20 December 2016





# CLIMATE CHANGE IMPACT ON COASTAL FISHERIES AND AQUACULTURE IN INDIA

SAARC COUNTRY MEETING ICAR - Central Marine Fisheries
Research Institute
Kochi, Kerala, India

### **CONTEXT**

- Production from marine capture fishery (3.59 million t in 2014) close to estimated potential (4.4 million t).
- **▶** Growth rate of consumption 3.5% per annum.
- ▶ By 2050 Estimated domestic demand 20.23 million t [10.12 million t (50%) to be met from marine sector] plus Increase in export demand.
- Livelihoods Sector sustains more than 4 million fisher folk inhabiting 3288 fishing villages - 1.6 million active fishers. Expected to increase around 10%.
- Limited scope for increase in production from present grounds.
- ▶ Mariculture technology meet demand supply gap 50% to be met from mariculture.
- Management Transition from open access to regulated fishery policy for mariculture.

### **CHALLENGES**

#### **Emerging** Future

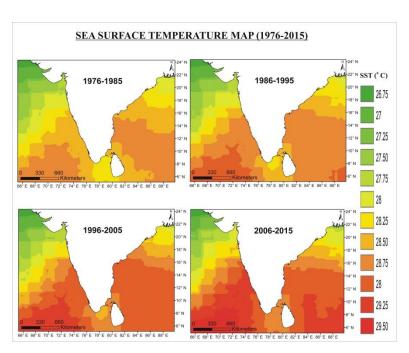
- Rising SST
- Changes in rainfall patterns
- Greater frequency of extreme weather events
- Rising sea levels
- Infrastructural damage
- Ocean acidification
- Coral bleaching
- Habitat loss
  - Resource vulnerability
  - Employment loss
  - Phenological changes

- Environmental degradation
- Diversified use of ecosystems
- Biodiversity losses
- Flip in marine community structure
- Sharing of transboundary stocks
- Emergence of diseases in mariculture systems
- Specific

General

- Green fishing polices/mariculture technologies
- Marine habitat restoration
- Regional co-operation for management of transboundary stocks

#### General


**Specific** 

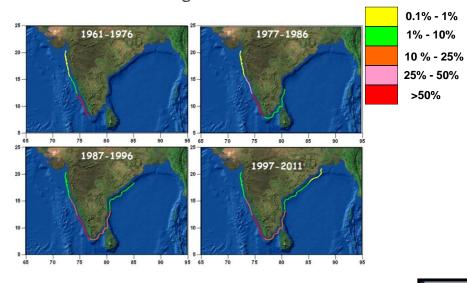
## RISE IN SEA SURFACE TEMPERATURE VISIBLE IN INDIAN WATERS

- The variation of Sea surface Temperature (SST) along Indian Seas during the 40 years from 1976 to 2015 revealed that (SST) increased by
  - 1. 0.819 °C along southwest India
  - 2. 0.690 °C along southeast India
  - 3. 0.602 °C along northeast India
  - 4. 0.597 °C along northwest India
- The rate of change in SST was ranked as:
  - 1. Northwest India (0.0156/annum)
  - 2. Southwest India (0.0132/annum),
  - 3. Southeast India (0.005/annum)
  - 4. Northeast India (0.001/annum)
- Rate of change in SST over Indian Seas revealed that west coast has more impact than in the east coast of India.

Distribution of Indian mackerel has undergone significant change with increase in SST





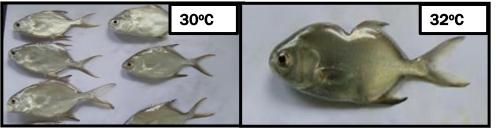

#### **Descent to deeper waters**

- Indian mackerel generally occupies surface and subsurface waters. conventionally caught by surface drift gillnets by artisanal fishermen.
- In recent years, the fish is increasingly getting caught in bottom trawlnets operated by large mechanised boats at about 50 m depth.

