Effect of dietary supplementation of chromium on growth and biochemical parameters of *Labeo rohita* (Hamilton) fingerlings

ABHAY KUMAR GIRI, NAROTTAM PRASAD SAHU, NEELAM SAHARAN AND GYANARANJAN DASH*

Aquaculture Division, Central Institute of Fisheries Education, Versova, Mumbai – 400 061, Maharashtra India

*Veraval Regional Centre of Central Marine Fisheries Research Institute, Veraval – 362 269, Gujarat, India

*Corresponding author: abhayaq.maa@gmail.com

ABSTRACT

A 60-day feeding experiment was conducted to evaluate the effect of dietary chromium on growth, feed efficiency and biochemical parameters of *Labeo rohita* fingerlings. Four isonitrogenous (crude protein 35%) and isocaloric (415 k cal 100 g⁻¹) experimental feeds were prepared by supplementing different levels of dietary chromium picolinate viz., control (0.0 mg kg⁻¹), T1 (0.4 mg kg⁻¹), T2 (0.8 mg kg⁻¹) and T3 (1.2 mg kg⁻¹). Weight gain WG (%), specific growth rate (SGR), feed efficiency ratio (FER) and protein efficiency ratio (PER) and apparent net protein utilisation (ANPU %) were significantly improved (p<0.05) when chromium was supplemented at 0.8 mg kg⁻¹ feed. The protein retention (PR %) value increased with the dose of chromium, showing the highest value in T2 group. Chromium supplementation significantly increased (p<0.05) liver glycogen in T1 and T2 groups but decrease was observed at high level of chromium supplementation in T3 group. Chromium supplementation significantly reduced (p<0.05) serum cholesterol and triglycerides in all the experimental groups compared to control showing the highest reduction in T2 group. The serum high density lipoproteins-cholesterol (HDL-C) was increased (p<0.05) in all experimental groups due to chromium supplementation and the highest blood HDL-C was observed in T2 group. However, no difference (p<0.05) in the serum low density lipoproteins-cholesterol (LDL-C) and phospholipid was observed in any of the experimental groups. Similarly, highest muscle protein as well as lowest liver AST and ALT were observed in T2 group. The results of the present study indicates that growth, feed utilisation and biochemical parameters in *Labeo rohita* can be significantly improved by feeding the fingerlings with chromium picolinate supplemented diet (0.8 mg kg⁻¹ feed).

