## Land use changes and water quality of Sal River in Goa

Bindu Sulochanan, Lavanya, S., Sampath Kumar, G., Prathibha Rohit and Kripa, V. Mangalore Research Centre of CMFRI, Mangalore

In the last few decades large scale development of coastal areas has accelerated world over. Several coastal areas have changed from virtual wilderness to haphazardly developed stretches full of concrete buildings and related structures leading to altered ecosystems, land use patterns and the coastal zone landscape. In Goa, this is a sensitive issue mostly with conflict between real estate developers and environmentalists who wanted to conserve areas based on ecological and environmental principles.

Based on recent reports of mortality of shortneck clam *Paphia malabarica, in-situ* observation was conducted on 1.5.2014 from four sites along river Sal. The local fishermen stated that the mortality commenced from March 2014. The site where clam mortality was reported is adjacent to Cavelossim and Mobor. Station 1 and 2 are clam bed sites, station 3 is the river mouth opening to the sea, Station 4 is the site where sewage effluent enters Sal (Fig.1). Oyster beds were observed



Fig. 1 Sampling locations along river Sal

adjacent to Station 2 which is a clam bed area. Shucked oyster shells were also observed on the river bank, on the upfront of which the hotels and restaurants were located. On the banks as well as upstream of the river, litter was observed (Fig. 2).



Fig. 2. Oyster shells on river bank



Fig. 3 Litter in river Sal

Developmental activities and impact of urbanization

Cavelossim is an area of high dunes where resorts, hotels and new dwellings are being constructed. Several dune areas have been flattened; sand removed and transported elsewhere. Mobor is occupied by star hotels, resorts and other structures built on sand dunes; and also a former site of sand mining. But at present Goa government has banned sand mining.

The plankton, water and sediment samples were collected from Stations 1 & 2 while only water samples were collected from Stations 3 & 4. The results of parameters estimated are given in tables 1 and 2.

| Parameters                     | Stn. 1 | Stn. 2 | Stn. 3 | Stn. 4 |
|--------------------------------|--------|--------|--------|--------|
| Atmospheric temperature (°C)   | 34.5   | 32.5   | 31     | 30     |
| Surpace water temperature (°C) | 32.8   | 33     | 32.8   | 32.6   |
| Н                              | 7.24   | 7.25   | 7.26   | 7.07   |
| alinity (ppt)                  | 34.7   | 34.8   | 34.8   | 6.2    |
| issolved oxygen (DO) (mg/l)    | 5.9    | 6.5    | 6.7    | 5.04   |
| nosphate (µg-at/l)             | 0.226  | 0.726  | 0.171  | 9.104  |
| licate (µg-at/l)               | 8.445  | 9.189  | 8.036  | 107.29 |
| itrite (μg-at/l)               | 0.341  | 0.127  | 0.178  | 3.59   |
| itrate (μg-at/l)               | 1.116  | 0.441  | 0.6    | 7.903  |
| mmonia (µg-at/l)               | 0.871  | 0.906  | 0.949  | 102.08 |
| hlorophyll a (mg/m³)           | 5.307  | 1.769  | 4.004  | 61.55  |
| hlorophyll b (mg/m³)           | 0.847  | 0.282  | 0.479  | 0      |
| hlorophyll c (mg/m³)           | 4.73   | 1.599  | 1.873  | 17.153 |

Table 1. Water quality parameters observed in river Sal

Table 2. Water quality grading as per US EPA 2004 at the four stations

| Stations | DO mg/l | Quality | DIP-mg/l | Quality | DIN-mg/l | Quality | Chlorophyll mg/m <sup>3</sup> | Quality |
|----------|---------|---------|----------|---------|----------|---------|-------------------------------|---------|
| Stn. 1   | 5.9     | Good    | 0.007    | Good    | 0.0323   | Good    | 5.307                         | Fair    |
| Stn. 2   | 6.5     | Good    | 0.022    | Fair    | 0.021    | Good    | 1.769                         | Good    |
| Stn. 3   | 6.7     | Good    | 0.005    | Good    | 0.024    | Good    | 4.004                         | Good    |
| Stn. 4   | 5.04    | Good    | 0.282    | Poor    | 1.59     | Poor    | 61.55                         | Poor    |



Fig. 4 Culture pond between mangroves and coconut plantation

The water quality at station 4 which is very near to the sewage treatment plant was observed to be good. Mangroves of fringing type were observed on the banks of river. Its roots prevent litter from reaching the river and also in the stabilization of sediment. This helps in maintaining the water quality of the river. Destruction of mangrove area for culture ponds and coconut cultivation was also noticed downstream of Station 4.

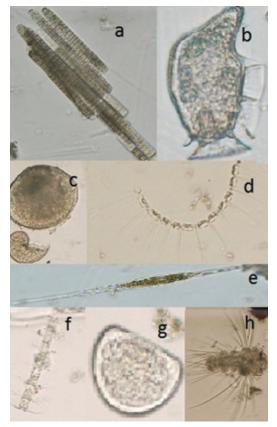



Fig. 5. Plankton specimens observed in stations 1 & 2

The plankton observed in Stations 1 and 2 is given in Table 3. The presence of estuarine and fresh water algae such as *Chaetoceros* spp., *Asterionella* spp., *Nitzschia* sp, *Oscillatoria* spp. and *Merismopedia* spp. were observed at the sampling stations, but were not abundant (Fig. 5). Benthic population included bivalves, gastropods and foraminifera at two stations. The texture of the sediment sample at Station 1 was 3.0% sand, 78.8% silt and 18.2% clay while at Station 2 it was 2.1% sand, 74.4% silt and 23.5% clay. Management of litter and sewage is essential to ensure better water quality in Sal River.

Table 3. Plankton observed at stations 1 & 2

|                 | No     | s/m³   |
|-----------------|--------|--------|
| Plankton        | Stn. 1 | Stn. 2 |
| Copepods        | 30000  | 24000  |
| Copepod nauplii | 34000  | 20000  |

| Gastropods            | 8000  | 2000  |
|-----------------------|-------|-------|
| Bivalve spat          | 26000 | 4000  |
| Medusae               | 2000  | 0     |
| Decapod larvae        | 24000 | 12000 |
| Tintinnids            | 6000  | 4000  |
| Polychaete larvae     | 6000  | 2000  |
| Foraminifera          | 2000  | 2000  |
| Biddulphia spp.       | 2000  | 2000  |
| Psuedo-nitzshia spp.  | 2000  | 0     |
| Nitzschia longissima  | 4000  | 12000 |
| Asterionella spp.     | 2000  | 0     |
| Chaetoceros spp.      | 44000 | 6000  |
| Chaetoceros decipiens | 12000 | 2000  |
| Bacteriastrum spp.    | 24000 | 2000  |
| Ditylum spp.          | 6000  | 0     |
| Coscinodiscus spp.    | 6000  | 2000  |
| Dinophysis spp.       | 2000  | 0     |
| Oscillatoria spp.     | 12000 | 44000 |
| Rhizosolenia spp.     | 2000  | 4000  |
| Oikopleura spp.       | 2000  | 2000  |