1966	1304,804	$\begin{aligned} & 19,486 \\ & (1.48) \end{aligned}$	$\begin{array}{r} 536 \\ (2.75) \end{array}$	May	.
		1967	1710,244	109,840	4,101	July \&	
				(6.42)	(3.73)	August	
		1968	1025,657	20,784	433	May	
		!		(2.03)	(2.08)		
		1969	1414,663	9,600	nil	nil	
		!		(0.68)			
		1970	950,402	21,793	560	March	
		,		(2.29)	(2.57)		
		1971	506,310	20,652	176	March	11 months
				. (4.08)	(0.85)		data only
Uppada	-do-	1967	970,077	$\begin{aligned} & 265,447 \\ & (27.36) \end{aligned}$	$\begin{array}{r} 9,664 \\ (3.64) \end{array}$	July-August	10 months data only
		1968	1908,137	323,098	7,881	May, July-	
				(16.93)	(2,44)	August	
		1969	1593,218	198,544	19,801	July	
				(12.46)	(9.97)		
		1970	969,414	51,406	418	July-September	
				(5.30)	(0.81)		
		1971	648,855	$\begin{array}{r} 98,716 \\ (15.21) \end{array}$	494 (0.50)	July	8 months data only
Kakinada Fishing Harbour	otter trawis	1967	792,403	23,892	420	July-August	
				(3.01)	(1.76)		
		1968	1679;260	$76,483$	898	August \&	
				(4.55)	(1.17)	October	
		1969	1300,229	$54,457$	1,129	July, August	
				(4.19)	(2.07)	and September	
		1970	1456,322	$59,391$	$\begin{array}{r} 645 \\ 6.099 \end{array}$	July, August and Sentember	
		1971	2308,677	236,230	(1.09) 1,116	August	
				(10.23)	(0.47)		

The Post-larvae and Their Occurrence
The post-larvae bear general resemblance to the adult fish (Fig 1) and the diagnostic characters of the species such as the presence of median lateral line, 3 dorsal spines and pelvics and the origin of anal fin below D 38-42 are evi-
dent in the matcral. However, they still retain an important larval character, namely the caudal tin (Fig 1A). Postarvae up to $70-80$ mm length also showed serrations on the fromat, the pelvies and the anteror margin of the 3 dorsal spines The polvie spine is transormed into a scale like stucture, charateristic (i) the species, when the post-farvae reach $65-85 \mathrm{~mm}$ length. Identification is fterther confirmed by Alizarin staming of 4 post-lafvae of the fength $43,55,58$ and 65 mm wheh gave the following range for the meristic characters studiced: teral vertebras 190 -193; preaudal vertebae 39-41; cadal vertebrae 151-153; dorsal fin rays III, 142-146; dorsal extends up to vertebrac number 145-149; anal fin rays $i+1,115 \ldots 19$, anal extends up to vertebrac number $155-160$ fin the 43 -nm specinen only precaudat vertebrac comoted as calcitication is incomplen in the postabdal region). In the 6o-mm specimen (Fig. f. A) the rays at the candat fork are tilamentous and some of them meatared 8.3 mm . The caudal fin has to thikly pignented fobe-jike profections, 3 above and 3 below the clongated middle rays. The tobes contain a number of rays packed empactly. At the lime of shedding of the caudal fin the lobes break up

 3. IGA-rom poselate showing the candal fin partly shed.
C. 117 mm jutenk withoul catial lin.

Table 2. Occurrence of the post-larvae and juveniles of E. muticus. (Also shown is the size at which caudal fin is shed.)