Keywords: Cholesterol, Chromium, Glycogen, Growth, *Labeo rohita*

Introduction

Chromium (Cr) is an important trace element which plays a vital role in animal physiology (Mertz, 1993). It regulates carbohydrate metabolism as a structural component of glucose tolerance factor (GTF) by potentiating the action of insulin (Rosebrough and Steele, 1981; Mertz, 1993) which increases the absorption of glucose from circulation into peripheral tissues (Anderson, 1987). This essential trace element is also involved in the metabolism of lipid, protein, and nucleic acid (Rosebrough and Steele, 1981; Okada et al. 1983; Ohba et al. 1986; Press et al. 1990; McCarty, 1991). Cr supplementation increases animal growth performance by enhancing energy metabolism (Jacques and Stewart, 1993). Organic forms of chromium have a higher bioavailability than the inorganic forms (NRC, 1997). Research on animal models confirmed that organic form of dietary chromium such as chromium picolinate (CrPic), chromium nicotinate (CrNic), and chromium-enriched yeast, is absorbed more efficiently, about 25-30 % more than inorganic forms like chromic chloride (CrCl₃) or chromic oxide (Cr₂O₃), which are poorly absorbed (1-3%) regardless of dose or dietary chromium status (Underwood, 1977; Mowat 1994; Olim et al., 1994). Chromium picolinate, an organic and low-toxic form of trivalent chromium (Cr³⁺), is an essential element for optimum carbohydrate, lipid, protein and nucleic acid metabolisms (McCarty, 1991; Mertz, 1993), as well as for activating certain enzymes and stabilising proteins and nucleic acids (Anderson, 1987; Mertz, 1993).
The effect of chromium supplementation on growth performance of targeted animal is equivocal. Chromium has been reported to enhance carbohydrate metabolism in both turkeys (Rosebrough and Steele, 1981) and humans (Levine et al., 1968). It has been reported that organic chromium supplementation to diets of rats (Gray and Bowman, 1992), mice (Morris et al., 1995), chicken (Lien et al., 1999) and feeder calves (Kegley et al., 1997) had positive effects on glucose metabolism and insulin activity. It has been reported that dietary inorganic Cr supplements as CrO3 (Shiau and Liang, 1995; Shiau and Shy, 1998) and CrCl3 (Shiau and Lin, 1993) can significantly improve growth and feed utilisation parameters in hybrid tilapia fed diets containing high levels of glucose. Similar results have also been obtained on the same species when organic Cr (i.e., Cr-Nic or Cr-Pic) was supplemented to the diet rich in glucose content (Pan et al., 2002a). The growth enhancement by chromium supplementation at certain dosages has also been reported by Tacon and Beveridge (1982) in trout and by Jain et al. (1994) in Indian major carp. In contrary, it has also been reported that Cr supplementation has no significant effect on weight gain in hybrid tilapia when fed as Cr-Pic (Pan et al., 2003) or Cr-Nic (Pan et al., 2002b). Similarly, no significant improvement was observed in growth performance of gilthead seabream (Gatta et al., 2001) and rainbow trout (Bureau et al., 1995; Seleuk et al., 2010) when fed diet supplemented with Cr-yeast or Cr-Pic. Moreover, no significant effect on growth performance of Nile tilapia was observed by feeding Cr-Pic supplemented feed (El-Sayed et al., 2010; Mehrim, 2012). The results of the previous experiments suggest chromium plays an important role in fatty acid metabolism and can alter the serum fatty acid profile (Evock-Clover et al., 1993, Kitchoyal et al., 1995; Min et al., 1997; Wang et al., 2007, Zha et al., 2007, Wang et al., 2009). Kroliczewska et al. (2004) as well as Patil et al., (2008) reported decrease in serum total cholesterol, LDL-C, triglycerides and increased serum HDL-C when broiler chickens were fed with diet supplemented with chromium picolinate. A similar decrease in the serum lipid profile has been reported in grass carp when fed diet supplemented with chromium picolinate (Liu et al., 2010). The present study was conducted to assess the effect of dietary chromium on growth performance and other biochemical parameters to elucidate its role in lipid and protein metabolism in the Indian major carp, rohu (Labeo rohita).

Materials and methods

Experimental animals

Two hundred and seventy Labeo rohita fingerlings (13.59 ± 0.02 g) were procured from Hans Aquaculture, Raigad, Maharastra. The animals were acclimatised for 45 days prior to the experiment in a 3000 l capacity rectangular tank and fed on an isocaloric basal diet containing 35% crude protein to satiation. Continuous aeration was provided along with 50% replacement of water with fresh borewell water.

Preparation of experimental diets

Chromium picolinate was procured from Oceanic Laboratories (P) Ltd., Tarapur, Mumbai, India, and four isonitrogenous (crude protein 35%) and isocaloric (415 k cal 100 g-1) experimental feeds were prepared by supplementing different levels of dietary chromium picolinate viz., control (0.0 mg kg-1), T1 (0.4 mg kg-1), T2 (0.8 mg kg-1) and T3 (1.2 mg kg-1) (Table 1).

Table 1. Formulation and composition of the experimental diet

<table>
<thead>
<tr>
<th>Ingredients (g 100 g-1)</th>
<th>Control</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
</tr>
<tr>
<td>Gelatin</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Dextrin white</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Starch soluble</td>
<td>27.0</td>
<td>27.0</td>
<td>27.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Cellulose powder</td>
<td>8.50</td>
<td>8.50</td>
<td>8.50</td>
<td>8.50</td>
</tr>
<tr>
<td>Carboxy methyl cellulose</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1Sunflower oil</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>2Cod liver oil</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>3Vitamin-mineral mix</td>
<td>1.92</td>
<td>1.92</td>
<td>1.92</td>
<td>1.92</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Betaine hydrochloride</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Butylatedhydroxy toluene</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Chromium picolinate (supplemented)</td>
<td>0.00</td>
<td>0.00004</td>
<td>0.00008</td>
<td>0.00012</td>
</tr>
</tbody>
</table>

Proximate composition (g 100 g-1)

Moisture	8.02	7.99	7.87	7.93
Carbohydrate (%)	52.64	51.81	52.53	52.61
Crude protein (%)	34.77	35.47	35.23	34.77
Crude fat (%)	7.22	7.07	7.22	7.00
Ash (%)	5.37	5.65	5.02	5.62

