J. Appl. Ichthyol. 32 (2016), 706-711
© 2016 Blackwell Verlag GmbH
ISSN 0175-8659

Received: October 1, 2015
Accepted: January 23, 2016
doi: 10.1111/jai.13060

Morphological divergence in Indian oil sardine, Sardinella longiceps V alenciennes,

1847— Does it imply adaptive variation?

By S. Sukumaran, A. Gopalakrishnan, W. Sebastian, P. Vijayagopal, S. Nandakumar Rao, N. Raju, S. Ismail,
E. M. Abdussamad, P.K. Asokan, K. P. Said Koya and P. Rohit

Central Marine Fisheries Research Institute, Kochi, Kerala, India

Summary

The Indian oil sardine, Sardinella longiceps, is an important
pelagic species in Indian waters, and shows divergent mor-
phology while in sympatry. The reasons behind this divergent
morphology were investigated using morphometric, genetic
and nutritional analyses. Twenty-one morphometric charac-
ters (as percentage of standard length) and eight meristic
characters were studied in the three variants to assess
whether they are significantly diverged. Distinct clustering of
morphotypes was evident in the principal component analysis
on log-transformed ratios of morphological characters with
PC1 and PC2, explaining 50.7% and 17.6% of the total mor-
phological variation, respectively. PC1 was highly correlated
with the distance from snout to anal origin, depth at dorsal,
distance from snout to pelvic and distance from snout to first
dorsal. PC2 was highly correlated with head length, caudal
width and anal depth. Analysis of similarities (ANOSIM)
was conducted using log-transformed morphometric ratios,
with the results showing the clusters to be well differentiated
(R=0.511; P<0.01). Similarity of percentage analysis
(SIMPER) analysis showed that the differences in depth at
the dorsal, anal base length, caudal width, distance from pel-
vic to anal origin, anal depth and eye diameter accounted for
52% of variations between variant 1 and 2. Differences in
caudal width, distance from pelvic to anal origin, anal base
length, depth at dorsal and anal depth accounted for 56% of
the variation between variant 2 and 3. Differences in caudal
width, eye diameter, anal base length, anal depth, distance
from pelvic to anal origin accounted for 50% of the varia-
tion between variant 1 and 3. Genetic divergence was not sig-
nificantly based on mitochondrial cytochrome ¢ oxidase I
(COI) or control region sequences. Proximate composition
analyses showed significantly high fat content in variants
1&3 and significantly high protein content in variant 2, prob-
ably due to dissimilar dietary preferences. The study shows
that morphotypes of the Indian oil sardine may be the result
of divergent selection and adaptive variations, which need
further investigation using a long-term sampling design.

Introduction

The Indian oil sardine, Sardinella longiceps, is one of the
most important pelagic fishes in Indian waters with a wide
range of distribution and contributed to 16% of total fish

landings in India in 2014 (CMFRI (Central Marine Fisheries
Research Institute), Kochi, 2014), with a major contribution
from the Malabar upwelling zone (31.8%). A fast-growing
species attaining sexual maturity at the end of its first year,
the fishery consists of 0- and 1-year classes (Devaraj et al.,
1997) although the life span is 3-4 years. The Indian S. long-
iceps fishery showed dramatic fluctuations on a decadal scale,
with periodic extinctions and recolonizations (Longhurst and
Wooster, 1990; Xu and Boyce, 2009). Spawning and conse-
quent recruitment of small pelagic fishes are highly depen-
dent on complex oceanographic parameters such as
upwelling, sinking, formation of eddies, etc. hence, localized
extinctions are always possible (Grant and Bowen, 1998).

Identification of the number of stocks or management units
is very pertinent for effective management and sustainability.
Very often the stock boundaries are confounded by migration
and the stock structuring of marine pelagic fishes is generally
weak. Genetic stock structure estimates are based on neutral
loci and most well-studied marine pelagic fishes are panmictic
with very low genetic differentiation (Volckaert, 2013). Even
this low genetic differentiation is found to be meaningful on an
ecological time scale (Knutsen et al., 2003, 2011).

