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Introduction
The primary productivity of mangroves is enormous. 

Bacteria and fungi are involved in recycling the detritus 
in this ecosystem. Recent investigations have increased 
our knowledge of the ecology of mangrove fungi. Marine 
mycology as a specialised branch of science has evolved 
recently. Fungus modifies the detritus by the process of 
fermentation. Solid state fermentation (SSF) involves the 
cultivation of microorganisms on moist solid substrates 
in the absence of free flowing water (Viccini et al., 
2003). SSF is used for the production of fermented food, 
enzymes and metabolites, vitamins, amino acids and 
pharmaceuticals (Pandey et al., 1999). SSF has also the 
potential for upgrading the nutritional quality of agro 
industrial products and byproducts such as wheat straw, 
wheat bran, oil cakes and soybean meal that can be used 
in aqua feed and animal feed industries (Imelda-Joseph 
et al., 2008).  

Filamentous fungi are the source of about 40% 
of all available enzymes such as amylases, lactase, 
raffinase, dextranase, pectinase and cellulase and form 
the most prominent group of microorganisms used in 
SSF process owing to their physiological, enzymological 
and biochemical properties (Archer and Peberdy, 
1997). Asperglls oryzae and Aspergillus niger are well 
characterised industrial microorganisms, which have 

obtained GRAS (Generally Regarded As Safe) status 
from the U.S. Food and Drug Administration (USFDA) 
and the World Food Organisation (WFO) of the United 
Nations (Oxenboll, 1994).  A. niger has been extensively 
used in SSF for commercial production of many 
enzymes including amylase, pectinase, glucose oxidase, 
glucoamylase, hemicellulase, glucanases, acid proteinase, 
cellobiase and catalase (Bhatnagar et al., 2010).  Another 
major commodity chemically manufactured by A. niger 
fermentation is citric acid which is widely used in the 
food and pharmaceutical industries.  A. oryzae has been 
an essential component in oriental food production for 
centuries and is used in the production of fermented food 
products like koji, soy-sauce, sake and miso. A. oryzae also 
produces many commercial enzymes, such as α- amylase, 
glucoamylase, lipase and protease (Oxenboll, 1994). It is 
also used to produce livestock probiotic feed supplements 
through fermentation.

Even though a variety of substrates are used for SSF, 
abundant agricultural residues such as wheat bran and 
rice bran have received a great deal of attention in SSF. 
Wheat bran, however, holds the key, and has been most 
commonly used for enzyme production (Pandey et al., 
1999). Measurement of microbial biomass is essential for 
kinetic studies on SSF. Direct determination of biomass 
in SSF is very difficult for processes involving fungi, 
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because the fungal hyphae penetrate into and bind tightly 
to the substrate. The most readily measured biomass 
component is protein as determined by the Lowry method 
(Raimbault and Alazard, 1980). Glucosamine is another 
useful compound for the estimation of fungal biomass, 
taking advantage of the presence of chitin, poly-N-
acetyl glucosamine, in the cell walls of many fungi. The 
accuracy of the glucosamine method for determination 
of fungal biomass depends on establishing a reliable 
conversion factor relating glucosamine to mycelial dry 
weight (Muralikrishna et al., 2003). Mathematical models 
have become essential tools in the development of rational 
strategies for the design and optimisation of operation 
of large scale bioreactors, as in traditional packed-bed 
bioreactors, rotating drum bioreactors, scraped drum 
bioreactors and stirred bioreactors (Nagel et al., 2001). 
The objective of the present investigation was to study 
the growth kinetics of Aspergillus niger S14 isolated 
from mangrove swamp and Aspergillus oryzae NCIM 
1212 by biomass measurement using wheat bran as the 
substrate and to fit in the growth equations and suitable 
mathematical models that have been applied to SSF 
systems to understand the growth pattern.

Materials and methods	
Fungi	

Aspergillus niger strain S14 isolated from the soil 
samples of Mangalavanam, a mangrove swamp, at Kochi 
(lat. 10o 03’ N; long. 76o 14’ E) and Aspergillus oryzae 
NCIM 1212 obtained from NCIM, Pune, India, were used 
for the present studies. Spore suspensions were obtained 
by growing the fungi in slants on potato dextrose agar 
(PDA) (Hi-media, Mumbai) for one week and harvesting 
the spores with 1 g l-1 Tween 80 in normal saline (Smith 
et al., 1996). 

Solid- state fermentation (SSF)

SSF was carried out in 500 ml conical flasks 
containing 20 g wheat bran fortified with Czapek Dox 
medium (NaNO3 - 2.5 g l-1; K2HPO4 -1 g l-1; MgSO4, 
7H2O - 0.5 g l-1; KCl - 0.5 g l-1;  pH  - 5.0), with the 
moisture content adjusted to 60% and autoclaved at 
121ºC at 1.034x105Pa for 20 min (Aikat and 
Bhattacharya, 2000).  The substrate (20 g) was inoculated 
with 2 x 107 spores and incubated at 30±1ºC. Control was 
maintained without inoculation. All the flasks were kept 
stationary at an initial pH of 6.4 - 6.5 for 21 days, with 
sampling at every 24 h starting from day 0 to day 21.

