Successful Breeding of Common Clown Fish, *Amphiprion percula*, under Captive Conditions in Andaman and Nicobar Islands

K. Madhu and Rama Madhu

Fisheries Science Division, Central Agriculture Research Institute

Port Blair - 744 101, Andaman and Nicobar Islands

Anemone fishes (belonging to the family Pomacentridae, subfamily *Amphiprioninae*), comprising genera *Amphiprion* and *Percula* are commonly known as clown fishes, and are one of the most popular attractions in the international marine aquarium fish trade. Out of the 28 species of these anemone fishes reported from the different geographical areas of world oceans (Allen, 1972), Andaman and Nicobar Islands are endowed with 13 of them (Madhu and Madhu, 2003). Most of these fishes are colorful, peaceful, handy, and easy to feed. They are well known for their ecological relationship with sea anemones. Among the anemone fishes *Amphiprion percula*, the common clown fish, is the most colorful, ranking first among the different anemone fishes in the aquarium trade. There are a few reports which say that this species has been bred in captive conditions in Philippines (Alera and Gomes, 1989) and Australia (Job et al., 1997).

Singapore, USA, Europe, Japan, Malaysia, Philippines, Taiwan and Indonesia command a big market in the aquarium fish trade but India’s contribution in this line is negligible although Indian waters particularly in and around Andaman and Nicobar Islands and Lakshadweep islands, are endowed with good reserves of many lacustrine ornamental fishes. Out of 200 varieties of marine ornamental fishes surviving in Indian waters, more than 50 varieties, because of their attractive features, are found to be export-oriented. However, stocks of these fishes have been in a declining stage in certain locations around these islands due to over exploitation. This situation calls for in-depth investigations on the development of technology for accelerating the domesticated production of marine ornamental fishes. Such investigations will ultimately boost our export trade, while at the same time abating the protection of natural populations of these species. In this backgound, the authors succeeded in breeding *A. percula*, the common clown fish and report on this, the first of its kind, is presented hereunder.

Breeding stock development

The major technological hurdles in the breeding of *A. percula*, the common clown fish (*Anemone fish*) is the selection of suitable breeding pairs. As these fishes are protandric hermaphrodites, selection of an active adult male for the breeding programme is of vital importance. Accordingly, different size groups of the fish have been collected from reefs of North of Andaman in December 2001 and eight fishes out of the various size groups were introduced and reared along with the sea anemone *Heteractis magnifica* in a 500 ltr FRP tank with moderately adequate food and water twice per day. After a rearing period of 90-120 days, it was noticed that one pair grew ahead of others and they were identified as a spawning pair. This pair was transferred into a 10 ltr capacity glass aquarium which was used as a breeding tank. The pair was induced to breed in this tank. Similar pairs subsequently identified, were also transferred into separate aquarium (breeding tanks). The temperature in all the breeding tanks was maintained between 25 to 27°C and the water was recirculated to ensure high levels of dissolved oxygen, with the aid of a specially designed filter system. Suitable environmental conditions have been provided and the broodstock was fed with a mixture of high cereal foods such as mussel meat and shrimp, and formulated feeds enriched with vitamins, minerals and algal powder, in order to improve egg quality and colour.

Spawning

After a period of 120-150 days of captive growth, the first pair spawned on January 10, 2002. The fish bred between 0600 hrs to 0800 hrs and 1300 hrs to 1500 hrs. Capsules shaped eggs were deposited on the sides of the breeding tank 10 times, within a period of 126 days in nearly round patches. The eggs ranged between 1.0 and 2.2 mm in length and 0.8 to 1.0 mm in width. They adhered to the sides of tank with stalk. The newly spawned eggs were light orange in colour on the first day of spawning but turned to bright orange on the second day. Subsequently, on the third day, as the embryo developed, these turned black. The eggs became still darker from fourth to fifth day of incubation and the eyes of the developing larvae inside the eggs could be clearly visible when viewed from a short distance. On the seventh day of incubation the eggs became silver and the glowing of eyes of larvae inside the eggs was clearly visible. In fact, hatching took place on this day.

