Note

Molecular identification of three deepsea fish species of the genus *Chelidoperca* (Perciformes: Serranidae) from Indian waters

K. K. BINEESH¹, C. MOHITHA¹, N. VINEESH¹, V. S. BASHEER¹, M. JOSELET²
N. K. G. PILLAI³, J. K. JENA³ AND A. GOPALAKRISHNAN³
¹Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources
ICAR-Central Marine Fisheries Research Institute Campus, Kochi - 682 018, Kerala, India
²Nirmalagiri college, Nirmalagiri P. O., Kannur - 670 701, Kerala, India
³ICAR-Central Marine Fisheries Research Institute, P. B. No. 1603, Ernakulam North P. O., Kochi - 682 018
Kerala, India
⁴ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P. O., Dilkusha, Lucknow - 226 002
Uttar Pradesh, India
e-mail: kkbineesh@gmail.com

ABSTRACT

The deepwater basslets of the genus *Chelidoperca* has eight nominal species and these are relatively small fishes caught in trawl nets operated at depths greater than 100 m. Mitochondrial cytochrome c oxidase subunit 1 (COI) and 16S rRNA gene sequence variation among three species under the genus *Chelidoperca* viz., *C. investigatoris*, *C. occipitalis* and *C. maculicuada* from Indian waters and their phylogenetic relationship with other representatives from same genus was studied. Fifteen individuals of *Chelidoperca* were sampled from different localities in the cast and west coasts of India and further, four COI sequences from GenBank were used to reconstruct the phylogenetic relationship in the genus *Chelidoperca*. Based on COI sequence data analysis, the intraspecies genetic distance ranged from 0.000 to 0.005 while interspecies distance varied from 0.073 to 0.194. With respect to 16S rRNA sequences, the intraspecies genetic distance ranged from 0.000 to 0.002, while interspecies genetic distance varied from 0.062 to 0.118. The mean genetic difference observed between *C. investigatoris* and the other species used in this study was 11.53%. Results of the study revealed that the genus *Chelidoperca* is monophyletic.

Keywords: *Chelidoperca*, Deepsea fishes, Mitochondrial COI gene, 16S rRNA

The family Serranidae comprises carnivorous marine fishes inhabiting tropical and subtropical waters. Members of the genus *Chelidoperca* are usually found in muddy continental shelf and slope bottoms in the Indo-West Pacific (Bineesh et al., 2013). These fishes are relatively small, usually less than 200 mm in length and are generally caught in trawl nets at depths greater than 100 m. Hence, only little information is available on these perchlets and are poorly represented in the museum collections worldwide (Williams and Carpenter, 2015). The genus *Chelidoperca* has eight valid species: *Chelidoperca hirundinae* (Valenciennes, 1831); *C. investigatoris* (Alcock, 1890); *C. lecromi* Fourmanoir, 1982; *C. margaritifera* Weber, 1913; *C. occipitalis* Kotthaus, 1973; *C. pleurospilus* (Gunther, 1880); *C. maculicuada* Bineesh & Akhilesh, 2013 and *C. santosi* Williams & Carpenter, 2015 (Eschmeyer and Fong, 2015). Three species of *Chelidoperca*, namely *C. investigatoris*, *C. occipitalis* and *C. maculicuada* are reported from Indian waters (Bineesh et al., 2013). Targeted trawl fishery for deepsea shrimp is being carried out at three major harbours in India at Saktikulangara, Thoothukudi and Chennai. Deepsea shrimp trawl bycatch has been estimated to comprise >40 species (Pillai et al., 2009; Akhilesh et al., 2011). *Chelidoperca* spp. are landed as bycatch in deepsea shrimp trawlers and sold in the local market (Bineesh et al., 2014; Shanis et al., 2014).

Accurate identification of morphologically similar species is essential for sustainable management of the fishery. Species identification using traditional morphology based methods sometime result in misidentification due to the morphological plasticity and overlapping characters. In such cases, DNA based molecular markers have proven to resolve taxonomic ambiguity to a great extent (Hebert et al., 2003). Presently, DNA based species identification has become very popular due to its ease of use, application to all life stages including eggs and larvae and even cooked food items. In the present study, mitochondrial COI and 16S rRNA gene sequences of the three species of *Chelidoperca* viz., *C. investigatoris*, *C. occipitalis* and *C. maculicuada* were analysed to assess the genetic relatedness and phylogenetic relationship.
Specimens of *Chelidoperca investigatoris* (4 nos.) *C. maculicauda* (3 nos.) and *C. occipitalis* (4 nos.) were collected from bycatch landings of commercial deepsea shrimp trawls operated in the Arabian Sea (off Kollam) and Bay of Bengal (Thoothukudi and Chennai) during 2009-2011 (Fig. 1) and these individuals were used for partial sequence analysis of mitochondrial COI and 16S rRNA genes. The voucher specimens were deposited in the fish collections at ICAR-National Bureau of Fish Genetic Resources (ICAR-NBFRG), Kochi and ICAR-Central Marine Fisheries Research Institute (ICAR-CMFR), Kochi, India. DNA extraction for all samples followed the protocol of Miller et al. (1988). The extracted DNA was checked by agarose (0.8%) gel electrophoresis and DNA concentration was estimated by optical density (OD) measurement using a spectrophotometer (SPECORD 205) at 260 nm.