Growth parameters

At each time interval, three flasks were removed from 
the incubator for biomass estimation. Direct measurement 
of biomass was done according to the method of 

Asha-Augustine et al. (2006) by sampling 1g fermented 
substrate in duplicate every 24 h and by centrifuging at 
1.256x103 rad per sec for 15 min by addition of 5 ml sodium 
sulphate (150g l-1). Centrifugation was repeated thrice 
under similar conditions to achieve complete separation of 
fungal mass from substrate. At the end of centrifugation, 
the biomass which floated was transferred to a pre weighed 
filter paper and dried in hot air oven for 72 h at 85±1ºC 
to obtain a constant weight. Glucosamine was measured 
in dry fermented wheat bran samples (Ramachandran 
et al., 2005) and the results of glucosamine measurements 
were corrected for the amount of glucosamine already 
present in the wheat bran. Protein estimation was carried 
out according to Lowry et al. (1951). 

Study of growth kinetics	

Growth kinetics of A. niger was studied by applying 
the empirical equations to the kinetic profiles exhibited by 
the fungus during SSF. Growth profiles in SSF obtained 
by the direct and indirect methods were analysed by fitting 
the integrated forms of equations to the data by least 
square method in Microsoft Excel (Draper and Smith, 
1981). Non-linear regression algorithm of SYSTAT 7.0 
was used to estimate the parameters. After estimating the 
parameters, goodness of fit was determined to test the 
appropriateness of the overall model.

The different models fitted were: 	
Linear equation:

dX
dt = µX  1-    

X
Xm

Asha-Augustine et al.

dX
dt = K 

X = Kt + X0    

where, K = linear growth rate (mg dry biomass/mg initial 
dry substrate), t - time (h), X - biomass concentration 
(mg dry biomass/mg initial dry substrate) and Xo - initial 
biomass concentration (mg dry biomass/mg initial dry 
substrate).
Exponential equation:

dX
dt =  µ X 

X = X0e
µt  

where, t - time (h), X - biomass concentration (mg dry 
biomass/mg initial dry substrate), Xo - initial biomass 
concentration (mg dry biomass/mg initial dry substrate) 
and µ - specific growth rate constant (h–1)
Logistic equation:

(Differentiated form)

(Integrated form)
X =

Xm

Xm

X0

1+          -1 eµt

(Differentiated form) 

(Integrated form)

(Differentiated form) 

(Integrated form)
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where,  K - linear growth rate (mg dry biomass/mg initial 
dry substrate), t - time (h), X   - biomass concentration (mg 
dry biomass mg initial dry substrate), Xo-- initial biomass 
concentration (mg dry biomass/mg initial dry substrate), 
Xm - maximum possible biomass concentration (mg dry 
biomass/mg initial dry substrate), µ - specific growth rate 
constant (h–1)

Two phase model: 

where,  Xα - asymptote or the potential maximum of the 
response variable, b-constant of integration or biological 
constant, k - growth-rate constant and d - shape parameter 
or allometric constant.

Michaelis-Menten model:   

where, b1- asymptote or the maximum growth rate 
attainable, t – time, b- time at which growth occurs at half 
the maximum rate. 

Weibull model:    

b3 - parameter governing the rate at which the response 
variable  approaches its potential maximum and 
b4 - allometric constant

Modified Gompertz model :  

where, Y - weight at time t, a - asymptote or the potential 
maximum of the response variable; b - the biological 
constant, c - instantaneous rate of growth.

Morgan-Mercer-Flodin model:  

where, Y - observed weight gain of the organism, 
b1 - ordinate intercept of the curve, b2 - a constant, 
b3 - asymptotic or maximum response of the organism and 
b4 - apparent kinetic order of the response with respect to 
X as X  approaches zero.

Index of fit (IF): 

Models were compared using the mathematical parameter, 
index of fit (IF) (Rosa et al., 1997).  If is defined as:  
where, yi - observed values, ȳi- mean of the observed 
values, ŷi - estimated values of ȳi.

Results and discussion 	
In the present investigation, different models were 

fitted and used to analyse the growth kinetic profile of 
A. niger (Fig. 1 and 2) and A. oryzae (Fig. 3 and 4).