Parental care

During incubation period, both the parents assiduously looked after the eggs (Fig. 1), by way of feeding and attending to them from dawn. *A. percula* (Allen, 1972) feeding was provided with brine shrimp, fed with brine shrimp for the first 3 days and then gradually changed to a diet of freshly hatched brine shrimp. In the beginning the parents ate the eggs, but after 3 days they did not do so. The parents then began to guard the eggs, and would not allow any other fish to come near the eggs. This increased gradually in the sixth day of hatching. On the final evening when hatching took place, males spent most of their time linen and mouth feeding. The female spent a relatively less time at the nest throughout the incubation period.

Hatching and larval rearing

The hatching process through the egg capsule emerged as the first step on the seventh day of incubation. The first hatching came out immediately after the sun set (1800 hrs) and the peak emergence of hatching took place between 1900 to 2300 hrs under darkness. The hatching as they came out of eggs measured 3.0 to 5.0 mm in length each. They had a transparent body, large eyes and a small yolk sac. The hatchlings remained attached to the nest for a few seconds, and after that started to swim freely. As the newly hatched larvae had only little quantity of yolk, they started feeding on the following morning. The larvae were maintained in small isolated tank (after Erichson) roundabout the fifth day. From the fifth day onwards the larvae were given a diet of newly hatched Artemia nauplii along with the rotifer. In order to improve the water quality as well as the composition of the feed, a mixed culture of microalgae was added to the tank. The first sign of normal colouration appeared in the larvae after eight and ninth day. On days 1 to 7, most of the larvae grew to a length of around 3 mm. At this stage the larvae began to shrivel partially pelagic to epibenthic habitat and started eating nauplius shrimp, fish flesh, mussel meat, clam meat and formulated diets.

During larval rearing it was found that the period from the day of hatching to 5th day was very critical and risks of mortality were high. As a result of this, the larval survival and growth was successful with the aid of well-cared out feeding schedule. The larvae were fed with newly hatched Artemia nauplii from the fifth day, and this appears to have helped in reducing the mortality of eggs. The parents removed the dead or weakened larvae and dust particles on the eggs through mouth feeding. Males assumed nearly all responsibility of caring for the eggs and spent a higher percentage of time at the nest than the females did. This process increased gradually in the sixth day of hatching.

While the air was found instead of the movement of air masses during water recirculation was happening the larval. Survivability was more when there was no noticeable movement of water. There was another critical problem encountered during the larval rearing which was the "head butting anomaly" phenomenon in which the larva would sway towards any light reflected off to the sides of bottom of the tank and would continue to hit on the sides of the tank until they eventually died. In order to reduce this behaviour, measures were taken to prevent light reflection from the sides and bottom of the tank. Diffused light intensity was another critical factor faced not only during day but also at night. To counteract this, a low intensity diffused light was provided, suspended well above the tank which enabled the larva swimming towards the water column rather than sinking to the bottom. This innovation ensured viability of the larva to locate food.

Conclusion

The experience gained in breeding aspects of clown fish (*A. percula*) (Spawning behaviour and parental care), egg morphology and embryological development during incubation period, larval morphology, larval behaviour, settlement and colour pattern development could be useful to develop suitable techniques for breeding other marine ornamental fishes and their seed production. Reef fishes can as serve as alternative culture species in commercial shell and finfish hatcheries. The fragile ecosystem of Andaman and Nicobar Islands has the unique distinction of having several varieties of *Amphiprion* species which makes this area an important site for undertaking intensified induced breeding programme of these species. More over release of the hatchery produced seeds to different part of a ranching programme will also help to sustain their population in the sea ground islands where depletion of the stocks has been noticed due to over exploitation and habitat destruction. Sea ranching with the seed of the species is of vital importance as there is a great potential for the production of tropical marine aquarium fishes in these islands.

Acknowledgement

The authors are grateful to Dr. S.P.S. Ahlawat, Director, CARI, Port Blair for the encouragement and facilities provided during this work. The authors would like to thank Ms. G. Triveni for her assistance in the course of the experiment.

References


