NOTES

A SIMPLE METHOD OF ESTIMATING TOTAL MORTALITY RATE

Pauly (1983) and Alagaraja (1984) have proposed a variety of approaches for estimating the total mortality rate (Z) using the length frequency data. Ssentogo and Larkin (1973) have estimated Z making use of the probability distribution (p.d.f.) of age.

The p.d.f. of t (age) is given by

 $p(t) = Z e^{-Z(1+1)}$ for $t > = t_c$

where p(t) is the probability of t

Z=the total instantaneous rate of mortality $t_c = age$ at first capture

From this, we obtain,

 $V(t) = 1/Z^{t}$ for $t > = t_{c}$ (1)

where V(t) is variance of t

Assuming the growth in length follows von Bertallanfy's Growth Formula (VBGF), we get,

 $t = t_0 - 1 / K \ln(1 - 1_t / 1 \propto)$

where, 1∞ , K and t_0 have their usual meaning. Thus,

$$V(t) = (1 / K^{*}) V(y)$$
 (2)

where V(y) is the variance of $1 n (t \propto i_t)$ Substituting (2) in (1) we get,

$$Z^{a}/K^{a} = 1/V(y)$$
 for $1 > = 1_{c}$

Central Marine Fisheries Research Institute, Cochin-682 031. where l_c is the length at first capture. Hence Z/K = 1/s.d(y)

where, s.d(y) is the standard deviation of y.

The method is illustrated with the following example which is generated with $l \propto = 100$, K=0.5 and Z = 1.

Example

Length		Catch
30-35		250
35-40	••	309
40-45		320
45-50		389
50-55	••	352
55-60	••	315
60-65	••	278
65-70		241
70-75	••	203
75-80		167
80-85		130
85-90		93
90-95		55

Taking $1_c = 45$ we obtain, s.d(y) = 0.5059 for $1 > 1_c$ and Z/K = 1/0.5059 = 1.9765. Since K=0.5 we have Z=0.5×1.9765=0.988

M. SRINATH

REFERENCES

ALAGARAJA, K. 1984. Indian J. Fish., 31 ; 177-208. PAULY, D. 1983. Fishbyte, 1 (2) : 9-13. SSENTAGO, G. M. AND P. A. LARKIN 1973 .J. Fish. Res. Bd. Canada, 30 : 695-698.