Growth kinetic profiles of fungal strains in solid state fermentation

µ = - K Xm

where, k - first order decay constant in the second phase 
of the two  phase  model (h–1), L  - the fraction of hyphal 
tips surviving the entry into the second phase in the two   
phase model (dimensionless), t - time (h), ta - the time at 
which there is a switch from the first to the second phase 
in the two phase model (h), X - biomass concentration (mg 
dry biomass/mg initial dry substrate), Xo- initial biomass 
concentration (mg dry biomass/mg initial dry substrate) 
and  µ - specific growth rate constant (h–1).

Richards model: 

where,  b1 - asymptote or the potential maximum of 
the response variable,  b2 - the biological constant, 

dX
dt = µX                           t< ta    

dX
dt = µ Lek(t-ta)X            t> ta

(Differentiated forms)

X = X0e
µt                                              t< ta (Integrated forms)

X = X0 exp µ L (1- ek(t-ta) ) t >ta
                     k

X =
Xα

1
b

1+         e-ht
d

Y =
b1t

t + b2

Y = b1 - b2 e -b3X
b4

Y = a   1-e
ct
-be( (

Y = 
b1b2 + b3X

b4

b2 + Xb4

IF = 1-
(Yi - ŷi)

2

(yi - ȳi)
2

n
∑
i=1
n
∑
i=1
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Fig. 1.	 Linear and exponential equations fitted to biomass of 
A. niger
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Fig. 2.	 Logistic equation and two phase model fitted to biomass 
of A. Niger
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Fig. 3. Linear and exponential equations fitted to biomass of 
A. oryzae. 

Fig. 4.	 Logistic equation and two phase model fitted to biomass 
of A. oryzae
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Values of the parameters obtained by regression of the 
original experimental data, in order to obtain the growth 
kinetic profile of A. niger and A. oryzae are presented in 
Table 1.  For biomass, logistic equation gave the best fit 
for both A. niger (IF=0.8895) and A. oryzae (IF=0.8079). 
It is evident in the present observation that, the two phase 
model gave a comparable fit (A. niger (IF=0.8206) and 
A. oryzae (IF=0.7053) whereas, the linear and exponential 
equations failed to provide an adequate fit for both the 
strains (Table 1). The logistic law of growth assumes 
that a system grows exponentially until an upper limit or 
carrying capacity inherent in the system is approached, 
where the growth rate reduces and eventually levels off, 
producing the characteristic sigmoid curve. The logistic 
equation fits well to the data collected in the first 10-45 h 
of fermentation, but clearly overestimates the initial 
biomass concentration. In the present observations, 
even though the logistic equation describes the data 
adequately, the direct biomass or measured components 

decreased steadily during the later stages of fermentation 
probably due either to death and autolysis of the biomass 
or endogenous maintenance metabolism (Viccini et al., 
2001). There is also a possibility that different cycles of 
growth were completed by the fungi during 21 days of SSF 
which could possibly result in a fluctuation in the growth 
curve at the later stage.  It is presumed that the logistic 
equation did not fit well at the later stages due to the 
asymptotic nature of the growth curve. Two phase model 
had followed an exponential equation in the initial phase, 
but in actual case the growth itself followed a logistic 
equation at this stage. Therefore, a modification of logistic 
equation which includes the deceleration of growth at the 
later stages is necessary to give a perfect description of 
the growth kinetics of the fungi in SSF. In the logistic 
model, the growth curve is symmetric around the point of 
the maximum growth rate and has equal periods of slow 
and fast growth. Based on logistic equation, the various 
growth models viz., Richards, Michaelis-Menten, Weibull, 
Modified Gompertz and Morgan-Mercer-Flodin models 
were fitted to biomass of A. niger (Fig. 5, 6 and 7) and 
A. oryzae (Fig. 8, 9 and10). The parameter values for the 
models are given in Table 1.

Michaelis-Menten model gave the maximum 
goodness of fit (IF = 0.9672) followed by Morgan-Mercer-
Flodin (IF = 0.8812),Weibull (IF = 0.8793), Richards 
(IF = 0.8778) and Modified Gompertz (IF = 0.8777) 
models. As in the case of A. niger, Michaelis-Menten 
model gave the maximum goodness of fit (IF = 0.9596) for 
A. oryzae. Modified Gompertz model gave the next best 
fit (IF = 0.9036) followed by Morgan-Mercer-Flodin (IF = 
0.8935), Richards (IF = 0.8109) and Weibull (IF = 0.7750) 
models. 