Month	$\stackrel{66}{\mathrm{Mar}}$		Jun	July	$\begin{gathered} 67 \\ \text { May } \end{gathered}$		Sep	$\begin{gathered} 68 \\ \mathrm{Apr} \end{gathered}$	$\begin{array}{r} 69 \\ \text { Apr } \end{array}$	Sep	$\begin{gathered} 71 \\ \text { Aug } \end{gathered}$	苞		
Length in mm														
41-50	-	-	2	-	1	41	-	3	-	-	1	48	48	100
51-60	1	1	1	-	1	30	-	2	2	1	-	39	39	100
61-70	-	-	1	-	1	34	1	9	3	2	-	51	51	100
71-80	-	2	-	-	-	16	-	6	2	2	7	35	35	100
81-90	-	1	-	1	-	10	-	4	-	3	8	27	27	100
91-100	-	1	3	-	-	5	-	9	1	3	6	28	28	100
101-110	-	-	3	1	-	1	-	5	-	-	3	13	13	100
111-120	-	-	-	-	-	1	1	2	-	-	-	4	3	75
121-130	-	-	-	-	-	-	-	1	1	-	-	2	1	50
131-140	-	1	-	-	-	-	-	1	1	-	-	3	-	-
Total	1	6	10	2	3	138	2	42	10	11	25	250	245	
Min. size	54	56	44	85	45	43	63	45	60	51	48	43	43	
Max. size	-	136	105	102	69	111	113	133	131	96	108	136	121	

exposing the rays and are usually shed first, followed by the middle, filamentous rays. The caudal fin is still retained by 50% of the specimens in the 121-130mm size range (Table 2) and completely shed beyond this size range. As per the terminology suggested by Jones (1967), specimens up to $130-\mathrm{mm}$ length may be called post-larvae after which length they pass into the juvenile stage with the loss of caudal fin. The smallest specimen without caudal fin measured 117 mm (Fig. 1. C) and the largest specimen with caudal fin partly shed, measured 124 mm .

In 1966 the post-larvae occurred during March, April, June, and July (Table 2). In 1967 they were available during May-July and September. During the subsequent years they were collected in April, August and September. On the whole, the post-larvae occurred from March through September during different years. The $41-50-\mathrm{mm}$ group occurred in April-August, the $51-60-\mathrm{mm}$ group were collected in all the months except August, the $61-70-\mathrm{mm}$ group was available during April-July and September, the $71-80-$ and $81-90-\mathrm{mm}$ groups were recorded in April and July-September. The $91-100-\mathrm{mm}$ group was present in April and June-September collections while the $101-110-\mathrm{mm}$ group occurred during April and June-August. Thus all the Iength groups up to 110 mm were collected for 4-6 months during different years.
Post-larvae: A high percentage (22%) of empty stomachs was encountered. Cannibalism was not noticed. Average feeding intensity was 23.6 points which showed that the stomachs were more than a quarter full. Among the gut contents

Food

(Fig. 2A), fish were dominant, mostly represented by anchovy larvae. The calanoid copepods ranked second and were represented by Euchaeta marina, Rhincalamus cornutus, Eucalanus spp, Paracalanus spp etc. Prawns; mostly penaeids, were represented by their larval forms.

Juveniles: The incidence of empty stomachs was low (6.8%). Cannibalism was observed in 2 specimens, measuring 40.9 and 42.5 cm length. Average feeding intensity was 31 points which indicates that the stomachs were 3|8 full.

Fig. 2. Histogram showing the food items of the ribbon ftsh, E. muticus.
A. Post-larvae (mean size 74 mm);
B. Juveniles (mean size 305 mm);
C. adults (mean bize 539 mm).

Among the important food items (Fig. 2 B) fishes (larval and juvenile forms of clupeoids, carangids etc.) ranked first followed by prawns (Acetes spp. and post-larvae and juveniles of penaeids), Lucifer and crabs.

Adults: Only 5.4% of the fish had empty stomachs. Cannibalism was absent. The average feeding intensity was poor (15.6 points) and the stomachs were less than a quarter full. The fish showed marked preference for prawns (Acetes spp. and Penaeids) followed by fish, mostly juveniles of Stolephorus spp, Sardinella spp. (Fig. 2 C). Stomatopods ranked third and were represented by alima larvae only.

