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Immune system protect multi-cellular organisms 
from foreign invaders  There are two types of immunity in 
vertebrates, one providing innate (natural) immunity and 
the other providing adaptive (acquired) immunity. Pearl 
oysters, like other invertebrates lack adaptive immune 
system and exclusively rely on the innate immune 
response to combat invading organisms (Iwanaga and 
Lee, 2005). The innate immune system is designed to 
recognise molecules shared by groups of related microbes 
that are essential for the survival of those organisms 
and are not found associated with mammalian cells. 
These unique microbial molecules are called pathogen 
associated molecular patterns (PAMP) and include 
lipopolysaccharides (LPS) from the Gram negative cell 
wall, peptidoglycan (PG) and lipoteichoic acids from the 
Gram positive cell wall. In order to recognise PAMPs, 
various body cells have a variety of corresponding 
receptors called Pattern-recognition receptor proteins 
(PRPs) which are capable of binding specifically to 
conserved portions of these molecules (Raetz et al., 1991; 
Ulevitch and Tobias, 1995). Once an invading pathogen 
gain entry into the body of the host, they encounter a 
complex system of innate defense mechanisms involving 
cellular and humoral responses. 

The present study focused mainly on three PRP 
genes viz., F-type lectin, galectin, LPS and β, 1,3-glucan 
binding protein (LGBP). Lectins are the best characterised 
PRPs and consist of a wide range of carbohydrate binding 
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proteins of non-immune origin (Sharon and Lis, 2004; 
Vasta and Ahmed, 2008). Moreover, they present great 
structural diversity and a variety of carbohydrate affinity 
(Naganuma et al., 2006). Based on the primary structure, 
structural fold and cation requirement, animal lectins can 
be classified into several families, including C, F, P and 
I-type lectins, galectin, pentraxin and others  (Honda, 
et al., 2000; Vasta, et al., 2004). F-type lectins were first 
identified and characterised in European eel, Anguilla 
anguilla agglutinin (AAA) that has been used extensively 
as a reagent in blood typing and histochemistry. F-type 
lectins have been identified and described as immune 
recognition molecules in Japanese horseshoe crab 
Tachypleus tridentatus (Salto et al., 1997), Japanese 
eel Anguilla japonica (Honda et al., 2000), striped bass 
Morone saxatilis (Odom and Vasta, 2006), gilthead 
bream Sparus aurata (Cammarata et al., 2012), European 
seabass Dicentrarchus labrax (Salerno et al., 2009) and 
pearl oyster Pinctada martensii (Chen et al., 2011). 
In Crassostrea species, F-lectin is the main functional 
domain of binding for recognition during fertilisation 
(Moy and Vacquier, 2008). 

Galectins constitute a relatively homogeneous 
lectin family and virtually all members bind β-galactosyl 
residues (Liao et al., 1994; Gauthier et al., 2002; Vasta 
et al., 2004). Galectins mostly recognise endogenous 
ligands and indirectly participate in inflammation and 
adaptive immunity by mediating chemotaxis, apoptosis 
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and developmental and regulatory aspects of adaptive 
immune responses (Gauthier et al., 2002; Hernandez and 
Baum, 2002; Rabinovich et al., 2002; Leffler et al., 2004; 
Chen et al., 2006; Hsu et al., 2006; Barrionuevo et al., 
2007; Toscano et al., 2007). However, in invertebrates, 
our knowledge of the biological roles of galectins 
in innate immunity is very limited and fragmentary 
(Vasta et al., 2004). A multidomain galectin of eastern 
oyster Crassostrea virginica (CvGal) is responsible for 
recognising the protozoan parasite Perkinsus marinus 
(Tasumi and Vasta, 2007). Another multidomain galectin, 
AiGal from bay scallop Argopecten irradians, was 
also characterised and shown to be involved in innate 
immune responses (Song et al., 2011). Galectin has been 
identified and characterised in Pacific oyster Crassostrea 
gigas (Yamaura et al., 2008), Manila clam Venerupis 
philippinarum (Kim et al., 2008), abalone Haliotis discus 
hannai (EF392832), freshwater snail Biomphalaria 
glabrata (Yoshino et al., 2008) and pearl oyster Pinctada 
fucata (Zhang et al., 2011a,b). 