## CHANGES IN DISTRIBUTION, ABUNDANCE AND PHENOLOGY OF MARINE FISHES

### **Extension of Distributional Boundaries**

 Warming of surface waters is enabling the oil sardine and mackerel to extend their distributional range north of 14°N.

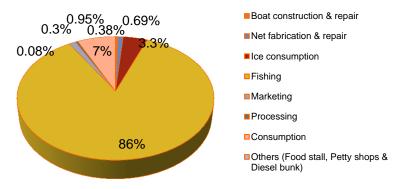


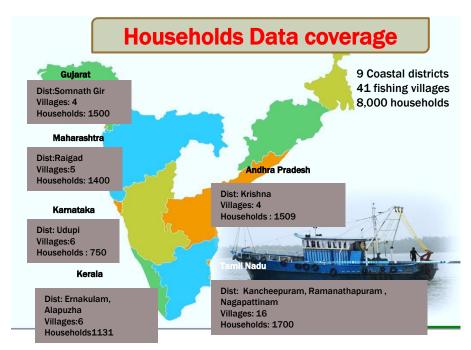

## **Effects of Elevated Temperature on Pompano fingerlings**

 Pompano fingerlings grown at 30°C and 32°C show the effects of elevated temperature on early stages of growth.

### With increase in SST, evidences is now available for

- Increase in dispersal and abundance of small pelagics (oil sardine and mackerel).
- Reduction in mean size in the fishery (Indian mackerel, Nemipterus)
- Reduction in length at first maturity (mackerel, coastal prawns).
- Reduction in fecundity (mackerel, coastal prawns).
- Change in spawning season (Nemipterus sp)
- Change in diet composition (oil sardine).

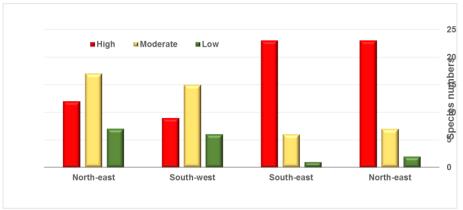




## INTEGRATED DISTRICT LEVEL ADAPTATION AND MITIGATION

#### Survey results (8000 households)

- The level of knowledge on climate change is inadequate (64.7%).
- The major means of information comes through media (67%), friends and relatives (11%), and State government organizations (21.5%).
- Alternate avocations are minimal with marketing of fish, agriculture, livestock, dairy and coir industry.
- The level of governmental support is not adequate (72%) in fishers' perception.

### Carbon footprint by marine fishing in Chennai during 2014






- Carbon footprint in life cycle of marine fisheries was assessed from Mangalore, Tuticorin, Veraval and Visakhapatanam.
- Highest emissions were recorded in harvest phase in all cases

## VULNERABILITY OF MARINE FISH STOCK ASSESSED

- Scientific criteria was developed to enable assessment of the vulnerability of fish stock.
- As a result of this assessment, resilient strategies for mitigating damage to highly vulnerable species have been identified.