Length-weight Relationship

The logarithmic regression equations obtained are as follows:
Males: $\quad \log W=-4.2705+3.5560 \log L$
Females: $\log W=-4.1491+3.4848 \log L$
Analysis of covariance (Snedecor 1961) of the two regression equations showed (Table 3) that both the slopes and elevations do not differ significantly. Hence the sexes were combined and the resultant regression line is shown in figure 3 and represented by the equation:

$$
\log W=-4.2165+3.5233 \log L
$$

The correlation coefficient for the regression was found to be 0.986 (d.f. $=178$, $\mathrm{r} 5 \%=0.147$ and $\mathrm{r} 1 \%=0.192$) which is significant,

The t test was applied to see whether the regression coefficient (b) differs from 3. The value of t was 37.47 ($d f=178, t 1 \%=2.58$ and t $5 \%=1.96$); hence the regression coefficient is to be regarded as significantly different from 3.

Table 3. Comparison of the regression lines of the length-weight relationship of E . muticus

Condition of the Fish

The Kn values are high in January, March-April, June-July and September (Fig. 4) and low in May, August and December. The fish are mostly mature in May-August and October-November and immature during the other months. The relative condition factor shows correlation with the maturity of the fish in June-August and December. The feeding intensity is high in January-February, September-October and December and low in March-August. The Kn shows correlation with feeding intensity during January, May, August and September.

The relative condition in relation to fish length (Fig, 5) is high at 33 cm , falls steeply at 37 cm and alternately rises and falls until $51-\mathrm{cm}$ length. There is a sharp rise in the Kn at 43 cm and majority of the fish (61.1%) are sexually mature at this length (Fig. 6).

Fig. 3. Logarithmic relation between length and weight in E. muticus.

Fic. 4. Monthly fluctuations in the relative condition factor in E. muticus.

Fic. 5. Mean \mathbf{K}_{h} values at different length in E. muticus.

Fig. 6. Size at sexual maturity in E. muticus.

Size at First Maturity

The percentage occurrence of mature fish at $2-\mathrm{cm}$ length groups show (Fig. 6) that 33.3% are mature at 41 cm and majority of fish (61.1%) at 43 cm . Cent percent maturity was attained at $51-\mathrm{cm}$ length. The smallest fish with spent gonads measured 40.5 cm .

Spawning

Percentage occurrence of mature fish: While immature fish (stages I \& II) were available throughout the year (Fig. 7) mature fish (stages III to V; stage VI being absent in the collections) occurred in considerable proportion during May-November period. Spent fish (stage VII) formed a high percentage during November-March and generally showed spent resting stage while in the spent fish collected during May-October the ovaries were shrunken and often bloodshot, indicating recent spawning. The occurrence of a high proportion of mature fish, particularly stage V, in May-November and spent fish with indication of recent spawning in the same period and the occurrence of a large proportion of spent resting fish during November-March indicate active spawning in E. muticus during the May-November period. However, due to nonavailability, only few fish were studied during December-April (Fig. 7) and hence the picture for this period is not clear.
Gonad index: The gonad index is high for 7 months, April to October (Fig. 7) which suggests that spawning in E. muticus is spread over this period. This is largely in agreement with the spawning period arrived at by the maturity studies.

Periodicity of spawning in individual fish: In Fig. 8 are given the ova-diameter frequencies of different maturity stages. In all the stages vast majority of the ova present are below $8 \mathrm{~m} . \mathrm{d}$. ($34 \mathrm{~m} . \mathrm{d}$. $=1 \mathrm{~mm}$) and are translucent and invisible

Fig. 7. Percentage occurrence of mature fish, and gonad index during different months in E. muticus. N: number of fish studied; G.I: Gonad index.