1Sunflower oil, Nature Fresh, Cargill India Pvt. Ltd.: Saturated fatty acids - 10.1; MUFA - 45.4; PUFA - 40.1; Trans fatty acids ~<0.5
2Cod liver oil (Type B) BP; Universal medicare Pvt. Ltd., Mumbai
3Vitamin mineral mix (EMIX PLUS) (quantity/2.5kg): Vitamin A: 55,00,000 IU; Vitamin D3: 11,00,000 IU; Vitamin B2:2,000 mg; Vitamin E: 750 mg; Vitamin K1: 1,000 mg; Vitamin B6: 1,000 mg; Vitamin B12: 6 mcg; Calcium panthenate: 2,500 mg; Nicotinamide: 10 g; Choline chloride: 150 g; Mn: 27,000 mg; I: 1,000 mg; Fe: 7,500mg; Zn: 5,000mg; Cu: 2,000 mg; Co: 450 mg; Ca: 500 g; P: 300 g; L-lysine: 10 g; DL-Methionine:10 g; Selenium: 50 ppm.
Experimental design

The experiment was conducted for a period of 60 days in the wet laboratory facility of Central Institute of Fisheiries Education (CIFE) Mumbai. One hundred and eighty advanced fingerlings of *L. rohita* (13.59 ± 0.02 g) were randomly distributed in four distinct experimental groups with three replicates following a completely randomised design (CRD). Twelve rectangular plastic tubs of uniform size (300 l capacity) were used as experimental units for all the experimental trials where each tub contained fifteen fishes. Feeding was done to satiation twice a day and continuous aeration was provided along with 25% replacement of water at every 24 h. The water quality parameters in all the experimental tanks were within the normal range throughout the experimental period (temperature - 26 - 28 °C; dissolved oxygen - 6.5 to 7.0 mg l⁻¹ and pH - 7.0 -7.5).

Growth and feed efficiency parameters

The growth parameters of the experimental fishes were assessed by taking their body weight at 15 days interval. The animals were kept starved overnight before body weight measurement. The growth performance was assessed using the following formulae:

- Weight gain (WG %) = [(Final weight gain-Initial weight gain)/ Initial weight gain] × 100
- Specific growth rate (SGR %) = [(In final weight - in initial weight)/ Experimental period in days] × 100
- Feed efficiency ratio (FER) = Net weight gain (wet weight)/ Feed given (dry weight)
- Protein efficiency (PER) = Net weight gain (wet weight)/ Crude ratio protein fed
- Apparent net protein utilization (ANPU) = [(Total final carcass protein-Total initial carcass protein)/ Protein fed] × 100
- Protein retention (PR %) = (Gram protein gain/Gram protein fed) × 100

Biochemical analysis

After 60 days experimental period, fishes were collected from each tub and anaesthetised with clove oil (50 μl l⁻¹). Blood was withdrawn from the caudal vein using a syringe. For collection of serum, blood was withdrawn without the use of anticoagulant and allowed to clot for 2 h in slanting position till the serum separated out. This clotted blood sample was then centrifuged at 3500 rpm at 4 °C and the serum was collected as supernatant and stored at -18 °C until use. Serum protein was estimated by biuret method using commercial kit (Qualigen Diagnostics, India). Serum biochemical parameters such as cholesterol, triglycerides, high density lipoproteins-cholesterol (HDL-C), low density lipoproteins-cholesterol (LDL-C), and phospholipids, were quantified using respective colorimetric assay kits procured from Merck, Germany and the analysis was done in the Auto blood analyser, Spectra Junior (Merck, Germany).

Statistical analysis

Data on growth, feed utilisation and biochemical parameters among treatment groups were tested by one way analysis of variance (ANOVA) and the comparison of mean values were made by Tukey’s HSD test. At significance level p<0.05. Statistical analysis was performed using the software program SAS version (2007).

Results

Growth and feed efficiency parameters

Significantly higher (p<0.05) body weight gain (WG %) and specific growth rate (SGR) were observed in T2 group (0.8 mg kg⁻¹) (Table 2). Similarly, FER, PER and ANPU % significantly improved (p<0.05) in T2 group, whereas no significant difference was observed among other treatment groups and control (Table 2). The PR % value increased with the dose of chromium, showing the highest value in T2 group which decreased as the chromium level increased above 0.8 mg kg⁻¹ feed (T3).