Zone-wise dispersion of species based on vulnerability assessment

|                |            | No of |                           | Major |
|----------------|------------|-------|---------------------------|-------|
|                | Zones      | zones | Major influencing factor  | gear  |
| M.             |            |       | Life history and fishing  |       |
| monoceros      | SW, SE, NE | 3     | pressure                  | Trawl |
|                |            |       | Fishing pressure          |       |
| P. niger       | NW, SW, SE | 3     | (juvenile)                | Trawl |
|                |            |       | Life history and fishing  |       |
| P. tenuispinis | SW, SE, NE | 3     | pressure                  | Trawl |
| C. limbatus    | SW, SE     | 2     | Life history              | Trawl |
| D. russelli    | NW,SE      | 2     | Fishing pressure          | Trawl |
|                |            |       | Life history and fishing  |       |
| F. indicus     | SW,NE      | 2     | pressure                  | Trawl |
|                |            |       | Life history and fishing  |       |
| K. pelamis     | SE,NE      | 2     | pressure                  |       |
| N. japonicus   | SE,NE      | 2     | Fishing pressure          | Trawl |
|                |            |       | Life history and fishing  |       |
| P. monodon     | SE,NE      | 2     | pressure                  | Trawl |
|                |            |       | Fishing pressure and lack |       |
| S. gibbosa     | SE,NE      | 2     | of upwelling              |       |
| S. tumbil      | SE,NE      | 2     | Fishing pressure          | Trawl |
| S.             |            |       |                           |       |
| undosquamis    | SE,NE      | 2     | Fishing pressure          | Trawl |
| S.             |            |       |                           |       |
| commerson      | SE,NE      | 2     | Fishing pressure          |       |
| S. jello       | SE,NE      | 2     | Fishing pressure          | Trawl |
|                |            |       | Life history and fishing  |       |
| T. albacares   | SE,NE      | 2     | pressure                  |       |
| T. lepturus    | SE,NE      | 2     | Fishing pressure          | Trawl |

## RESILIENCE OPTIONS FOR HIGHLY VULNERABLE MARINE SPECIES/FISHING

| Vulnerability in marine fisheries due to CC                                     | Possible measures for resilience                                                                     | Indicators of measurement of resilience                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Highly vulnerable fish stocks                                                   | Regulation of fishing (fleet size, mesh size, spatiotemporal closure/habitat restoration (mangroves) | <ol> <li>Increase in CPUE</li> <li>Increase in mean length in the catch</li> <li>Increase in fecundity</li> <li>Increase in size at maturity</li> <li>Reduction in fleet size</li> <li>Spatio-temporal closure for</li> <li>Regulatory measures such as MLS/regulation of mesh size</li> </ol> |
| Reduction in fecundity/size at maturity in wild stocks                          | Implementation of MLS to increase mean size in the catch                                             | <ol> <li>Increase in size at maturity</li> <li>Increase in fecundity</li> <li>Implementation of MLS regulations</li> </ol>                                                                                                                                                                     |
| Extension of distributional boundaries of small pelagics due to increase in SST | Better exploitation and utilisation of small pelagics in all the maritime zones                      | <ol> <li>Increase in the landings of pelagic extended species</li> <li>Increase in CPUE of small pelagics</li> </ol>                                                                                                                                                                           |
| Increased carbon footprint of mechanised fishing operations                     | noming vessers (dicem noming),                                                                       | <ol> <li>Whether PFZ advisory available for the region</li> <li>Number of vessels utilise PFZ advisories</li> <li>Number of vessels use low energy alternatives for fishing</li> <li>Availability of spatio-temporal map/information on fishing grounds</li> </ol>                             |

## RESILIENCE INDICATORS FOR COASTAL FISHERMEN COMMUNITY

| Vulnerability in marine fisheries due to CC                                 | Possible measures for resilience                                                                                                                                                                                             | Indic                                              | cators of measurement of resilience                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Reduction in livelihood options of coastal fishermen due to reduced catches | Low -cost cage farming (Both estuarine and mariculture)  Pond culture silver pompano (Seed Bank)  Empowerment of fishermen through CBA  Integration of fish farming with saline tolerant pokkali paddy farming in the fields | 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9. | Number of fishermen adopted the alternative options of livelihood Area under cage farming/pond culture of silver pompano/ CBA Increased income to fishermen/farmer Increase in farming days/fishing days Increased production from coastal area Institutional support for alternative farming technologies Tolerant varieties used by farmers (Saline tolerant silver pompano) Seed availability Feed availability Availability of Institutional credit and advisories |  |  |
| Coastal village vulnerability  Loss of livelihood due to natural hazards    | Development of Participatory Attitude on Preparedness,                                                                                                                                                                       | 1.<br>2.<br>3.<br>4.<br>5.<br>1.<br>2.<br>3.       | Number of villages with such framework developed  Degree of awareness about CC among coastal villagers Increase in infrastructure developed  Number of mitigation measures applied in the village Adoption of alternate livelihood options suggested  Availability of early warning systems  Availability of weather forecast  Availability of PFZ advisories  Availability of community gathering centres                                                             |  |  |
| Reduced income to fishermen community                                       | Multivendor E-commerce facility for fishermen SHGs for community empowerment and                                                                                                                                             | 5.<br>1.<br>2.<br>3.                               | Awareness among fishermen about history of natural hazards  Increase in the share of fishermen in consumer rupee  Number of SHGs benefited  Increase in profit for fisheries stake holders                                                                                                                                                                                                                                                                             |  |  |