The partial sequence of COI gene was amplified using primers Fish F1 (5' - TCA ACC AAC CAC AAA GAC ATT GGC AC - 3') and Fish R1 (5' -TAG ACT TCT GGG TGG CCA AAG AAT CA - 3') (Ward et al., 2005) in 25 μl reaction volume containing 1x assay buffer (100 mM Tris, 500 mM KCl, 0.1% gelatin, pH 9.0) with 1.5 mM MgCl₂ (Genei, Bangalore, India), 5 pmoles of each primer, 200 μM of each dNTP (Genei, Bangalore, India), 1.5 U Taq DNA polymerase and 20 ng of template DNA. The thermal cycling comprised an initial preheating at 95°C for 3 min, denaturation at 94°C for 30 sec, annealing at 50°C for 30 sec, extension at 72°C for 35 sec, repeated for 29 cycles, followed by a final extension for 3 min at 72°C. The mitochondrial 16S rRNA gene was also amplified in a 25 μl reaction volume containing 10x assay buffer (100 mM Tris, 500 mM KCl, 0.1% gelatin, pH 9.0) with 1.5 mM MgCl₂ (Genei, Bangalore, India), 5 pmoles of each primer, 200 μM of each dNTP (Genei, Bangalore, India), 1.5 U Taq DNA polymerase and 50 ng of template DNA. The primer used for the amplification of the partial 16S rRNA gene were 16S AR (5'-CAG GTGT AT CAAA AAACAT-3') and 16S BR (5' -CC GGTCT T CAA CTCAGATACGT-3') (Palumbi et al., 1991). The amplification conditions were 95°C for 2 min followed by 30 cycles at 94°C for 1 min, annealing at 53°C for 1 min and 72°C for 1 min, with a final extension of 72°C for 10 min. For each sample, 3 μl of PCR product was electrophoresed through 1.5% agarose gel followed by ethidium bromide staining, and visualised under UV illumination in the Gel-Doc system (BIO-RAD, Molecular Imager, Gel DocTM XR). Products were labelled using Big Dye Terminator V.3.1 cycle sequencing kit (Applied Biosystems Inc.) and sequenced bidirectionally using ABI 3730 capillary sequencer following the manufacturer's instructions.

The raw DNA sequences were edited and aligned using BioEdit sequence alignment editor version 7.0.5.2 (Hall, 1999). The COI sequences of the individuals of each species were aligned to yield a final alignment of 675 bp. The 16S rRNA sequences of the individuals of each species were aligned to yield a final alignment of 510 bp. The edited sequences were submitted to GenBank (Table 1). The sequence divergence values within and between

Table 1. Details of *Chelidoperca* spp. used in the present study with collection locations and GenBank accession numbers

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection locality</th>
<th>GenBank Acc. no.</th>
<th>Voucher Reg. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chelidoperca investigatoris</td>
<td>Thoothukudi</td>
<td>KP009557</td>
<td>KF814970</td>
</tr>
<tr>
<td>Chelidoperca investigatoris</td>
<td>Thoothukudi</td>
<td>KP009558</td>
<td>KF814970</td>
</tr>
<tr>
<td>Chelidoperca investigatoris</td>
<td>Thoothukudi</td>
<td>KP009559</td>
<td>KF814973</td>
</tr>
<tr>
<td>Chelidoperca investigatoris</td>
<td>Chennai</td>
<td>JX185312</td>
<td>KF814971</td>
</tr>
<tr>
<td>Chelidoperca investigatoris</td>
<td>Chennai</td>
<td>JX185310</td>
<td>KF814972</td>
</tr>
<tr>
<td>Chelidoperca occipitalis</td>
<td>Kollam</td>
<td>JX185306</td>
<td>KF814974</td>
</tr>
<tr>
<td>Chelidoperca occipitalis</td>
<td>Mangaluru</td>
<td>JX185304</td>
<td>KF814974</td>
</tr>
<tr>
<td>Chelidoperca occipitalis</td>
<td>Mangaluru</td>
<td>JX185311</td>
<td>KF814976</td>
</tr>
<tr>
<td>Chelidoperca occipitalis</td>
<td>Kollam</td>
<td>JX185313</td>
<td>KF814975</td>
</tr>
<tr>
<td>Chelidoperca maculicauda</td>
<td>Kollam</td>
<td>JX185308</td>
<td>KF814976</td>
</tr>
</tbody>
</table>
species were calculated using Kimura 2 Parameter (K2P) distance model implemented in MEGA V.6.0 (Tamura et al., 2013) software. The number of polymorphic sites and nucleotide diversity (Pi), nucleotide composition and number of transition and transversion between species were determined by DnaSp ver. 4.10.4 (Rozas et al., 2005). Neighbour Joining (NJ) trees of K2P distance were created to provide graphic representation of divergence with 1000 replications using MEGA V.6.0.