Although genetic estimates show lack of a population
structure, marine fishes can exist as locally adapted popula-
tions and with gene flow between them (Hutchings et al.,
2007). The genetic imprints of this type of adaptation may
be more evident in functional genes, which have undergone
selection in various habitats (Defaveri and Merila, 2013).
Variations in gene expression may also play a major role in
shaping adaptation to different environmental conditions and
also in the evolution of plastic responses (Bernatchez et al.,
2010). Phenotypic plasticity in response to environmental
conditions has been reported in several pelagic fishes (Bau-
mann and Conover, 2010). The fishes are capable of adapt-
ing to fluctuating environmental conditions by altering their
temperature sensitivity, reproductive timing or physiological
parameters. It is also possible to have locally acclimated spe-
cialists in the same metapopulation (Sultan and Spencer,
2002). Several studies have reported phenotypical differentia-
tion among connected marine populations (Cadrin, 2000;
O’Reilly and Horn, 2004), but the correlation between adap-
tation and neutral genetic variation may not be observed in
most of the cases. Adaptive phenotypic divergence precedes
speciation and is the outcome of divergent natural selection
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in heterogeneous environments (Bernatchez et al., 2010).
Morphological differences in white fish (Coregonus genus)
populations sympatrically inhabiting lakes located in the St.
John River drainage have been studied extensively over a
long time period by comparing the extent of divergence in
many phenotypic traits (Qst) with the extent of divergence in
genetic characters using microsatellite markers (Fst). The
study provided evidence that gill rakers, growth and swim-
ming behaviour evolved under the effect of divergent selec-
tion (Rogers et al., 2002). Phenotypic divergence by way of
natural selection and its relation to gene expression has also
been investigated (Wray, 2007; Fay and Wittkopp, 2008).

Feeding morphology and ecology has a major role in
shaping the morphological differences (Albertson et al.,
2003) as exemplified in the speciation and divergence of cich-
lid fishes of Lake Malawi. It is difficult to identify the gene
or gene complexes involved in morphological complexities
and some studies have tried to address this by using quanti-
tative genetic tools (Bernatchez et al., 2010 and references
therein). Quantitative trait locus (QTL) effects that co-occur
consistently with divergent selection on traits associated with
that particular morphological character will provide some
insights into the relationship between genetics and morphol-
ogy (Gilad et al., 2008), but in most cases such character
complexes are associated with pleiotropy, involvement of
more than one gene.

The Indian oil sardine may exist as environmentally hetero-
geneous metapopulations with plastic types as well as local
specialists. Devanesan and Chidambaram (1943) reported
morphological plasticity in the Indian oil sardine by compar-
ing sardines from Bombay, Karachi, Muscat, Aden, Karwar
and Malabar, and recording variations in lengths of the head
and tail; they concluded that there were different races in the
population, mainly the Karwar race, Malabar and Bombay-
Karachi race, Muscat race, and the Aden race. However, many
of these morphological variants are co-occurring, which may
be associated with their dietary and habitat preferences. It is
also important to understand the adaptive variation in this
species to devise conservation strategies for those locally
adapted species, as they have higher fitness values in that par-
ticular environment. Hence the present study aimed to under-
stand whether the morphological differentiation was
significant and whether they were genetically diverged. We
could visually differentiate 2 forms from commercial landings
along the Kerala coast; the third variant was Indian oil sardi-
nes imported from Oman and which are available in fish
markets. We analysed the morphometric and meristic charac-
teristics of the three variants. Analysing the sequences of mito-
chondrial COI and control region sequences ascertained the
genetic similarities. The proximate composition of the three
morphological variants was also studied regarding their nutri-
tional status as well as to derive some insights into the impor-
tance of feeding and nutrition on their morphology.

Materials and methods
Sample collection and morphometric analyses

Thirty individuals each of morphologically different Indian
oil sardine S. longiceps samples were collected. Variant 1 and

Fig. 1. Three morphological variants of Indian oil sardine, Sar-
dinella longiceps (males) collected during July 2014 belonging to the
same maturity condition (maturity stage 3) (a) variant 1 (b) variant 2
(c) variant 3