#### ADAPTATION OPTIONS FOR MARINE FISHERIES

### Carbon sequestration through seaweed cultivation

- Studies were conducted on the carbon sequestration potential of the seaweed Kappaphycus alvarezii.
- Specific rate of sequestration of CO<sub>2</sub>
   by the seaweed was estimated at 0.0187g/day.



Kappaphycus alvarezii grown in carbon sequestration experiments

#### Low cost cage construction

- Cages were developed using locally available materials like GI pipe and floated on fibre barrels.
- The low cost cage developed by CMFRI was demonstrated by making twelve low cost cages.
- This technology makes cage culture affordable to the common fishermen.
- The no of cages have increased from 12 to 700 now with the production expected to increase to 4 lakh tonnes from cage farming.

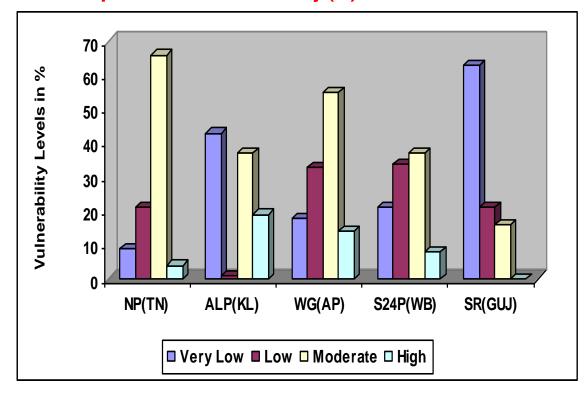
## Integrated Multi-Trophic Aquaculture (IMTA)

- Seaweed was farmed concurrently with cobia in cages.
- The demonstration yielded nearly double the amount that would be obtained from a similarly sized system used purely to cultivate seaweed.



Handing over of the harvest of cobia and Kappaphycus alvarezii



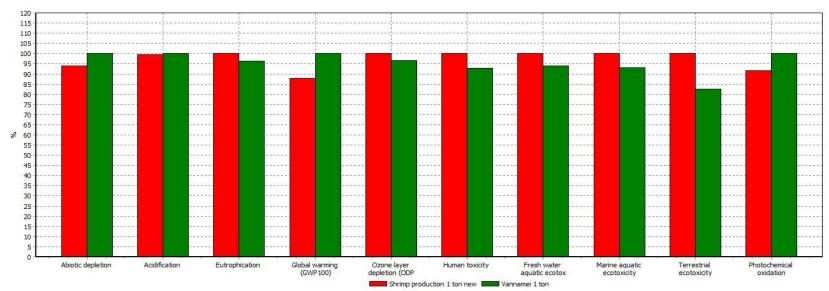

Low cost cages employed in cage culture moored off Karwar

#### **Vulnerability of aquaculture to climate change**

Based on data analysis of extensive farmer's survey (n= minimum of 120) and exposure, sensitivity and adaptive capacity indicators  $\rightarrow$  Vulnerability of aquaculture to climate change was assessed.

| Vulnerability<br>Levels    | Vulnerability<br>Score<br>(Normalised) |
|----------------------------|----------------------------------------|
| Very Low<br>Vulnerable     | (0 - 1.0)                              |
| Low<br>Vulnerable          | (1.1 -2.0)                             |
| Moderately<br>Vulnerable   | (2.1-3.0)                              |
| Highly<br>Vulnerable       | (3.1- 4.0)                             |
| Very High<br>Vulnerability | ( 4.1-5.0)                             |

**Aqua farmers vulnerability (%) in coastal states** 




4 to 19%, 37 to 66%, 1 to 34% and 9 to 43% of the aqua farmers in all the four states were under high, moderate, low and very low categories of vulnerability, respectively except Gujarat, where 64% were under very low category.