Biochemical parameters

Chromium supplementation significantly increased (p<0.05) liver glycogen in T1, and T2 groups but significant decrease (p<0.05) was observed in T3 group when chromium supplementation increased above 0.8 mg kg⁻¹ feed (Table 3). In the present study, chromium supplementation significantly reduced (p<0.05) serum cholesterol and triglycerides in all the experimental groups compared to control showing the lowest value in T2 group (Table 3). The serum HDL-C increased (p<0.05) in all experimental groups due to chromium supplementation and the highest blood HDL-C was observed in T2 group. No significant difference in the serum LDL-C and phospholipid was observed in any of the experimental group. Similarly, highest muscle protein as well as lowest liver AST and ALT were observed in T2 group.

Discussion

In the present study, dietary supplementation of chromium piconilate (0.8 mg kg⁻¹ feed) significantly improved the WG, SGR, FER, PER, ANPU and PR of rohu fingerlings. The present results are in agreement with the previous observations obtained by supplementing diet with chromium piconilate (Liu et al., 2010) in grass carp, chronic oxides (Shiau and Chen, 1993; Shiau and Liang, 1995; Shiau and Shy, 1998) and chromium chloride (Shiau and Lin 1993) in hybrid tilapia diets. However,
Table 2. Growth parameters (% weight gain, SGR, FCR, PER, PR and ANPU of different experimental groups fed with different experimental diets (Mean ± SE)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG (%)</td>
<td>114.76±2.86</td>
<td>115.59±12.49</td>
<td>175.15±6.21</td>
<td>109.77±5.61</td>
</tr>
<tr>
<td>SGR</td>
<td>1.27±0.02</td>
<td>1.27±0.10</td>
<td>1.69±0.04</td>
<td>1.23±0.05</td>
</tr>
<tr>
<td>FER</td>
<td>0.478±0.01</td>
<td>0.482±0.05</td>
<td>0.729±0.03</td>
<td>0.457±0.02</td>
</tr>
<tr>
<td>PER</td>
<td>1.36±0.03</td>
<td>1.38±0.15</td>
<td>2.08±0.07</td>
<td>1.31±0.06</td>
</tr>
<tr>
<td>PR (%)</td>
<td>27.24±0.04</td>
<td>28.93±0.07</td>
<td>32.03±0.04</td>
<td>28.22±0.16</td>
</tr>
<tr>
<td>ANPU (%)</td>
<td>18.68±0.67</td>
<td>18.73±0.50</td>
<td>21.76±0.47</td>
<td>18.69±0.49</td>
</tr>
</tbody>
</table>

Values in the same row having same superscript are not significantly different (p > 0.05)

WG : Weight gain, SGR : Specific growth rate, FER: Feed efficiency ratio, PER : Protein efficiency ratio, PR: Protein retention, ANPU : Apparent net protein utilisation

Table 3. Biochemical parameters (Cholesterol, Triglycerides, HDL-C, LDL-C, Phospholipids, Insulin, GOT and GPT) of different experimental groups fed with different experimental diets (Mean ± SE)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver glycogen (mg g⁻¹)</td>
<td>32.17±0.14</td>
<td>35.57±0.08</td>
<td>35.81±0.07</td>
<td>30.26±0.17</td>
</tr>
<tr>
<td>Serum cholesterol (mg dl⁻¹)</td>
<td>91.33±0.25</td>
<td>88.51±0.28</td>
<td>81.06±0.60</td>
<td>88.57±0.17</td>
</tr>
<tr>
<td>Serum triglycerides (mg dl⁻¹)</td>
<td>76.21±0.34</td>
<td>70.33±0.72</td>
<td>70.91±0.48</td>
<td>70.98±0.45</td>
</tr>
<tr>
<td>Serum HDL-C (mg dl⁻¹)</td>
<td>42.25±0.21</td>
<td>43.89±0.11</td>
<td>46.90±0.08</td>
<td>43.99±0.10</td>
</tr>
<tr>
<td>Serum LDL-C (mg dl⁻¹)</td>
<td>37.25±4.69</td>
<td>36.92±2.19</td>
<td>36.40±5.89</td>
<td>43.27±6.37</td>
</tr>
<tr>
<td>Serum phospholipids (mg dl⁻¹)</td>
<td>162.55±2.56</td>
<td>164.73±4.76</td>
<td>164.27±1.28</td>
<td>162.89±5.71</td>
</tr>
<tr>
<td>Muscle protein (mg g⁻¹)</td>
<td>20.45±0.45</td>
<td>21.39±0.82</td>
<td>28.95±0.10</td>
<td>21.43±1.38</td>
</tr>
<tr>
<td>Liver AST (nM mg⁻¹ protein min⁻¹)</td>
<td>26.26±1.11</td>
<td>25.98±2.21</td>
<td>18.99±2.77</td>
<td>26.95±1.12</td>
</tr>
<tr>
<td>Liver ALT (nM mg⁻¹ protein min⁻¹)</td>
<td>18.60±2.46</td>
<td>18.19±0.61</td>
<td>10.90±0.49</td>
<td>29.32±1.97</td>
</tr>
</tbody>
</table>