Structural studies of LGBP have shown that 
the active site is occupied with Arg–Gly–Asp amino 
acids, which are responsible for the pattern recognition 
mechanism during adverse conditions. Basically LGBP is 
a glycosylated protein, which has the ability to bind with 
the glycosylated substrates like carbohydrate moieties. 
Studies on Drosophila demonstrated that LGBP functions 
as a recognition receptor for LPS and β-1, 3 glucan (Kim 
et al., 2000). Guanine nucleotide binding proteins (GNBP) 
otherwise known as LGBP, were originally purified 
from the silkworm Bombyx mori (Lee et al.,1996) and 
Drosophila melanogaster (Kim et al., 2000). LGBP has 
been cloned and characterised in pearl oyster, Pinctada 
fucata (Zhang et al., 2010); shrimp Penaeus stylirostris 
(Roux et al., 2002); scallop Chlamys farreri (Su et al., 
2004) and  shrimp Litopenaeus vannamei (Cheng et al., 
2005). The aim of the present study was to determine 
changes in the mRNA expression levels of PRP genes 
viz., F-type lectin, galectin  and LGBP by LPS stimulation 
in Pinctada fucata. 

Live individuals of adult P. fucata ( 4.5-5.5 cm in 
shell length and 20-30 g body weight) were collected from 
a pearl farm in Thoothukudi, Tamil Nadu and maintained 
at 25°C in tanks containing static aerated seawater 
(0.5 l per oyster) in the laboratory. Seawater was changed 
every day and the pearl oysters were fed with Isochrysis 
galbana twice daily. Animals were acclimatised for 2 
weeks prior to initiation of experiment.

To study the time dependent expression of PRP genes, 
the experimental animals were exposed to LPS and the 
transcription levels were monitored by semi-quantitative 
PCR. The LPS stimulations were carried out in one group 

of animals (n=5) by injecting 50 µl of LPS (Escherichia 
coli 055:B5, #62326, Sigma–Aldrich, Munich, Germany) 
dissolved in PBS (LPS 10 µg ml-1) into the adductor 
muscles of each pearl oyster. The control group (n=5) 
was injected with 50 µl of PBS alone. At each time point 
(0, 4, 8, 12, 24 and 36 h), haemolymph was collected 
using a syringe and immediately centrifuged at 5000 g at 
4°C for 10 min to harvest the haemocytes. Five individuals 
of each replicate were randomly sampled at the same time 
point. The haemocyte pellets from each individual were 
immediately used for RNA extraction.

From the haemocyte pellets, 200 ng of total RNAs 
were extracted using NucleoSpin RNA II reagent 
(MACHEREY-NAGEL GmbH & Co., Germany) and 
the extracts stored at -80°C until further use. cDNA was 
synthesised from RNA with iScript cDNA synthesis 
(Bio-rad). Semi-quantitative PCR was conducted with 
the cDNA to determine the relative expression of F-type 
lectin, galectin, LGBP and glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) mRNA in haemocytes of pearl 
oyster. Primers for the PCR were designed from the full 
length sequence of F-type lectin  (Anju et al., 2013) and 
from the published sequence of galectin (FJ812171), 
LGBP (FJ775601) and GAPDH (AB205404) genes 
of the P. fucata as shown in Table 1. The GAPDH was 
amplified in each PCR reaction as a loading control. 
The PCR products from different cycles of amplification 
were separated by gel electrophoresis in 1.5% agarose 
containing ethidium bromide (0.5 μg μl-1) and visualised 
using a UV transilluminator. The cycle numbers that 
generate half-maximal amplification were used for 
subsequent quantitative analysis of gene expression 
i.e., 30 cycles for F-type lectin, galectin and LGBP and 
25 cycles for GAPDH.

Duncan’s multiple comparisons test was used 
to compare significant differences in F-type lectin, 
galectin and LGBP gene expression between control and 
challenged samples using SPSS13.0 software. Differences 
were considered significant at p<0.05.

P. fucata is economically important for aquaculture 
along the south-east coast of India, and therefore, current 
problems associated with crop failure need to be resolved. 

Anju et al.

Table 1.	 Primers used in this study
Primer Sequence (5`- 3`)
F-type lectin-F
F-type lectin-R
Galectin-F  
Galectin-R
LGBP-F  
LGBP-R
GAPDH-F
GAPDH-R                        

TGGATGGTATAAGTAAT
TCTGTTCGTTATTCTGAT
AGATTTCCCCTTCAGTCCTTTC
TGAAGAAATTGCATTCATGGAC
CACACAGCAAGCCCCTGATCC
CCTCCTCCGCCAGTTTGAGATG
TATTTCTGCACCGTCTGCTG
ATCTTGGCGAGTGGAGCTAA
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Our approach to investigate mechanisms of the innate 
immune system of pearl oysters is a basis to develop 
methods to identify stress situations and eventually 
optimise conditions to prevent disease outbreaks in pearl 
oyster culture. A critical step in the immune response is 
the identification of an invading organism as foreign. This 
recognition step involves interactions between microbial 
structural motifs and host receptors. This immune 
recognition process has been carried out by innate 
immune receptors called PRPs. In oysters, hemocytes are 
responsible for cell mediated defense. A major defense 
exhibited by hemocytes involves the direct phagocytosis 
of antigens. During phagocytosis, the hemocyte recognises 
and binds to an antigen by the presence of specific lectins 
either in the hemolymph or in the membrane of the 
hemocyte (Ford and Tripp, 1996). Though these lectins 
cannot destroy foreign matter, they are involved in the 
recognition by different immune modulators leading to its 
destruction.