F10. 8. Ova-diameter-frequency distribution at different stages of maturity in E. muticus.
to the naked eye. They form a mode around 5 m.d. and are not represented in the ova diameter polygons. Also stage I, which is exclusively formed of such ova, is not shown in the figure. In stage II there is a mode at $15 \mathrm{~m} . \mathrm{d}$. In the next stage two modes are discernible, ' A ' at $25 \mathrm{~m} . \mathrm{d}$. and ' B ' at $15 \mathrm{~m} . \mathrm{d}$. In stage IV while ' A ' rapidly moved to 50 m.d., ' B ' progressed to $20 \mathrm{~m} . \mathrm{d}$. In stage V mode ' A ' moved to $70 \mathrm{~m} . \mathrm{d}$. and ' B ' remained stationary at $20 \mathrm{~m} . \mathrm{d}$. In an advanced stage V ovary, ' A ' progressed to $75 \mathrm{~m} . \mathrm{d}$. and some ova were fully transparent suggesting that spawning of this group of ova is imminent. Both in this stage and in the spent cndition (stage VII) mode 'B' remained stationary at $20 \mathrm{~m} . \mathrm{d}$. The compact nature and the sharp differentiation of mode ' A ' from ' B ' indicates that in individual fish the duration of spawning for group ' A ' ova will be of a very short time. Since group 'B' remained stationary, concurrent with the rapid development of group ' A ', it is reasonable to assume considerable time lag for group ' B ' ova to increase in length and spawn after the shedding of group ' A ' ova.

In the absence of knowledge about this time lag it is difficult to answer the question about the number of times an individual fish spawns during the season. Since the spawning period in E, muticus is prolonged and extends for the major part of the year (see discussion) the possibility for an individual fish to spawn more than once during the spawning season cannot be ruled out. Also the prolonged spawning period can be explained by assuming that different individuals spawn during different times which gives a picture wherein the spawning time in an individual fish will be of a short duration but the spawning period for the population is a prolonged one.

Fecundity

In Table 4 are given the number of mature ova from 25 fish. Fecundity varied from 2362 to 4853 ova per fish and generally increased with the increase in fish length. Fecundity per gram-weight of fish varied from 19.3 to 35.5 ova.

Table 4. Fecundity in E. muticus

S.N.	Date	Fish length (cm)	Fish weight (gm)	Maturity stages	Oyary weight (gm)	Fecundity	Fecundity per gmweight of fish
1.	30-7.71	50.8	75	IV	4.318	2665	35.5
2.	16-6-70	52.5	75	V	9.005	2362	31.5
3.	25-6-71	53.8	90	V	4.315	2992	33.2
4.	26-7-69	56.1	90	IV	4.080	2690	29.9
5.	23-5-68	57.8	115	IV	3.533	3311	28.8
6.	13-8-66	58.2	108	V	12.682	3365	31.1
7.	29-9.70	58.2	115	IV	6.150	3728	32.4
8.	26-7.69	58.4	105	IV	4.445	3045	29.0
9.	26-7-69	59.2	120	IV	5.145	3718	31.0
10.	23-6-66	59.7	110	IV	3.005	3439	31.7
11.	28-10-68	60.4	123	V	16.500	3652	29.7
12.	26-7-69	60.8	120	rv	4.492	4188	34.9
13.	13-8-66	62.5	120	V	9.823	2825	23.5
14.	25-9-68	62.7	132	v	14.873	2555	19.3
15.	26-7-69	62.7	143	1 V	8.094	4853	33.9
16.	19-10-66	63.3	132	IV	4.775	4290	32.5
17.	25-9-68	63.4	155	V	20.930	3394	21.9
18.	26-8-66	64.5	136	v	6.193	4397	32.3
19.	26-7-69	64.7	133	IV	4.901	4387	33.0
20.	22-5-68	65.3	135	V	6.143	4056	30.0
21.	22-5-68	65.3	135	V	6.135	4146	30.7
22.	10-7.70	65.6	175	v	9.215	4151	24.0
23.	7.8.70	66.8	148	V	7.178	4420	29.9
24.	26-7.69	67.3	145	IV	5.893	4653	32.1
25.	16-12-67	68.4	150	III	3.904	4117	27.4