2 were termed as stout and slender sardines, respectively,
based on their visual appearance (Fig. 1). Variant 3 was
available only from the Gulf of Oman and thus coined as
Oman sardines. Variants 1 and 2 were collected from Calicut
(Puthiappa village) by ring seines (a mini-sized purse seine
mesh between 18-22 mm) operated near the coast; fishes of
variant 3 from the Gulf of Oman were purchased from a
local market (imported from Oman and collected using
beach seines of mesh sizes between 21-23 mm). All three
variants were collected in July 2014. Range of standard
length for all variants was 15-20 cm. There were 13 females
and 17 males in the variant 1 cohort, 16 females and 14
males in variant 2, and 14 females and 16 males in variant 3.
Males and females belonged to stage III maturity condition
(Antony Raja, 1967) of males with a thickened white testes,
vas deferens size not more than 1.5 cm and occupying about
3/4ths of the body cavity, and females with oviducts extend-
ing to more than half of the body cavity but less than 3/4ths
and the ova visible to the naked eye. We measured 21 mor-
phometric characters and eight meristic characters in all the
samples. All morphological characters were then converted
to percentage of standard length (SL). A principal
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component analysis was performed on natural log-trans-
formed ratios of significantly different morphological charac-
ters using PRIMER v5, which separated morphological
variations into linear combinations of variables that describe
body shape. Along with this, analysis of similarities (ANO-
SIM) and similarity of percentage analysis (SIMPER) were
carried out on log-transformed morphometric ratios in PRI-
MER vS5 to assess the percentage contribution of morphome-
tric ratios to the overall variations in body shape.

Genetic analyses; DNA extraction and amplification of the
Cytochrome C Oxidase I gene and control region

Total DNA was extracted from muscle tissue using a stan-
dard phenol/chloroform extraction protocol and ethanol pre-
cipitation. Universal primers for amplification of the
Cytochrome C Oxidase 1 region of marine fishes (Folmer
et al., 1994) were used for amplifying a 700 bp region of the
cytochrome c¢ oxidase 1 gene, and universal primers for
amplification of the complete mitochondrial control region
of marine fishes (Cheng et al., 2012) were used for amplify-
ing the control region. PCR amplifications were carried out
in a 25 ul reaction mixture containing 10 mm Tris-HCI, pH
8.3, 50 mm KCI, 1.5 mm MgCl,, 200 um of each dNTP,
0.2 um of each oligonucleotide, 1 unit of Taqg DNA poly-
merase and 50 ng of template DNA. The PCR reaction was
carried out in a Biorad T100 thermocycler (Biorad, USA)
programmed for an initial denaturation at 94°C for 4 min
followed by 33 cycles of; denaturation at 94°C for 30 s,
annealing at 42°C for 30 s, extension at 72°C for 40 s and a
final extension at 72°C for 7 min for amplification of COl
gene. For amplifiying control region, an initial denaturation
at 94°C for 4 min followed by 35 cycles of; denaturation at
94°C for 30 s, annealing at 48°C for 30 s, extension at 72°C
for 55S and a final extension at 72 °C for 7 min. Purification
of the PCR product was carried out using the Qiagen PCR
purification kit and sequenced with LCO1490 and HC02198
(Folmer et al., 1994) primers using the BigDye Terminator
Sequencing Ready Reaction v3.0 kit (Applied Biosystems)
following instructions of the manufacturer. Sequencing was
carried out on an ABI 3730 automated sequencer. A 650 bp
region of the cytochrome C oxidase gene region and a
762 bp region of the control region of S. longiceps was
amplified in all sampled individuals for phylogenetic analysis.
All partial sequences of S. longiceps CO1 and the control
region were deposited in GenBank with the accession no:
KT461672-KT461726. The sequences were aligned using clus-
tal W in MEGA 6 and a phylogenetic tree was constructed
using the UPGMA method with 1000 bootstraps. The tree
was rooted with sequences of Sardinella albella retrieved
from GenBank.