The COI sequences of all the individuals from different locations in Indian waters were used to estimate genetic divergence values and for constructing phylogenetic tree. A total of 675 base pairs of aligned sequences of COI gene were studied in Cladidoperca. Out of this 521 sites were constant, 154 sites exhibited variation of which 131 were parsimony informative and 21 were singletons. The DNA sequence information of COI gene was translated to amino acid sequences using MEGA 6.0 and all codon positions were identified. The estimated transition/transversion bias (R) was 3.03. Most of the variability between the individuals and outgroup was observed at the third codon position. In the present study, all the codon positions were used for analysis. The observed nucleotide frequency in all the species was found to be G : 17.3%, T : 29.6%, A : 24.1% and C : 28.9%. The pairwise genetic distance values (K2P) based on COI sequences are given in Table 2. The highest distance was observed between C. maculicaua and C. santosi (0.194) and lowest distance between C. investigatoris and C. pleurospilus (0.071). Phylogenetic analysis using Maximum parsimony and Neighbour Joining identified three clades supported by high bootstrap values (Fig. 2).

Table 2. Pair-wise genetic distances (Kimura 2 parameter) based on COI sequences from Cladidoperca spp.

<table>
<thead>
<tr>
<th>Species (with GenBank Acc. no.)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. maculicaua JX262929</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. maculicaua JX185369</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. maculicaua JX185308</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. investigatoris KP095559</td>
<td>0.158</td>
<td>0.158</td>
<td>0.158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. investigatoris KP095558</td>
<td>0.158</td>
<td>0.158</td>
<td>0.158</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. investigatoris KP095557</td>
<td>0.158</td>
<td>0.158</td>
<td>0.158</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. investigatoris JX185312</td>
<td>0.158</td>
<td>0.158</td>
<td>0.158</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. occellatus JX185313</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
<td>0.126</td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. occellatus JX185311</td>
<td>0.177</td>
<td>0.177</td>
<td>0.177</td>
<td>0.128</td>
<td>0.128</td>
<td>0.128</td>
<td>0.128</td>
<td>0.128</td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. occellatus JX185306</td>
<td>0.175</td>
<td>0.175</td>
<td>0.175</td>
<td>0.125</td>
<td>0.125</td>
<td>0.125</td>
<td>0.125</td>
<td>0.125</td>
<td>0.125</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. occellatus JX185304</td>
<td>0.177</td>
<td>0.177</td>
<td>0.177</td>
<td>0.124</td>
<td>0.124</td>
<td>0.124</td>
<td>0.124</td>
<td>0.124</td>
<td>0.124</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Chelidoperca sp. JQ81476</td>
<td>0.166</td>
<td>0.166</td>
<td>0.166</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.122</td>
<td>0.134</td>
<td>0.132</td>
<td>0.132</td>
<td>0.134</td>
<td></td>
</tr>
<tr>
<td>C. pleurospilus JQ81449</td>
<td>0.164</td>
<td>0.164</td>
<td>0.164</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.130</td>
<td>0.132</td>
<td>0.130</td>
<td>0.130</td>
<td>0.132</td>
<td></td>
</tr>
<tr>
<td>C. pleurospilus JQ81448</td>
<td>0.164</td>
<td>0.164</td>
<td>0.164</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.073</td>
<td>0.130</td>
<td>0.132</td>
<td>0.130</td>
<td>0.130</td>
<td>0.132</td>
<td></td>
</tr>
<tr>
<td>C. santosi KP150308</td>
<td>0.194</td>
<td>0.194</td>
<td>0.194</td>
<td>0.137</td>
<td>0.137</td>
<td>0.137</td>
<td>0.137</td>
<td>0.137</td>
<td>0.137</td>
<td>0.148</td>
<td>0.150</td>
<td>0.148</td>
<td>0.150</td>
<td>0.128</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Neighbor Joining (NJ) phylogenetic tree of Cladidoperca inferred from mitochondrial COI gene sequences ("indicates the sequences collected from NCBI)
16S rRNA gene sequencing produced an average of 511 nucleotide base pairs. The MEGA analysis showed nucleotide frequencies as $A = 29.50\%$, $T = 24.80\%$, $G = 22.40\%$ and $C = 23.40\%$. The transition/transition ratios obtained were: $k1 = 18.339$ (purines) and $k2 = 68.152$ (pyrimidines). The overall transition/transversion bias is $R = 20.64$. Of the 511 sites, 443, 56, 55 and 1 were invariable (monomorphic), variable (polymorphic), parsimony informative and singleton respectively. Pair-wise genetic distance values (K2P) based on 16S rRNA sequences using MEGA 6.1 are given in Table 3. Neighbour Joining (NJ) tree of Kimura two parameter (K2P) distances was also created to reveal identical phylogenetic relationship among the species (Fig. 3). Three well-supported highly divergent lineages were identified corresponding to all the three species in the genus Chelidoperca. The intraspecies genetic distance was found ranging from 0.000 to 0.002 while the interspecies distance ranged from 0.062 to 0.118.

