A note on the incidental catch of a whale shark

Krishnan, L.* and Selvaganapathy, E.
*Retired Scientist, CMFRI, M.S. Swaminathan Research Foundation, Tsunami Nagar, Kaveripattinam, Sirkali Taluk, Nagapattinam District, Tamil Nadu

On 21st March, 2014, a whale shark, *Rhincodon typus* Smith, 1828 got entangled in a gill net which was brought ashore to Chinnankudi (11°05.25 N and 79°51.25 E) village by fishermen. On enquiry, a fibre glass boat fishing in the sea 20 km offshore at a depth of 35 m had found the fish entangled in their net. The fish had a total length of 4.5 m and girth of 3.0 m.

Pravin (2000) reported that from 1980s till 2000, the whale sharks were commercially exploited off Saurashtra coast (Veraval) of India for meat, fins, liver, skin and cartilage. Under the Indian Wildlife (Protection) Act, Schedule I it is now a protected species.

Accidental catch of whale sharks in nets is a serious issue. The fishermen who caught the fish in Chinnankudi village were totally unaware of the protected status of the fish highlighting the need for extension programmes to create awareness among the fishermen.

Efficiency of centrifugation on harvesting of the microalgae *Nannochloropsis*

Biji Xavier, Ritesh Ranjan, Sekar, M, Biswajit Dash, Padma Rani and Shubhadeep Ghosh
Visakhapatnam Regional Centre of CMFRI, Visakhapatnam

The production of small sized fish larvae like grouper requires cultivation of appropriate live organisms and is based on the establishment of an artificial food chain. This includes production of primary producers like microalgae as well as small zooplankton like rotifers to feed the fish larvae. Among the microalgae used to feed rotifers, the eustigmatophyte *Nannochloropsis* is identified as suitable and is required in large quantity to support high rates of rotifer production required in finfish hatcheries. Most of the finfish seed production is done in the summer months, as higher temperature plays a favorable role in the tropical fish seed production. However, the microalgal production in outdoor culture system is more difficult during summer months since the microalgae grow better in low temperatures. Hence, most of the efforts for microalgal production may focus on the winter