Proximate composition analysis

Three whole male fishes each belonging to variant 1, 2 and 3
(total 9) were analysed for percentage of moisture, crude pro-
tein, crude fat, crude ash, crude fibre, acid insoluble ash and
nitrogen free extract on a dry and wet matter basis. Moisture
content was determined by drying the flesh at 105°C for

5-6 h to a constant weight. Fat was estimated by extracting
the same with ether in a soxhlet extractor for a period of 10—
12 h or more. Nitrogen in the flesh was estimated by the
micro-kjeldahl nitrogen estimation method and the nitrogen
value multiplied by the factor 6.25 for protein values. Ash
content was estimated by igniting a known weight of sample
in silica crucible at 600°C for 6 h. Crude fibre content was
estimated by dissolving the sample in sulphuric acid and
sodium hydroxide solutions and the final residue calcined.
The difference in weight after calcination gives the quantity
of fibre present in the sample. The acid-insoluble ash was
determined by dissolving the ash with SN HCI and filtering
the residue with Whatman 42 filter paper. Nitrogen-free
extract was determined after subtracting the values of crude
protein, crude fat, crude ash and crude fibre from total dry
matter content (AOAC, 1990).

Results

Among the seventeen morphological characteristics measured
as percentage of standard length, fifteen characteristics were
significantly different among the three variants (Table 1);
meristic characters did not differ significantly. A principal
component analysis (PCA) using the fifteen significantly dif-
ferent morphological characteristics showed morphometric
differentiation among the variants, with variant 2 structured
again into two well-separated clusters resulting in four clus-
ters (Table 2). The first five principal components accounted
for 84% of the overall variance (PC1-50.7%; PC2-17.6%;
PC3-6.5%; PC4-5.2%; PC5-4.1%) (Table 3). PCI1 was highly

Table 1

Morphological characteristics measured in three variants of Indian
oil sardine Sardinell longiceps (average values as percentage of stan-
dard length)

Variant Variant Variant
SI.No Morphometric characteristics 1 2 3
1 Head length** 30.8 28.7 27.46
2 Snout length** 6.76 5.87 5.92
3 Eye diameter** 6.05 4.94 5.08
4 Inter orbital width** 6.62 5.46 7
5 Distance from snout to 1st 47.36 44.01 45.85
dorsal**
6 Distance from snout to 29.43 27.6 27.95
pectoral*
7 Distance from snout to 54.76 51.28 54.38
pelvic**
8 Distance from snout to anal 78.14 70.7 78.06
origin**
9 Distance from pelvic to anal 23.59 20.05 26.13
origin**
10 Caudal width** 8.0 6.9 9.7
11 Depth at first dorsal** 24.42 19.03 24.76
12 Depth at anal origin** 14.0 12.11 15.72
13 First dorsal height** 12.25 10.7 11.62
14 First dorsal base length** 13.46 11.6 13.43
15 Anal base length** 13.19 10.7 13.35
16 Pectoral length 14.7 14.0 14.9
17 Pelvic length 7.7 7.59 8.23

*Significant P < 0.05.
**Highly significant P < 0.01.
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Table 2

Summary of principal component analysis (eigen values and eigen
vectors) calculated from 15 morphometric ratios describing body
shape

PCl1 PC2 PC3 PC4 PC5s
Eigen value 7.60 2.63 0.98 0.77 0.61
Y%variance 50.7 17.6 6.5 5.2 4.1
Eigen vector
Distance from snout  —0.243 0.320 —-0.271 —0.142 0.078
to pectoral
Caudal width —0.237 —0.355 —0.032 0.029 —-0.076
Depth at dorsal —0.306 —0.190 0.046 0.030 0.344
Depth at anal —0.209 —0.334 0.260 0.420 0.353
Dorsal height —0.255 0.135 —-0.423 0.470 —0.048
Dorsal basal length —-0.281 —0.087 —0.125 —0.176 —0.095
Head length —0.180 0.430 —0.029 0.039 0.158
Snout length —0.136 0.223 0.761 0.312 —-0.294
Eye diameter —0.244 0.315 0.177 0.169 0.458
Inter orbital width —0.274 —0.244 0.109 0.122 0.067
Distance from snout —0.286 0.248 —0.045 —0.354 —0.095
to first dorsal
Distance from snout  —0.295 0.095 —-0.010 —-0.327 -0.352
to pelvic
Distance from snout  —0.326 0.024 0.118 0.089 —0.297
to anal origin
Distance from pelvic —0.274 —0.261 —0.146 0.248 —0.353
to anal origin
Anal base length —0.260 —0.144 —0.024 0.324 0.252

correlated with distance from snout to anal origin, depth at
dorsal fin, distance from snout to pelvis and distance from
snout to first dorsal fin. PC2 was highly associated with head
length, caudal width and anal depth. The PCA plot showed
four clusters with one cluster containing eight individuals of
variant 2, well separated from other clusters of which three
were females and five were males (Fig. 2). All other individu-
als of variants 1, 2 and 3 formed three adjacent clusters with
intermediate phenotypes connecting them.