Species identification through DNA barcoding technique is based on the principle that interspecific sequence divergence is more than intraspecific divergence and species can be separated by threshold value (Hebert et al., 2003). This is the first study of mt DNA sequences of the genus Chelidoperca in Indian waters to assess its taxonomic status and to develop species specific DNA barcodes for three species of the genus. From results of the present study, it is found that the genus Chelidoperca is monophyletic. The DNA barcode sequences based on partial sequence information of COI gene has been widely used in identification and validation of species (Ward et al., 2005; Lakra et al., 2009). The phylogenetic tree derived from two mitochondrial genes (COI and 16S rRNA) are identical and strongly suggest that all the individuals collected belong to three distinct species viz., C. investigatoris, C. occipitalis and C. maculicauda which are not sharing any haplotypes and there is no overlapping based on both COI and 16S rRNA genes.

The primer pairs for amplifying partial sequences of COI used in the present study was developed by Ward et al. (2005) mainly for invertebrates, but could successfully amplify an approximately 655 bp segment in all species. Within the mitochondrial gene, 16S rRNA gene is one among the extensively studied gene. Because of its slowest mutation rate compared to other mtDNA genes, it has been reported to be useful when analysing

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. investigatoris</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. investigatoris</td>
<td>0.002</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. investigatoris</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. occipitalis</td>
<td>0.064</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. occipitalis</td>
<td>0.064</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. occipitalis</td>
<td>0.064</td>
<td>0.062</td>
<td>0.062</td>
<td>0.062</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. maculicauda</td>
<td>0.118</td>
<td>0.116</td>
<td>0.116</td>
<td>0.116</td>
<td>0.091</td>
<td>0.091</td>
<td>0.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. maculicauda</td>
<td>0.118</td>
<td>0.116</td>
<td>0.116</td>
<td>0.116</td>
<td>0.091</td>
<td>0.091</td>
<td>0.091</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Fig. 3. Neighbor Joining (NJ) phylogenetic tree of Chelidoperca inferred from mitochondrial 16S rRNA gene sequences
families, species and population. The genetic divergence values obtained in the current study are comparable with the same obtained in other fish species using COI and 16S rRNA sequence data (Lakra et al., 2009; Basheer et al., 2015). The lowest distance between C. investigatoris and C. pleuropilus based on COI sequences was 7.1% and this value is above the threshold value proposed (Ward et al., 2005). The GC content of 675 bp COI (46.2%) and 511 bp 16S rRNA (45.7%) was comparatively high in all the three species. The observed transition versus transversion ratios in Chelidoperca is also comparable to those of many serranid fishes (Craig and Hastings, 2007). This transition transversion ratio will develop estimates of divergence and phylogenetic relationships and also work as an indirect measure of saturation (loss of phylogenetic information). Phylogenetic analysis using NJ tree method with the COI and 16S rRNA data identified three major clades supported by high bootstrap values.

Acknowledgements

We thank the Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, India for providing funding support. Authors are grateful to Rahul G. Kumar for suggestions and useful comments. Thanks are also due to the anonymous reviewers for their critical comments on the manuscript.

References

Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. and Rozas, R. 2005. DNA sequence polymorphism version 4.10.4 DNAsp computer software, Barcelena University, Barcelona, Spain.