The results indicated that biomass estimation by direct 
and indirect methods can be made amenable for growth 

Asha-Augustine et al.
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Table 1.  Equation parameters for growth kinetics of  A. niger and  A. oryzae

Empirical equations Parameters                          A. niger A. oryzae

Values Index of fit (IF) Values Index of fit (IF)

Linear K 
Xo

0.0232
0.1036

0.7271 0.0087
0.0739

0.5387

Exponential Xo
µ

0.1860
0.0549

0.6050 0.1032
0.042218

0.4354

Logistic K
Xm
µ

0.9209
0.4908
-0.4520

0.8895 2.5554
0.2129
-0.5440

0.8079

Two phase k
L
µ

1
0.0004
0.1219

0.8206 0.3172
0.076957
0.104101

0.7053

Richards xα
b
k
d

0.5015
48.314
0.2923
175.348

0.8778 0.213949
50.6672
0.4042
174.672

0.8109

Michaelis- Menten b1
b2

0.8208
11.5301

0.9672 0.2860
5.3780

0.9596

Weibull b1
b2
b3
b4

0.4826
0.4095
0.0023
3

0.8793 0.2137
0.2105
0.0723
1.609

0.7750

Modified Gompertz a 
b 
c

0.013932
-3.58367
0.29079

0.8777 0.004577
-3.77012
0.472379

0.9035

Morgan-Mercer-Flodin b1 
b2
b3
b4

0.083302
4492.196
0.494601
4.381786

0.8812 0.004755
24.4837
0.202428
2.527386

0.8935
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Fig. 5.	 Richards and Michaelis-Menten models fitted to biomass 
of A. niger

Fig. 6.	 Weibull model fitted to biomass of A. niger

kinetic study of filamentous fungi in SSF. The analysis 
of growth is an important component of many biological 
studies and the evolution of mathematical functions such as 
logistic, Gompertz, Richards and Weibull used to describe 
population growth have proved useful for a wide range of 
growth curves (Kingland, 1982). It has been reported that 
for adequate kinetic analyses, the growth profile should 

have around 10 data points, with the majority of these 
located in the regions where the most rapid growth and 
the acceleration and deceleration phases occur (Viccini 
et al., 2001).  From the results of the present analysis with 
21 data points, it is evident that the linear and exponential 
equations are not appropriate for explaining the growth 
of A. niger  and A. oryzae strains in SSF.  The results 

Growth kinetic profiles of fungal strains in solid state fermentation
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also suggest that for analysis of the growth of fungi, the 
linear equation for substrate utilisation is not suitable, 
since it contains no term for the process of differentiation 
(Metwally et al., 1991).  In contrast, the Gompertz model 
does not incorporate the symmetry restriction and has 
a shorter period of fast growth. Both the Logistic and 
Gompertz have points of inflection that are always at a 
fixed proportion of their asymptotic population values. The 
Richards function is more flexible and can fit asymmetric 
growth patterns. However; it has more parameters than the 
Logistic function. The Gompertz function has the same 
number of parameters as the Logistic function and the 
Weibull function has the same number of parameters as 
the Richards function and both can fit asymmetric growth, 
but they are not very flexible (Yin et al., 2003). In the 
present analysis, A. niger gave similar index of fit for all 
these models (>0.88) and the most fitting model was that 
of Michaelis- Menten (IF=0.9672). Similarly, Michaelis- 
Menten model (IF=0.9596) was the best fitting one for 
A. oryzae followed by modified Gompertz (IF=0.90). 

The modified Gompertz model had been used mainly to 
describe growth of bacteria and yeasts as a function of 
time in liquid media.

The reason for the poor characterisation of growth 
profiles in SSF is due to the fact that in majority of 
such works the growth profile is presented without any 
kinetic analyses, and therefore it is obvious that a good 
kinetic analysis was not part of the initial motivation 
of those works. In the present investigation protein and 
glucosamine levels did not follow the predicted growth 
models whereas direct biomass value followed it. This 
shows that protein and glucosamine production follows 
different kinetics than total biomass possibly due to 
differences in rate of production of these components at 
different stages of growth.  

In conclusion, the results of the present work show 
that the growth of A. niger and A. oryzae can be expressed 
using logistic and Michelis-Menten growth models. At the 
initial phase, growth follows logistic equation, whereas, at 

Fig. 7.	 Modified Gompertz and Morgan-Mercer-Flodin models 
fitted to biomass of A. niger

Fig. 8.	 Richards and Michaelis-Menten models fitted to  biomass 
of A. oryzae

Fig. 9.  Weibull model fitted to biomass of A. oryzae Fig. 10. 	 Modified Gompertz and Morgan-Mercer-Flodin  models 
	 fitted to biomass of A. oryzae
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later stage it follows the modified logistic model when the 
nutrient resources become depleted and the fungal growth 
becomes limited by the availability of the substrate. In 
order to make growth models particularly beneficial in 
SSF processes, further research is needed in various 
domains like understanding of the interaction of varying 
environmental conditions during SSF on the growth 
kinetics of the fungi. Studies on fungal biodiversity, 
ecology and growth kinetics are important in understanding 
the mangrove ecosystem for its preservation and judicial 
industrial utilisation. In future, developing structured 
growth models that explicitly describe SSF might be 
possible, although this necessitates extensive knowledge 
about the various factors that control the process. 
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