DISCUSSION

Recently, James (1967) observed a rudimentary caudal fin in a $50-\mathrm{mm}$ specimen of E. glossodon. James believed that the name E. intermedius has priority over E. glossodon, but recently Wheeler (1971) has shown that the former is a junior synonym of E. glossodon. The post-larvae of E. glossodon in the possesion of the present author also show the caudal fin, which is shed in $61.8 \%, 97.6 \%$ and cent percent of the spcimens in the size range (S.L.) $51-60$, $61-70$ and $71-80 \mathrm{~mm}$ respectively. Th presence of caudal fin in both the species of Eupleurogrammus demonstrates their close relationship. Tucker (1956) writes "authors have regarded the ecaudate genera "as degenerate" simply because of their lack of a caudal fin. This is a very hasty and unwise opinion; in fact, Eupleurogrammus is one of the most advanced". Further he pointed out that the loss of the caudal fin is a character at work in evolution among the members of Trichiuridae. Applying Recapitulation Theory to the observations made here on the caudal fin in the ontogeny of Eupleurogrammus, the present study conclusively proves that fishes which possess caudal fin in adult stages are primitive with respect to that character, when compared to those which lack caudal fin. The present study therefore supports Tucker's view that Eupleurogrammus is one of the most advanced and that the loss of the caudal fin depicts an evolutionary trend in Trichiuridae. In the generic diagnosis of Eupleurogrammus, Tucker (1956) and James (1967) stated that caudal fin is absent. In the light of the present study it would be appropriate to state that caudal fin is present in the young stages and absent in the adults.

Even though the post-larvae were collected from bottom trawls, they are pelagic in habitat as revealed by the planktonic nature of their gut contents and were obviously caught in the nets at the time of hauling. Similar conclusion was. reached by Narasimham (1972 b) in the case of the young stages of another ribbon fish, Trichiurus lepturus of the length range $37-120 \mathrm{~mm}$.

Studies on the food and feeding habits of other ribbon fishes showed that the medium sized juveniles and adults are essentially carnivorous in nature with marked preference for bony fishes and crustaceans and even resorting to cannibalism on a few occasions (Prabhu 1955; James 1967; Vijayaraghavan 1951). In the present study E. muticus showed similar feeding habits.

The regression coefficient in the length-weight relationship of E, muticus was found to be significantly different from 3. In other ribbon fishes studied James (1967), Gupta (1967 and 1968) and Narasimham (1972a) observed that the regression coefficient is significantly different from 3. In all the cases the weight of the fish increased at a higher rate than the cube of length.

In the present study the relative condition factor showed correlation for some months both with the feeding intensity and sexual cycle. In other ribbon
fishes studied, Gupta (1967 and 1968) and Narasimham (1972a) observed that the fluctuations in the Kn values during different months are influenced to a certain extent by feeding intensity or sexual cycle, while James (1967) could not relate them to any known factors.

A $59.5-\mathrm{mm}$ specimen of E. glossodon was believed by James (1967) to be 2 months old. In T. haumela ($=$ T. lepturus) Prabhu (1955) stated that within one and half months after spawning the post-larvae reach a length of $70-90 \mathrm{~mm}$ with which view the present author (Narasimham 1972b) agreed. On the assumption that in the earlier stages E. muticus shows comparable growth rate and. by tracing back the different size groups given in Table 2, the spawning period was determined as February-August. This has advanced by 3 months of the spawning period indicated by the maturity studies. Since only a few fish were period was determined as February-August. This has advanced by 3 months the spawning period indicated by the maturity studies. Since only a few fish were used in the maturity studies during December-April, it may be possible to conclude that E. muticus may spawn for the major part of the year extending over February-November. However, as the data are pooled for different years and as spawning is closely related to environmental conditions which may differ between years, it is possible that the species may not spawn all through the 10 months every year.