Values in the same row having same superscript are not significantly different (p < 0.05)

HDL-C : High density lipoprotein-cholesterol, LDL-C: Low density lipoprotein-cholesterol, AST : Glutamate oxaloacetate transaminase
ALT : Alanine amino transferase

the present results are not found to be in congruence with the earlier studies conducted with hybrid tilapia (Pan et al., 2003, Pan et al., 2002b), gilthead sea bream (Gatta et al., 2001), rainbow trout (Bureau et al., 1995; Selcuk et al., 2010), Nile tilapia (El-Sayed et al., 2010; Mehrim, 2012), where no significant improvement in growth performance was noticed by Cr supplementation. The variation among the results obtained from different studies could be attributed to several factors such as the form of chromium used, carbohydrate source and level of diet, dose and duration of treatment as well as feeding behaviour of the target species used for the experiment. It has been proven that adequate levels of non-protein energy sources (carbohydrate and lipid) in the diet can minimise the catabolism of protein by their protein sparing property (Cho and Kaushik, 1990). Wilson (1994) reported that an adequate level of carbohydrates in fish diet reduces catabolism of protein and lipid for energy purposes and provides metabolic intermediates for the synthesis of other biologically important compounds. In the present study, the increase in growth performance may be due to the protein sparing action of carbohydrate resulted by the increased carbohydrate utilisation due to chromium piconilate supplementation. However, all the growth and feed efficiency parameters declined when the chromium piconilate supplementation were higher than 0.8 mg kg⁻¹ feed, which indicated that high-chromium supplementation was intolerable to L. rohita leading to reduced growth rate.

Glycogen level in liver was found to be significantly higher in rohu fed with the diet containing low level of chromium (0.8 mg kg⁻¹). This is in agreement with the finding of Liu et al. (2010) where higher liver glycogen level was reported in grass carp fed with the diet containing low level of chromium. It has been reported that chromium supplementation increases liver glycogen levels as a result of increasing activity of the enzyme glycogen synthetase (Rosebrough and Steele, 1981). Chromium piconilate supplementation also increases the carbohydrate utilisation and the excess glucose is stored in the form of glycogen in liver and muscle. However, liver glycogen was significantly reduced when chromium level in the diet
exceeded 0.8 mg kg⁻¹. This concurs with the observation in the freshwater field crab, *Barytelphusa guerini* (Sridevi et al., 2000) and in *Anabas scandens* (Venuopal and Reddy, 1992) where liver and kidney glycogen contents were depleted by the higher level of chromium. Chromium at higher level induces release of adrenal catecholamines causing glycogenolysis (Sridevi et al., 2000).