Analysis of similarities (ANOSIM) was conducted using
morphometric ratios; the results showed the clusters to be
well differentiated (R = 0.511; P < 0.01). SIMPER analysis
showed that the differences in depth at dorsal, anal base
length, caudal width, distance from pelvic to anal origin,
depth at anal and eye diameter accounted for 52% of varia-
tion between variants 1 and 2. Differences in caudal width,
distance from pelvic to anal origin, anal base length, depth

Table 3

at dorsal and depth at anal origin accounted for 56% of the
variation between variants 2 and 3. Differences in caudal
width, eye diameter, anal base length, depth at anal, distance
from pelvic to anal origin accounted for 50% of the varia-
tion between variants 1 and 3.

The UPGMA tree constructed using cytochrome ¢ oxidase
and control region sequences did not show any clustering
among the three variants, indicating their genetic similarity.
Genetic distances among the morphotypes were ascertained
by calculating kimura 2p values with CO1 gene sequences,
and the values between variant 1&2, 1&3 and 2&3 were
0.3%, 0.1% and 0.2%, respectively. These values show that
they are not divergent genetically.

The crude protein content was significantly higher in vari-
ant 2 compared to variants 1&3, whereas crude fat was sig-
nificantly higher in variants 1&3 compared to variant 2 on a
dry matter basis (Table 3).

Discussion

Morphological differences have been reported in many mar-
ine pelagic species, especially in clupeids (Thomas et al.,
2014). In Atlantic cod Gadus morhua, morphological differ-
ences were associated with behavioural and ecological differ-
entiation (McAdam et al., 2012). The two behavioural types,
coastal and frontal, were associated with distinct morpholog-
ical characteristics such as gape of mouth, eye position and
spaces between fins and depth of body. The patterns of habi-
tat use, foraging and migratory behaviour were different in
the two types (Grabowski et al., 2011). Behavioural patterns
in the Indian oil sardine have yet to be investigated, hence
conclusions could not be drawn regarding the variations in
morphology and behaviour. Habitat preferences and dietary
differences may also affect morphology, e.g. Gadus morhua,
Atlantic cod around Icelandic waters had higher condition
factors and a greater girth and higher aspect ratio than fishes
from deeper waters (Pardoe et al., 2008; Pardoe and
Marteinsdottir, 2009). In the present study, Indian oil sardi-
nes from Oman, variant 3, were heavier and with greater
body depth than the two variants from Indian waters and
thus indicating the presence of greater energy reserves and a
good condition factor. This may also be due to the higher
productivity of Oman waters, which are more temperate.
Among variants 1 and 2, variant 1 was stouter in appearance

Proximate composition of morphological variants of Indian oil sardines (males) belonging to the same maturity condition on dry matter and

wet matter basis (percentage)

Sample Dry Crude Nitrogen Crude Crude Acid Insoluble
Name matter Moisture protein Crude fat free extract  fibre ash ash
(a) Dry matter basis
Variantl 100 Nil 5745 £0.76 3490 + 0.27 1.86 + 0.57 0.29 £ 0.03 571 £ 035 0.28 +£0.23
Variant 2 100 Nil 79.39 £ 1.17  12.10 £ 0.41  0.89 £ 0.45 0.13 £ 0.01 7.47 £0.73  0.28 + 0.23
Variant 3 100 Nil 55.85 + 3.8 29.59 + 5.8 0.56 + 0.37 0.12 + 0.04 13.87 £2.33  0.13 £ 0.07
(b) Wet matter basis
Variantl ~ 27.27 + 1.61 7272 £ 1.61  15.60 + 0.77 9.52 £0.63 0.51 £0.15 0.08 + 0.01 1.56 £ 0.19  0.08 + 0.06
Variant 2 19.65 + 2.35  80.34 £ 236 15.60 + 1.97 2.38 +£0.33  0.18 £0.09 0.03 £ 0.005 1.46 £ 0.08 0.05 £ 0.05
Variant 3 3532 £ 2.54  64.67 £ 2.55 19.66 + 0.18  10.54 £ 2.82 0.2 £0.13  0.04 £0.01 487 £0.63 0.04 £ 0.02
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Fig. 2. Principal component analysis plot of the first vs second prin-
cipal components (PC) of morphological characters in 94 Sardinella
longiceps specimens

and had more fat content compared to variant 2, which was
rather slender with less fat content. This definitely indicates
some differences habitat/niche use and consequent differences
in dietary preference.