### Comparison of *P.monodon* and *L.vannamei* farming systems (1 ton production) for their contribution to environmental burden (Characterisation)

|                             |                      | P.monodon    |          |
|-----------------------------|----------------------|--------------|----------|
|                             |                      | production 1 | L.Vannam |
| Impact category             | Unit                 | ton          | ei 1 ton |
| Abiotic depletion           | kg Sb eq             | 9.55         | 10.18    |
| Acidification               | kg SO2 eq            | 14.29        | 14.36    |
| Eutrophication              | kg PO4— eq           | 79.00        | 76.15    |
| Global warming (GWP100)     | kg CO2 eq            | 1817.83      | 2068.22  |
| Ozone layer depletion (ODP) | kg CFC-11 eq         | 0.001        | 0.001    |
| Human toxicity              | kg <b>1</b> ,4-DB eq | 259.58       | 240.82   |
| Fresh water aquatic ecotox. | kg 1,4-DB eq         | 40.39        | 37.93    |
|                             |                      |              | 130345.2 |
| Marine aquatic ecotoxicity  | kg 1,4-DB eq         | 139911.81    | 6        |
| Terrestrial ecotoxicity     | kg <b>1</b> ,4-DB eq | 2.28         | 1.88     |
| Photochemical oxidation     | kg C2H4              | 0.41         | 0.44     |

- Among the two production systems, *L.vannamei* contributed more towards GWP.
- Global warming potential (GWP)
  was high in L.vannamei system
  compared to P.monodon and it
  is contributed mainly by use of
  aerators and production of feed
  in feed mill i.e., mainly by use of
  energy.



### **EMPOWERMENT OF WOMEN**

- Strong relationship between hunger and gender inequality
- Equalising women status with men in S. Asia and SS Africa estimated to reduce malnourished children by 13.4 and 1.3 million respectively
- Women mostly involved in processing and marketing
- Excellent opportunities for involvement of women in farming of food and non-food aquatic organisms
- Many success stories increase in household incomes, better
  - nutrition and health for family

## POLICIES AND ENABLING ATMOSPHERE

- Commitment of governments to implement coping strategies
- R & D initiatives
- Ecosystem approach
- Development of saline tolerant species
- Building institutional and legal frameworks
- Access to micro-credit
- Training in livelihood initiatives and provision of subsidies as needed
- Market access

### RECOMMENDATIONS

- Identification of vulnerable fishery/coastal resources
- Vulnerable resources should be made resilient following adaptation strategies. Such adaptation strategies may be extended to fishermen and their communities who are largely dependent on vulnerable resources.
- Low cost fish farming technologies countering climate variability, alternate energy and fuel based on marine resources, farming of potential carbon sequestering species such as seaweeds may be developed.

### RECOMMENDATIONS

- Identifying and grading critical as well as ecologically sensitive habitats such as mangroves, corals, wetlands and others for developing restoration strategies.
- Creating awareness campaigns for reduction of GHG emissions and empowering vulnerable communities through capacity building programmes.
- Strategies on utilizing e-commerce ventures and Information Communication Technology methods for social and livelihood security of fisher folks and fish farmers.









Science & Engineering Research Board
Department of Science & Technology
Government of India





हर कदम, हर डगर किसानों का हमसफर भारतीय कृषि अनुसंधान परिषद

Agresearch with a Buman touch



## Thank You