In the present study, chromium supplementation significantly reduced serum total cholesterol, triglycerides and increased serum HDL-C. This is in congruence with the findings of Kroliczewska et al. (2004) and Patil et al. (2008), who reported decrease in serum total cholesterol, LDL-C, triglycerides and increased serum HDL-C when broiler chickens were fed diet supplemented with chromium. The results of the previous experiments suggest that chromium plays an important role in fatty acid metabolism and can alter the serum fatty acid profile (Evock-Clover et al., 1993; Kitchalong et al., 1995; Min et al., 1997; Wang et al., 2007; Zha et al., 2007; Wang et al., 2009). Cholesterol is an important biomolecule which is essential for the synthesis of cell membrane, bile salts and steroid hormones. It is synthesised predominantly in liver and transported by blood. However, excess cholesterol in blood has a negative impact as it can lead to arterial congestion and heart disease (Cabin et al., 1982; Castelli et al., 1988). The positive effect of chromium supplementation on lowering the serum cholesterol has been well documented (Page et al., 1993; Kucukbay et al., 2006; Jain et al., 2007; Wang et al., 2007; Liu et al., 2010). Similarly, triglycerides are important form of storage fat which are stored mainly in the adipocytes and used during starvation. Like cholesterol, excess triglycerides in serum increase the chance of arterial congestion and heart disease (Menotti et al., 1994, Miller et al., 1999, Onat et al., 2006). Chromium supplementation increases the biological activity of Insulin which decreases adipocyte lipolysis by reducing the activities of adenylate cyclase and hormone-sensitive lipase (Lambert and Jacqumin, 1979). Insulin can also decrease triglycerides rich lipoprotein by increasing the lipoprotein lipase activity (Garfinkel et al., 1976; Howard et al., 1993) which in turn increases serum triglyceride clearance (Lien et al., 1999). The beneficial effect of chromium on lowering the serum triglycerides has been supported by previous studies (Jain et al., 2007; Wang et al., 2007). The HDL-C which is also known as good cholesterol plays a beneficial role in clearing and transporting the excess cholesterol back to the liver for its disposal and thus prevents arterial congestions and heart disease (Gordon et al., 1977; Goldbort et al., 1979; Jacobs et al., 1990). Insulin decreases the liver LDL receptor and thus decreases the serum LDL-C content with a concurrent increase in HDL-C (Brindley and Salter, 1991). Similar increase in serum HDL-C due to chromium supplementation has also been reported in previous studies (McCarty, 1991; Lien et al., 1999; Zha et al., 2007; Liu et al., 2010).

Increase in muscle protein can be used as an indicator of enhanced protein synthesis. Chromium supplementation stimulates insulin activity, increases glucose utilisation and thus may indirectly plays a vital role in the protein-sparing mechanism. Insulin plays an important role in protein metabolism rather than carbohydrate metabolism in fish (Jobling, 1994). Insulin increases protein synthesis in muscle tissues (Jefferson et al., 1980, Duguay and Mommsen, 1994; Davis et al., 2002; Craig et al., 2003). Insulin facilitates amino acid transport into the muscle cell (Tovar et al., 1991, Bonadonna et al., 1993), increases the ribosomal content of cell as well as their translation efficiency (Proud and Denton, 1997; Proud, 2006) and thus enhances protein anabolism in muscle cells. Moreover, insulin reduces proteolysis by downregulating cellular lysozyme activity (Jefferson et al., 1974, Fulks et al., 1975). This can be further correlated with reduced ALT and AST level in the liver tissue. ALT and AST are important transaminase in fish which plays important role in amino acid catabolism (Asadi et al., 2006; Melo et al., 2006). Fish fed with high protein diet usually show higher aminotransferase activity in liver which catabolise excess amino acid for energy purpose (Sa et al., 2006) More over ALT and AST level also increases during stress to supply amino acid for gluconeogenesis (Chatterjee et al., 2006, Tejpal et al., 2008; Hoseini et al., 2011). In the present study, lowest ALT and AST levels observed in T2 group is an indicator of reduced amino acid catabolism for energy purpose resulting in better somatic growth.

The results of the present study have clearly shown that the growth and feed utilisation parameters of *L. rohita* improved significantly (p<0.05) when the animals were fed with experimental diet supplemented with Cr-Pic at a level of 0.8 mg kg⁻¹ feed. Chromium supplementation increased liver glycogen, muscle protein and reduced serum cholesterol, HDL-C, triglycerides as well as liver AST and ALT which shows its regulatory effect on biochemical parameters of fish. However, the present findings are based on the study at laboratory scale and further studies should be conducted at field level to test practical applicability at culture scale.

Acknowledgements

Authors are grateful to the Indian Council of Agricultural Research, New Delhi, India for the financial support and to the Central Institute of Fisheries Education,
Mumbai, India for providing all the facilities required for the present study.

References

Gordon, T., Castelli, W. P., Hjortland, M. C., Kannell, W. B. and Dawber, T. R. 1977. High density lipoprotein as a protective factor against coronary
Effect of dietary supplementation of chromium in *Labeo rohita*