In the present study, mRNA level of F-type lectin 
in the challenged animals increased significantly with 
respect to the control and reached maximal levels at 
4 h and then gradually decreased over time. This may be 
due to the combined effect of progressive recognition of 
the bacterial LPS and the clearance of LPS by activating 
cellular or humoral immune responses. In Japanese sea 
perch (Lateolabrax japonicus), F-type lectin mRNA 
expression was upregulated at 4 h after LPS stimulation 
and from the 6 h, the expression level decreased (Qiu 
et al., 2011). In P. martensii, the expression level of F-type 
lectin was significantly increased at 3 h post challenge and 
then the expression level decreased gradually over time 
(Chen et al., 2011). As shown in Fig. 1, early response 
of F-type lectin obtained in the study indicated that it 
is a constitutive and inducible acute-phase protein and 
maintains the animal in a constant state of readiness by 
facilitating immediate detection of an invading infectious 
threat.

Among other PRPs, galectins are important for 
recognising β-galactoside ligand of the pathogen by their 
conserved carbohydrate recognition domains (CRD) 
(Barondes et al., 1994) and play crucial roles in innate 
immunity. Upregulation of invertebrate galectin induced 
by bacteria, virus, fungi or parasites has been observed in 
oyster (Zhang et al., 2011a), amphioxus (Yu et al., 2007) 
and clam (Kim et al., 2008). Lectin–glycan interactions 
are ubiquitous and essential to biological systems. In bay 
scallop (Argopecten irradians), the mRNA expression 
level of AiGal2 was upregulated significantly after Vibrio 
anguillarum or Micrococcus luteus challenge (Song 
et al., 2011). The present study has indicated that galectin 
mRNA expression increased significantly with respect to 
the control and reached maximal levels at 8 h and then 
dropped down  to 36 h. This is in agreement with the report 
of Zhang et al. (2011b) who found that the expression of 
galectin in P. fucata was significantly upregulated at 8 h 
and 12 h after bacterial challenge. Fermino et al. (2011) 
reported that galectin-3 (Gal 3), glycan binding protein that 
can be secreted by activated macrophages and mast cells at 
inflammation sites plays an important role in inflammatory 
diseases caused by bacteria and their products, such as LPS. 
Owing to the LPS-galectin-3 interactions during infections 
caused by Gram negative bacteria, galectin-3 could serve 
as a sensor to detect small amounts of LPS and allow it 
to efficiently activate recruited neutrophils. These results 
suggest that galectin is involved in immune defense 
against the broad spectrum of bacteria and their products.

LGBP is one important member of the PRPs in 
invertebrates and displays various biological functions. 
In scallop Chlamys farreri, LGBP gene expression was 
upregulated initially after stimulation by V. anguilarum 
and subsequently reduced to the normal level (Su et al., 
2004). Zhang et al. (2010) reported that LGBP gene 
expression was up-regulated at 8 h and 12 h after bacterial 
and LPS stimulation in P. fucata. LPS could significantly 
upregulate the mRNA level of LGBPs in several marine 
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 Fig. 1.	Expression of PRP mRNA in response to LPS challenge in the pearl oyster, P. fucata. (a): F-type lectin, (b): Galectin, (c): LGBP 
Vertical bars represent the mean±S.E (n=5). Significant differences (p<0.05) are indicated with the asterisk (*).
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invertebrates, including kuruma shrimp (Lin et al., 2008), 
crayfish (Lee et al., 2000) and disk abalone (Nikapitiya 
et al., 2008). In the present study, the gene expression of 
LGBP was significantly increased at 8 h and then dropped 
down to the basal level after LPS stimulation. 

In conclusion, the PRP genes are not only 
constitutively expressed genes but can also be induced, 
enabling them to play critical role in innate immune 
defense of P. fucata. Overall data in the present study 
revealed that when a foreign object enters the body, the PRP 
gene shows an increasingly higher level of transcription. 
At the maximum, the relative mRNA expression of F-type 
lectin, galectin and LGBP increased to 2.5 fold, 1.5 fold 
and 1.5 fold respectively, over control. This suggests that 
PRP functions by recognising PAMP and may activate 
different immune genes to defend against these pathogens. 
Hence, information on this PRP in P. fucata may be useful 
in studies of PRPs in other marine invertebrates.
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