The diet of Indian oil sardine, S. longiceps, consists of dia-
toms, dinoflagellates, tintinnids and zooplankton (Devaraj
et al.,, 1997). Among the diatoms, Fragilaria oceanica has
been indicated as the favourite food item since sardine abun-
dance has been correlated with its presence in coastal waters.
Sardines from Omani waters also feed on phytoplankton
(Piontkovski et al., 2012). The differences in proximate com-
position values among the variants may be due to their diet-
ary habits, which need further investigation using a seasonal
study design.

The mitochondrial genes used in the present study, cyto-
chrome ¢ oxidase 1 and control region showed no significant
divergence among the variants, indicating their genetic simi-
larity. However, mitochondrial genes are presumed not to be
under strong divergent selection, and hence signals of selec-
tion and adaptation and consequent changes in morphology
may not be prominently observed in mitochondrial genes.
Although neutral genes are widely used for species delimita-
tion in barcoding initiatives, it has been observed that neutral
genetic variation may not be direct evidence for reproductive
isolation (Barraclough, 2010). The divergence in neutral genes
may be indicative of either geographical isolation or ecologi-
cal distinctiveness when in sympatry. In some cases such as
post-zygotic isolation (Bolnick et al., 2008) mitochondrial
genes will be directly involved functionally in reproductive
isolation and in such cases neutral genetic variation can be
taken as evidence for reproductive isolation. In the present
study the neutral genetic variation was insignificant among
the morphotypes, indicating their species identity. Despite
their identity, the question of whether different morphotypes
are capable of reproductive mixing needs further investigation
using functional genes involved in reproduction. However,
the presence of intermediate morphotypes may be evidence of
hybridization and admixture, albeit on a limited scale.

Functional divergence in head shape, jaw morphology and
body shape as a whole is under recent investigation using
candidate functional genes and quantitative trait loci (Albert-
son et al., 2003); the major impediment in relating morphol-
ogy and genetic characteristics is that many numbers of

genes are involved. The divergent jaw morphology of East
African cichlid fishes was studied in detail using quantitative
genetic tools to identify parts of cichlid genome responsible
for shape differences in the oral jaw apparatus (Albertson
et al., 2003), and a strong directional selection on chromoso-
mal segments that code for functionally important parts of
craniofacial skeleton was found. Phenotypic plasticity, pres-
ence of differing phenotypes in varying environmental condi-
tions so as to optimize fitness to that particular environment
and reaction norms had been investigated using common
garden experiments and microsatellite markers in Atlantic
cod, Gadus morhua (Hutchings et al., 2007). Significant varia-
tions were found in reaction norms indicating adaptive phe-
notypic plasticity, which could not be detected in
microsatellite marker patterns. In the present study the mor-
phological differences could also be attributed to adaptive
phenotypic plasticity, which optimizes fitness in particular
habitats or niches and which could not be detected using
neutral markers such as mitochondrial DNA. Fishes inhabit
physically continuous and environmentally heterogeneous
systems and hence adaptive differentiation in phenotypic
characteristics like morphology provides them with some
evolutionary advantages. Morphological differences observed
in the Indian oil sardine may also be the result of adaptive
differentiation to maximize fitness to a particular habitat and
thus optimize habitat use. None of the previous studies
examined the morphotypes or adaptive variations and ecol-
ogy of Indian oil sardine. This study is not without its own
limitations, mainly due to a lack of sound knowledge regard-
ing habitat, dietary preferences and depth preferences of
S. longiceps. This is a baseline study; further investigation on
evolutionary adaptations, feeding strategies and the ecology
of the Indian oil sardine should be carried out by adapting a
long-term seasonal study design.
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