The absence of fish in spawning condition in commercial catches together with the absence of eggs and larvae referrable to E. muticus in the plankton samples collected on a number of occasions from the fishing ground by a $\frac{3}{4}$-metre plankton net made of fine organdy cloth indicate that the present fishing grounds ($5-30 \mathrm{~m}$ in depth) are not the spawning grounds of E. muticus. However, the post-larval collections for a period of time indicate that the species spawns off Kakinada in the offshore waters. Similar conclusion was reached by the present author (Narasimham 1972b) in the case of T. lepturus and James (1967) in E. glossodon.

By studying the ova-diameter frequency of a single specimen of E. muticus James (1967) stated that the species spawns more than once a year. This possibility was borne out by the present study. Other ribbon fishes studied, namely, E. glossodon, \boldsymbol{T}. lepturus and Lepturacanthus savala are also believed to spawn more than once a year (James 1967 and Tampi et al. 1971).

In two specimens of E. muticus measuring 49.5 and 60.0 cm S.L. a total of 1327 and 2087 mature ova respectively were counted by James (1967). In the present study 50.8 cm fish has $2665 \mathrm{ova}, 59.7 \mathrm{~cm}$ fish 3439 ova and 60.4 cm fish 3652 ova. Thus the fish studied by the present author seems to be more fecund.

Acknowledgements

I am thankful to Dr S. Z. Qasim, Director, for encouragement and to Dr K. V. Sekharan, Senior Fishery Scientist, for going through the manuscript and suggesting improvements.

References

Delsman, H. C. 1927. Fish eggs and larvae from the Java Sea. Treubia, 9: 338-351.
GUPTA, M. V. 1967. Studies on the taxonomy, biology and fishery of ribbon fishes (Trichiuridae) of the Hoogly estuarine system. 2. Biology of Trichiurus savala Cuvier. Proc. Zool. Soc., Calcutta, 20: 153-170.
Gupta, M. V. 1968. Studies on the taxonomy, biology and fishery of ribbon fishes (Trichiuridac) of the Hoogly estuarine system. 3. Biology of Trichiurus pantului Gupta. Proc. Zool. Soc., Calcutta, 21: 35-50.
James, P.S.B.R. 1967. The ribbon fishes of the family Trichiuridae of India. Memoir I. Marine Biological Association of India, 226 pp .
Jonks, S. 1967. On the terminology for phases and stages in the life history of teleostean fishes. Proc. Zool. Soc., Calcutta, 20: 99-102.
Namasimham, K. A. 1972a. On the length-weight relationship and relative condition in Trichiurus lepturus Linnaeus. Indian J. Fish., (1970), 17: 90-96.
Narastmana, K. A. 1972b. Occurrence of early juveniles of the ribbon fish, Trichturus lepturus Linnaeus. Indian J. Fish., 19: 210-214.
Prabhu, M. S. 1955. Some aspects of the biology of the ribbon fish, Trichiurus haumela (Forakal). Indian J. Fish., 2: 132-163.
Snedecor, G. W, 1961, Statistical Methods. The Iowa College Press, lowa.
Tampi, P.R.S., P.T. Mrenakshisundaram, S. Basheeruddin and J.C. Gnanamuthu. 1971. Spawning periodicity of the ribbon fish, Trichiurus lepturus (F); with a note on its rate of growth. Indian J. Fish., (1968), 15: 53-60.
Tucker, D. W. 1956. Studies on the Trichiurid fishes. 3. A preliminary revision of the family Trichiuridae. Bull. Brif. Mus. Nat. Hist. Zool., 41: 73-130.
Vijayariohavan, P. 1951. Food of the ribbon fishes of Madras. J. Madras Uni. B. 21: 81-95,

Wherler, A. C. 1971. Notes on type specimens of Trichiurid fishes in the British Museum (Natural History). J. mar. biol. Ass. India (1969). 11: 304-308.

